JPH0628281B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JPH0628281B2
JPH0628281B2 JP58206247A JP20624783A JPH0628281B2 JP H0628281 B2 JPH0628281 B2 JP H0628281B2 JP 58206247 A JP58206247 A JP 58206247A JP 20624783 A JP20624783 A JP 20624783A JP H0628281 B2 JPH0628281 B2 JP H0628281B2
Authority
JP
Japan
Prior art keywords
layer
silicon substrate
sio
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58206247A
Other languages
Japanese (ja)
Other versions
JPS6098640A (en
Inventor
靖夫 林
英晴 中嶋
茂樹 加山
喬 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP58206247A priority Critical patent/JPH0628281B2/en
Publication of JPS6098640A publication Critical patent/JPS6098640A/en
Publication of JPH0628281B2 publication Critical patent/JPH0628281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region
    • H01L21/7621Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region the recessed region having a shape other than rectangular, e.g. rounded or oblique shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、絶縁層を選択的に微細に形成するMOS ICの製
造に使用して好適な半導体装置の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method suitable for use in manufacturing a MOS IC in which an insulating layer is selectively and finely formed.

背景技術とその問題点 従来、半導体集積回路例えばMOS ICにおいて、共通のシ
リコン基体に形成した複数の回路素子間を電気的に分離
する素子間分離技術としてはいわゆるCVD法によりシ
リコンナイトライドSi3N層をマスクとして用いる選択
酸化法が広く用いられていた。この選択酸化法ではシリ
コン基体に対して選択的に、熱酸化を行つて酸化物絶縁
層を形成する場合、半導体基体表面に酸化のマスクとな
るシリコン窒化物としてのSi3N層を形成し、これに穿
設した開口を通じて半導体基体に対する選択的酸化を行
うことが一般的になされていた。この場合、シリコン基
体上に直接的にSi3N層を酸化マスク層として形成する
と、このSi3N層中の真性応力によつてSi-SiN界面に
歪が生じ、これが爾後の熱処理において結晶欠陥の発生
原因となるなどを不安定性を招来した。
BACKGROUND ART AND ITS PROBLEMS Conventionally, in a semiconductor integrated circuit such as a MOS IC, as a device isolation technique for electrically isolating a plurality of circuit devices formed on a common silicon substrate, a so-called CVD method is used for silicon nitride Si 3 N. The selective oxidation method using four layers as a mask has been widely used. In this selective oxidation method, when thermal oxidation is selectively performed on a silicon substrate to form an oxide insulating layer, a Si 3 N 4 layer serving as a silicon nitride serving as an oxidation mask is formed on the surface of the semiconductor substrate. It has been generally performed to selectively oxidize a semiconductor substrate through an opening formed therein. In this case, if the Si 3 N 4 layer is directly formed on the silicon substrate as an oxidation mask layer, the intrinsic stress in the Si 3 N 4 layer causes a strain at the Si-SiN 4 interface, which causes a subsequent heat treatment. Instability was caused by causing crystal defects.

そのため、Si3N層による酸化マスクを用いる場合、ま
ず第1図に示すようにシリコン基体(1)の表面に数100Å
程度の薄いSiO膜によるパツド層(2)を形成し、これの
上に酸化マスクとしての窒化物Si3N層(3)を被着し
た。そしてこのSi3N層(3)にフォトエツチング等によ
つて熱酸化を施さんとする部分に開口(4)を形成し、こ
の開口(4)を通じてシリコン基体(1)の表面を熱酸化して
第2図に示すようにシリコン基体(1)に選択的に酸化物
層(5)を形成するようにしていた。ところが、このよう
に酸化のマスク効果がないSiOパツド層(2)が酸化用マ
スクとしてのSi3N層(3)下の基体(1)との間に介存され
るようにする場合、このSiO層(2)による実質的間隙に
よつて、得られた酸化物層(5)の周辺にはマスク層(3)の
開口(4)の縁部下に入り込んで延在する嘴状部いわゆる
バーズビーク部(6)が形成され、これがため酸化物層(5)
を充分幅狭に形成し得ず、例えば集積回路における回路
素子の集積度の向上が図り難かつた。
Therefore, when using an oxidation mask made of a Si 3 N 4 layer, first, as shown in FIG. 1, several hundred Å is formed on the surface of the silicon substrate (1).
A pad layer (2) consisting of a thin SiO 2 film was formed, and a nitride Si 3 N 4 layer (3) as an oxidation mask was deposited thereon. Then, an opening (4) is formed in a portion of the Si 3 N 4 layer (3) which is to be thermally oxidized by photoetching or the like, and the surface of the silicon substrate (1) is thermally oxidized through the opening (4). Then, as shown in FIG. 2, the oxide layer (5) is selectively formed on the silicon substrate (1). However, in the case where the SiO 2 pad layer (2) having no oxidation masking effect is interposed between the substrate (1) under the Si 3 N 4 layer (3) as an oxidation mask. Due to the substantial gap of the SiO 2 layer (2), a beak-like shape extends around the obtained oxide layer (5) under the edge of the opening (4) of the mask layer (3). The so-called bird's beak part (6) is formed and this is the oxide layer (5)
However, it was difficult to improve the degree of integration of circuit elements in an integrated circuit, for example.

また、Si3N層を酸化マスクに使用する製法のもうひと
つの欠点として、熱酸化によつて消費されるSi層と形成
されるSiO層との膜厚の比率が約0.4:1のため、表面
に段差を生じ微細加工、多層配線を困難にした。この欠
点を解決するため、Si3N層をリソグラフイ技術により
加工エツチング後、さらにシリコン基体をエツチングし
てから酸化することが提案されたが、この場合には一層
バーズビーク部(6)が生じやすくなると共に突起状のバ
ーズヘツド部(7)を生じ表面は平坦にならなかつた。こ
れらバーズビーク部(6)、バーズヘツド部(7)が形成され
るので従来の半導体装置の製造方法では、チヤンネル幅
等の微細化したMOS ICの製造には適さなかつた。そのた
め微細化したMOS ICの製造に使用できる新しい選択酸化
法として最近SWAMI法が提案された。第4図を参照し
て、このSWAMI法の工程につき説明する。この第4図に
おいて、第1図、第2図及び第3図に対応する部分には
同一符号を付しそれらの詳細な説明は省略する。
Another drawback of the manufacturing method using the Si 3 N 4 layer as an oxidation mask is that the film thickness ratio between the Si layer consumed by thermal oxidation and the SiO 2 layer formed is about 0.4: 1. Therefore, a step is formed on the surface, which makes fine processing and multilayer wiring difficult. In order to solve this drawback, it has been proposed that the Si 3 N 4 layer is processed and etched by the lithographic technique, and then the silicon substrate is further etched and then oxidized, but in this case, more bird's beak parts (6) occur At the same time, a bird's-head portion (7) having a protruding shape was formed and the surface was not flat. Since the bird's beak portion (6) and the bird's head portion (7) are formed, the conventional semiconductor device manufacturing method is not suitable for manufacturing a miniaturized MOS IC having a channel width or the like. Therefore, the SWAMI method has recently been proposed as a new selective oxidation method that can be used for manufacturing miniaturized MOS ICs. The process of the SWAMI method will be described with reference to FIG. In FIG. 4, parts corresponding to those in FIGS. 1, 2, and 3 are designated by the same reference numerals, and detailed description thereof will be omitted.

シリコン基体(1)の表面に数100Å程度の薄いSiO層に
よるパツド層(2)を形成する。次に、このパツド層(2)の
上に例えばいわゆるCVD法により酸化マスクとしての
窒化物Si3N層(3)を被着する。次に、パツド層(2)、Si
3N層(3)及びシリコン基体(1)を反応性イオンエツチン
グ法で凹部(8a)及び(8b)を形成するようにした後、チヤ
ンネルストツパー層(9)を所定範囲にイオン注入により
形成し、その後使用したレジスト(図示せず)を剥離す
る。次に、第4図Cに示すように酸化した後Si3N層(1
0)、SiO層(11)を積層する。次に第4図Dに示すよう
に全面にわたり反応性イオンエツチング法でSiO層(1
1)Si3N層(10)を除去し、最下層のSiO層(11)のとこ
ろでエツチングを止めるようにする。次に、SiO層(1
1)をエツチングにより除去する(第4図E)。次に、Si
3N層(10)をマスクとした選択酸化法例えばLOCOS法に
より第4図Fに示すようにSiO層(12)を形成する。次
に、Si3N層(10)上にLOCOS法による選択酸化時に形成
されたSiO層、Si3N層(10)及びシリコン基体(1)のう
ち凹部(8a)と(8b)との間の凸部上にあるSiO層(12a)を
エツチングにより除去して第4図Gの最終形状を得るも
のである。このSWAMI法によれば、微細化したMOS ICの
製造にも対応できるが、半導体基体の製造工程数が通常
の選択酸化法に比べ増加する欠点があつた。
On the surface of the silicon substrate (1), a pad layer (2) made of a thin SiO 2 layer having a thickness of several hundred Å is formed. Next, a nitride Si 3 N 4 layer (3) as an oxidation mask is deposited on the pad layer (2) by, for example, a so-called CVD method. Next, the pad layer (2), Si
After the recesses (8a) and (8b) are formed in the 3 N 4 layer (3) and the silicon substrate (1) by the reactive ion etching method, the channel stopper layer (9) is ion-implanted in a predetermined range. After forming, the used resist (not shown) is peeled off. Next, as shown in FIG. 4C, the Si 3 N 4 layer (1
0), SiO 2 layer (11) is laminated. Next, as shown in FIG. 4D, the SiO 2 layer (1
1) The Si 3 N 4 layer (10) is removed, and the etching is stopped at the lowermost SiO 2 layer (11). Next, the SiO 2 layer (1
1) is removed by etching (Fig. 4E). Then Si
As shown in FIG. 4F, a SiO 2 layer (12) is formed by a selective oxidation method using the 3 N 4 layer (10) as a mask, for example, the LOCOS method. Then, Si 3 N 4 layer (10) SiO 2 layer formed during the selective oxidation by LOCOS method on, Si 3 N 4 layer (10) and the recess (8a) of the silicon substrate (1) (8b) The SiO 2 layer (12a) on the convex portion between and is removed by etching to obtain the final shape of FIG. 4G. Although the SWAMI method can be applied to the manufacture of miniaturized MOS ICs, it has a drawback in that the number of semiconductor substrate manufacturing steps is increased as compared with the usual selective oxidation method.

発明の目的 本発明半導体基体の製造方法は、上述の欠点を解消して
簡単な工程で微細な半導体装置を安定した品質で得られ
るようにすることを目的とするものである。
Object of the Invention The method of manufacturing a semiconductor substrate of the present invention aims to solve the above-mentioned drawbacks and to obtain a fine semiconductor device with stable quality in a simple process.

発明の概要 本発明半導体基体の製造方法は、シリコン基体の一主面
にシリコンを含有する非晶質層を形成する工程と、シリ
コン基体に非晶質層を介して窒素イオンを注入する工程
と、シリコン基体をアニールして非晶質層下にこの非晶
質層に接する厚さ200〜1000Åの窒化物層を所定パター
ンに形成する工程と、所定部分の窒化物層を残してシリ
コン基体に凹部を形成する工程と、この凹部にSiO
層を形成する工程とを有するので、また、上述のイオン
注入の際のエネルギーを▲N+ 2▼10〜50KeV(N5〜25K
eV)とすると共にそのドーズ量を5×1016〜3×1017cm
-2(N1×1017〜6×1017cm-2)とするようにしたも
ので、簡単な工程で微細な半導体装置を安定した品質で
得われるようにしたものである。
SUMMARY OF THE INVENTION A method of manufacturing a semiconductor substrate according to the present invention comprises a step of forming an amorphous layer containing silicon on one main surface of a silicon substrate, and a step of implanting nitrogen ions into the silicon substrate through the amorphous layer. , A step of annealing a silicon substrate to form a nitride layer having a thickness of 200 to 1000Å in contact with the amorphous layer under a predetermined pattern in a predetermined pattern, and leaving a predetermined portion of the nitride layer on the silicon substrate. The step of forming the recess and the SiO 2 in the recess
Since it has a step of forming a layer, the energy at the time of the above-mentioned ion implantation is ▲ N + 2 ▼ 10 to 50 KeV (N + 5 to 25K
eV) and the dose amount is 5 × 10 16 to 3 × 10 17 cm
-2 (N + 1 × 10 17 to 6 × 10 17 cm -2 ), which is intended to obtain a fine semiconductor device with stable quality in a simple process.

実施例 以下、第5図を参照して、本発明半導体装置の製造方法
の一実施例について説明しよう。この第5図において、
第1図、第2図、第3図及び第4図に対応する部分には
同一符号を付しそれらの詳細な説明は省略する。
Embodiment An embodiment of the method for manufacturing a semiconductor device of the present invention will be described below with reference to FIG. In FIG. 5,
Parts corresponding to those in FIGS. 1, 2, 3, and 4 are designated by the same reference numerals, and detailed description thereof will be omitted.

まず、シリコン基体(1)として例えば〔100〕面方位のn
型で2〜3Ω−cmのものを用意する。そして、シリコン
基体(1)に非晶質層である熱酸化層(2′)を100Åをつ
け、Nイオンを例えば20KeV、1.0×1017cm-2のドーズ
量でイオン注入する(第5図A)。かかる注入後、窒素
雰囲気中で900℃20分間のアニールを施した後、酸素雰
囲気中で900℃60分間のアニールを施す事によつて、表
面に約200ÅのSiO層(2)とその下の約300Åの均質なSi
3N層(3)を形成する。次に、フオトリソグラフイ技術
により選択酸化する部分のSiO層及びSi3N層を溶液
エツチング或いは反応性イオンエツチングにより除去し
た後、さらにシリコン基体(1)約2500Åを反応性イオン
エツチングにより除去する(第5図C)。この場合、所
望の選択酸化物層の0.2〜0.5倍の厚みだけエツチング除
去するものとする。この後、反応性イオンエツチングに
より生じた化学的、物理的損傷を回復するための低温ア
ニールや化学処理を行つた後に5kg/cmの高圧下で90
0℃にし60分間の酸化を行い約6000ÅのSiO層(5)を成
長させる(第5図D)。この実施例により得られた選択
酸化後の半導体基体(1)においては要部の断面図(第5
図E)より明らかなように、バーズビーク部がなく、Si
Oの選択酸化層(5)6000Åに対し、バーズヘツド部の厚
さは1000Å以下にとどまり、表面が平坦であつた。この
実施例においては、Nイオン注入のエネルギーは▲N
+ 2▼10KeV(N5〜25KeV)の範囲に、ドーズ量は▲N+ 2
▼5×1016〜3.0×1017cm-2(N1×1017〜3.0×1017
cm-2)に選ぶ事ができる。また、アニール及び酸化温度
は800〜1100℃の範囲内に選ぶことができる。また、所
望の選択酸化層としてのSiO層(5)の0.5〜1.2倍の厚み
のSiO層が得られるような選択酸化を行なつた後にこ
のSiO層をエツチング除去するようにしてもよい。ま
た、この実施例で得られた選択酸化後の表面に突起状の
1000Åのバーズヘツドを生ずることがあつたが粘性の大
きいフオトレジスト等を塗布した後、反応性イオンエツ
チングにより平坦化するという周知の方法により除去す
ることができた。
First, as the silicon substrate (1), for example, n of [100] plane orientation
Prepare a mold of 2-3 Ω-cm. Then, 100 Å of the thermal oxidation layer (2 ') which is an amorphous layer is attached to the silicon substrate (1), and N 2 ions are ion-implanted at a dose amount of, for example, 20 KeV and 1.0 × 10 17 cm -2 (fifth). (Figure A). After such implantation, annealing is performed in a nitrogen atmosphere at 900 ° C for 20 minutes, and then in an oxygen atmosphere at 900 ° C for 60 minutes to obtain a SiO 2 layer (2) of about 200 Å on the surface and the lower layer. About 300Å of homogeneous Si
A 3 N 4 layer (3) is formed. Next, after removing the SiO 2 layer and the Si 3 N 4 layer of the portion to be selectively oxidized by the photolithography technique by solution etching or reactive ion etching, about 2500 Å of the silicon substrate (1) is further removed by reactive ion etching. (Fig. 5C). In this case, etching removal is performed by a thickness of 0.2 to 0.5 times the desired selective oxide layer. After this, after performing low temperature annealing or chemical treatment for recovering the chemical and physical damage caused by reactive ion etching, 90 ° C. under high pressure of 5 kg / cm 2.
Oxidation is performed at 0 ° C. for 60 minutes to grow a SiO 2 layer (5) of about 6000Å (FIG. 5D). In the semiconductor substrate (1) after selective oxidation obtained in this example, a cross-sectional view of a main part (5th embodiment)
As is clear from Figure E), there is no bird's beak and Si
The thickness of the bird's head was less than 1000 Å and the surface was flat against the O 2 selective oxidation layer (5) of 6000 Å. In this embodiment, the energy of N 2 ion implantation is ▲ N
+ 2 ▼ 10KeV (N + 5 to 25KeV) range, dose amount is ▲ N + 2
▼ 5 x 10 16 to 3.0 x 10 17 cm -2 (N + 1 x 10 17 to 3.0 x 10 17
cm -2 ) can be selected. Further, the annealing and oxidation temperatures can be selected within the range of 800 to 1100 ° C. Further, even if the SiO 2 layer after had row summer selective oxidation such as SiO 2 layer 0.5 to 1.2 times the thickness can be obtained of the SiO 2 layer (5) as a desired selective oxidation layer to be etched is removed Good. In addition, the surface of the surface after the selective oxidation obtained in this Example
Although a 1000 Å bird's head could be produced, it could be removed by a well-known method in which a photoresist having high viscosity was applied and then flattened by reactive ion etching.

以上述べたように本実施例に依れば、シリコン基体(1)
に窒素をイオン注入アニールする事によつてシリコン基
体(1)と密着したSi3N層(3)を形成し、選択酸化する部
分のSi3N層(3)をエツチング除去した後、さらにシリ
コン基体(1)を所望の選択酸化層の0.2〜0.5倍の厚みだ
けエツチング除去してから選択酸化を行なうのでウエハ
ー表面に段差のない或いは少ない平坦な素子間分離がで
きる利益がある。しかも従来のCVD法によりSi3N
と違つて、Si3N層とシリコン基体との密着が非常に良
いため、バーズビークが殆んど入らず、また同じ理由に
より、イオン注入エネルギーを▲N+ 2▼10KeV〜50KeV(N
5〜25KeV)に選ぶ事によつてSi3N層厚を200〜1000
Åと薄く選ぶ事ができ、従つて、選択酸化時に働く応力
を小さくでき、結晶欠陥の導入を招かない利益がある。
したがつて、簡単な工程により、微細な半導体装置例え
ばMOS ICを安定した品質で得られる利益がある。
As described above, according to this embodiment, the silicon substrate (1)
After nitrogen to form a Si 3 N 4 layer in close contact with Yotsute silicon substrate (1) in that the ion implantation annealing (3), were etched removed Si 3 N 4 layers of (3) the portion of the selective oxidation, the Further, since the silicon substrate (1) is etched and removed by a thickness of 0.2 to 0.5 times the desired selective oxidation layer and then the selective oxidation is performed, there is an advantage that flat element separation with no steps or few steps on the wafer surface can be achieved. Moreover, unlike the Si 3 N 4 layer formed by the conventional CVD method, the adhesion between the Si 3 N 4 layer and the silicon substrate is very good, so bird's beaks hardly occur, and for the same reason, the ion implantation energy is N + 2 ▼ 10KeV ~ 50KeV (N
+ 5~25KeV) the Yotsute Si 3 N 4 layer thickness to be selected in the 200-1000
It can be selected as thin as Å, so the stress that acts during selective oxidation can be reduced, which has the advantage of not introducing crystal defects.
Therefore, there is an advantage that a fine semiconductor device such as a MOS IC can be obtained with stable quality by a simple process.

また、第6図は本発明の他の実施例を示す。この第6図
において第5図に対応する部分には同一符号を付しそれ
らの詳細な説明は省略する。
FIG. 6 shows another embodiment of the present invention. In FIG. 6, parts corresponding to those in FIG. 5 are designated by the same reference numerals, and detailed description thereof will be omitted.

写真技術により選択酸化する部分をフオトレジスト(14
a)(14b)で覆つて上記方法と同様の窒素イオン注入を行
ない(第6図B)、レジスト除去後、900℃20分間の窒
素雰囲気中アニールを行ない更に900℃5kg/cm2の高圧
下で約60分間酸化する事によつて6000ÅのSiO膜を成
長させる。この時、窒素イオン注入された部分は200Å
のSiO膜(2)と300ÅのSi3N層(3)になつている。NH
4F:HF=100:12の液でSiO層(2)をエツチング除去
した後、再び900℃,5kg/cm2の高圧酸化を行つて6000
Åの選択酸化層(5a)(5b)を成長させる。この例において
も上述実施例同様の作用効果が得られることは容易に理
解できよう。
Photoresist (14
After covering with a) and (14b), the same nitrogen ion implantation as in the above method is performed (Fig. 6B), after resist removal, annealing is performed in a nitrogen atmosphere at 900 ° C for 20 minutes, and at 900 ° C under a high pressure of 5 kg / cm 2 . A 6000Å SiO 2 film is grown by oxidizing for about 60 minutes. At this time, the area implanted with nitrogen ions is 200Å
It consists of a SiO 2 film (2) and a 300 Å Si 3 N 4 layer (3). NH
After etching and removing the SiO 2 layer (2) with a solution of 4 F: HF = 100: 12, high pressure oxidation at 900 ° C. and 5 kg / cm 2 was performed again to obtain 6000.
Å Selective oxide layers (5a) and (5b) are grown. It can be easily understood that the same effects as in the above-described embodiment can be obtained in this example as well.

発明の効果 本発明半導体装置の製造方法に依れば、所定部分の窒化
物質を残してシリコン基体に凹部を形成し、凹部にSiO
層を形成する工程としたので、バーズビークがなく表
面が平坦な素子間分離を行なうことができ、簡単な工程
で微細な半導体装置を安定した品質で得られる利益があ
る。
According to the method of manufacturing a semiconductor device of the present invention, a recess is formed in a silicon substrate while leaving a predetermined portion of the nitride material, and the recess is formed with SiO 2.
Since the two layers are formed, there is an advantage that a fine semiconductor device can be obtained with stable quality in a simple process because element isolation having a flat surface without bird's beaks can be performed.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は従来の半導体装置の製造方法の例を
示す断面図、第3図は従来の半導体装置の製造方法の他
の例の要部を示す断面図、第4図は従来の半導体装置の
製造方法の更に他の例の製造工程を示す断面図、第5図
は本発明半導体装置の製造方法の一実施例の製造工程を
示す断面図、第6図は本発明半導体装置の製造方法の他
の実施例の製造工程を示す断面図である。 (1)はシリコン基体、(2)はSiO層、(3)はシリコンナイ
トライド層、(5a)(5b)はSiO層、(8a)(8b)は凹部であ
る。
1 and 2 are sectional views showing an example of a conventional method for manufacturing a semiconductor device, FIG. 3 is a sectional view showing an essential part of another example of a method for manufacturing a conventional semiconductor device, and FIG. 5 is a sectional view showing a manufacturing process of still another example of the method for manufacturing a semiconductor device, FIG. 5 is a sectional view showing a manufacturing process of an embodiment of the method for manufacturing a semiconductor device of the present invention, and FIG. 6 is a semiconductor device of the present invention. FIG. 9 is a cross-sectional view showing the manufacturing process of another embodiment of the manufacturing method of FIG. (1) is a silicon substrate, (2) is a SiO 2 layer, (3) is a silicon nitride layer, (5a) and (5b) are SiO 2 layers, and (8a) and (8b) are concave portions.

フロントページの続き (72)発明者 島田 喬 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (56)参考文献 特開 昭57−54347(JP,A) 特開 昭58−151057(JP,A) 特開 昭51−53488(JP,A) 特開 昭55−162235(JP,A) 特開 昭59−191350(JP,A)Front page continued (72) Inventor Takashi Shimada 6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Within Sony Corporation (56) Reference JP-A-57-54347 (JP, A) JP-A-58-151057 (JP, A) JP-A-51-53488 (JP, A) JP-A-55-162235 (JP, A) JP-A-59-191350 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】シリコン基体の一主面にシリコンを含有す
る非晶質層を形成する工程と、上記シリコン基体に上記
非晶質層を介して窒素イオンをN2 +10keV以上50
keV未満(N5keV以上25keV未満)のエネ
ルギーにて注入する工程と、上記シリコン基体をアニー
ルして上記非晶質層下のシリコン基体内に上記非晶質層
に接する厚さ200〜1000Åの窒化物層を所定パタ
ーンに形成する工程と、所定部分の窒化物層を残してシ
リコン基体に凹部を形成する工程と、該凹部にSiO
層を形成する工程とを有する半導体装置の製造方法。
1. A step of forming an amorphous layer containing silicon on one main surface of a silicon substrate, and nitrogen ions of N 2 +10 keV or more 50 on the silicon substrate through the amorphous layer.
a step of implanting with an energy of less than keV (N + 5 keV or more and less than 25 keV), annealing the silicon substrate, and contacting the amorphous layer in the silicon substrate under the amorphous layer, and having a thickness of 200 to 1000Å A step of forming a nitride layer in a predetermined pattern, a step of forming a recess in the silicon substrate leaving a predetermined portion of the nitride layer, and SiO 2 in the recess.
And a step of forming a layer.
【請求項2】前記イオン注入の際のドーズ量を5x10
16〜3x1017cm-2(N1x1017〜6x1017
-2)とするようにしたことを特徴とする特許請求の範
囲第1項記載の半導体装置の製造方法。
2. A dose amount during the ion implantation is 5 × 10 5.
16 ~3x10 17 cm -2 (N + 1x10 17 ~6x10 17 c
m −2 ). The method for manufacturing a semiconductor device according to claim 1, wherein
【請求項3】前記シリコンを含有する非晶質層はシリコ
ン酸化物層であることを特徴とする特許請求の範囲第1
項記載の半導体装置の製造方法。
3. The amorphous layer containing silicon is a silicon oxide layer.
A method of manufacturing a semiconductor device according to the item.
JP58206247A 1983-11-02 1983-11-02 Method for manufacturing semiconductor device Expired - Lifetime JPH0628281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58206247A JPH0628281B2 (en) 1983-11-02 1983-11-02 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58206247A JPH0628281B2 (en) 1983-11-02 1983-11-02 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6098640A JPS6098640A (en) 1985-06-01
JPH0628281B2 true JPH0628281B2 (en) 1994-04-13

Family

ID=16520169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58206247A Expired - Lifetime JPH0628281B2 (en) 1983-11-02 1983-11-02 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0628281B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316223A (en) * 1995-05-16 1996-11-29 Mitsubishi Electric Corp Semiconductor device and its manufacture
US5846888A (en) * 1996-09-27 1998-12-08 Micron Technology, Inc. Method for in-situ incorporation of desirable impurities into high pressure oxides
US6610581B1 (en) 1999-06-01 2003-08-26 Sanyo Electric Co., Ltd. Method of forming isolation film in semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153488A (en) * 1974-11-06 1976-05-11 Hitachi Ltd HANDOTAISHUSEKIKAIROYOKIBANNO SEIHO
JPS5519831A (en) * 1978-07-28 1980-02-12 Toshiba Corp Semiconductor device manufacturing method
JPS55162235A (en) * 1979-06-01 1980-12-17 Mitsubishi Electric Corp Forming nitride film
JPS5754347A (en) * 1980-09-19 1982-03-31 Matsushita Electric Ind Co Ltd Selective oxidation
JPS58151057A (en) * 1982-03-02 1983-09-08 Toshiba Corp Preparation of semiconductor device

Also Published As

Publication number Publication date
JPS6098640A (en) 1985-06-01

Similar Documents

Publication Publication Date Title
JP3273636B2 (en) Integrated circuit and manufacturing method thereof
US5447885A (en) Isolation method of semiconductor device
JPH1022397A (en) Manufacture of semiconductor device
US4039359A (en) Method of manufacturing a flattened semiconductor device
JPH0748491B2 (en) Method for manufacturing integrated circuit semiconductor device
JPH06163532A (en) Method for isolation of semiconductor element
JPH0628282B2 (en) Method for manufacturing semiconductor device
JPS63288043A (en) Method of isolating side surface isolated element
EP0075875A2 (en) Method of making integrated circuits comprising dielectric isolation regions
JPH0312785B2 (en)
JPH0628281B2 (en) Method for manufacturing semiconductor device
JPH0763072B2 (en) Method for separating semiconductor devices
JPH0338741B2 (en)
JPS6252950B2 (en)
JP2822211B2 (en) Method for manufacturing semiconductor device
JP2707901B2 (en) Method for manufacturing semiconductor device
JP2586431B2 (en) Method for manufacturing semiconductor device
JPH05175190A (en) Manufacture of semiconductor device
JPH079930B2 (en) Method for manufacturing semiconductor device
JPH0846026A (en) Manufacture of semiconductor device with element isolation region
JPH0117256B2 (en)
JPH0917779A (en) Formation method of oxide film for element isolation of semiconductor device
JPH06163531A (en) Formation of element isolation region in semiconductor
JPH0582514A (en) Manufacture of semiconductor device
JPS62131538A (en) Manufacture of semiconductor device