JPH03115525A - Production of grain-oriented silicon steel sheet excellent in magnetic property - Google Patents

Production of grain-oriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH03115525A
JPH03115525A JP1249069A JP24906989A JPH03115525A JP H03115525 A JPH03115525 A JP H03115525A JP 1249069 A JP1249069 A JP 1249069A JP 24906989 A JP24906989 A JP 24906989A JP H03115525 A JPH03115525 A JP H03115525A
Authority
JP
Japan
Prior art keywords
slab
temperature
rolling
grain
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1249069A
Other languages
Japanese (ja)
Other versions
JPH0678573B2 (en
Inventor
Masahiko Manabe
真鍋 昌彦
Fumihiko Takeuchi
竹内 文彦
Toshito Takamiya
俊人 高宮
Takashi Obara
隆史 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1249069A priority Critical patent/JPH0678573B2/en
Publication of JPH03115525A publication Critical patent/JPH03115525A/en
Publication of JPH0678573B2 publication Critical patent/JPH0678573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fine and uniform structure and to provide uniform and superior magnetic properties free from linear fine grains by applying hot rolling to a silicon-containing steel slab after raising the temp. in a position at a specific depth from a surface layer by means of induction heating under specific conditions. CONSTITUTION:Prior to the hot rolling of a silicon-containing steel, a slab is subjected to induction heating at 1380-1470 deg.C average temp. under the conditions satisfying relationships in an inequality. By the above heating, a temp. in a position at a depth of 1/10 from a surface layer is regulated so that it is higher by 15-50 deg.C than the temps. in the central part and the outermost surface layer. In the successive hot roughing stage, a crystalline structure is controlled in a thickness direction and grain growth in the abnormal grain growth of equiaxed crystals in the center of thickness is inhibited. By this method, a grain-oriented silicon steel sheet having a grain size distribution uniform in a sheet-thickness direction and also having superior magnetic properties can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性の優れた電磁鋼板の製造方法に関
し、とくにスラブ加熱処理に工夫を加えることにより、
熱間粗圧延工程において厚み方向にわたる結晶組織を制
御し、もって磁気特性の有利な改善を図ったものである
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an electrical steel sheet with excellent magnetic properties, and in particular, by adding innovation to slab heat treatment,
The crystal structure in the thickness direction is controlled in the hot rough rolling process, thereby advantageously improving the magnetic properties.

(従来の技術) 方向性けい素鋼板は、周知のように変圧器その他の電気
機器の鉄心材料として使用され、ゴス粒と呼ばれる仮面
に(110)面、圧延方向に<001>軸が揃った2次
再結晶粒によって構成されている。
(Prior Art) As is well known, grain-oriented silicon steel sheets are used as core materials for transformers and other electrical equipment, and have masks called Goss grains with (110) planes and <001> axes aligned in the rolling direction. It is composed of secondary recrystallized grains.

このような結晶方位の2次再結晶粒を発達させるために
はインヒビターとよばれる微細なMn5I MnSe+
AIN等の析出物を鋼中に分散させ、高温仕上げ焼鈍中
にゴス方位以外の結晶粒の成長を効果的に抑制すること
が必要である。そのためのインヒビター分散形態のコン
トロールは、熱間圧延に先立つスラブ加熱中にこれら析
出物を一旦固溶させ、この後適当な冷却パターンの熱間
圧延を施すことにより行われる。
In order to develop secondary recrystallized grains with such crystal orientation, fine Mn5I MnSe+ called inhibitors are required.
It is necessary to disperse precipitates such as AIN in steel and effectively suppress the growth of crystal grains other than the Goss orientation during high-temperature finish annealing. For this purpose, the inhibitor dispersion form is controlled by once solidly dissolving these precipitates during slab heating prior to hot rolling, and then hot rolling with an appropriate cooling pattern.

ここで、熱間圧延の役割はスラブ鋳造組織を再結晶によ
り、微細化し2次再結晶に最適な集合組織を得ることを
目的としている。従来の技術はインヒビター固溶あるい
は組織微細化を個々に達成しようとするもので、それに
関する技術はこれまでに多数提案されている。
Here, the role of hot rolling is to refine the slab casting structure by recrystallization and obtain an optimal texture for secondary recrystallization. Conventional techniques attempt to achieve solid solution of inhibitors or microstructural refinement individually, and many related techniques have been proposed to date.

例えば、インヒビター固溶に関しては、特開昭63−1
0911号公報にて開示されているように、スラブ表面
温度が1420〜1495℃の温度域に5〜60分保持
するに際し、1320″C以上において、1420〜1
495℃の温度に達するまで8℃/分以上の昇温速度で
昇温することにより、表面欠陥が少なく特性が良好な一
方同性けい素鋼板が得られるとしている。
For example, regarding inhibitor solid solution, JP-A-63-1
As disclosed in Japanese Patent Application No. 0911, when the slab surface temperature is kept in the temperature range of 1420 to 1495°C for 5 to 60 minutes, at 1320″C or higher,
It is said that by increasing the temperature at a rate of 8° C./min or more until the temperature reaches 495° C., a homogeneous silicon steel sheet with few surface defects and good properties can be obtained.

この方法により確かにインヒビターの完全固溶が達成で
き、原理的にはスラブ表面粒の粗大化も抑制され表面性
状も改善できるが、しかしスラブのような重量物に対し
て均一にこのような条件を達成することは実際には困難
であり、特にスラブ全長にわたって結晶粒粗大化を完全
に抑制することは不可能で、組織の均一性を保証するた
めには熱間圧延時に何らかの結晶粒微細化処置を加える
ことが必要である。
This method certainly makes it possible to achieve complete solid solution of the inhibitor, and in principle also suppresses the coarsening of slab surface grains and improves the surface quality. is difficult to achieve in practice, especially since it is impossible to completely suppress grain coarsening over the entire length of the slab, and some grain refinement during hot rolling is necessary to ensure uniformity of the structure. It is necessary to take action.

一方、組織微細化に関しては、例えば特開昭54−12
0214号公報で開示された1190〜960 ’Cで
の再結晶高圧下圧延による方法、特開昭55−1191
’26号公報で開示された1230〜960℃で、γ相
を3%以上含んだ状態での30%以上の高圧下圧延によ
る方法、特開昭57−11614号公報で開示された粗
圧延開始温度を1250℃以下にする方法、特開昭59
−93828号公報で開示された1050〜1200℃
で歪速度15 s−’以下、圧下率を15%/バス以上
とする方法などが既に知られている。これらはいずれも
1200℃付近の温度域で、高圧下圧延を行って、組織
微細化をはかるという点で共通している。すなわち、こ
れらはいずれも「鉄と鋼J 67 (1981) S 
1200に発表されている再結晶限界に関する知見ある
いはそれと同一の技術思想に基づいている。第1図はこ
の知見を示すものである。この図の示すところは高温で
の圧延は再結晶には全く寄与せず、低温での再結晶域で
の大きな歪付加のみが再結晶に寄与するという点である
。すなわち高温加熱したスラブでも再結晶による組織微
細化を狙うためには1250℃以下に冷却後、圧延する
ことが必須であることを示している。これらの技術では
いずれの場合も加熱に関しては、1250℃以上として
おり上限は特に規定していない。長時間炉内に保持する
ことにより、インヒビターを固溶して、スラブ粒成長は
ある程度容認し、熱間圧延により精微細化するという点
で共通している。
On the other hand, regarding microstructure, for example, Japanese Patent Application Laid-Open No. 54-12
Method by recrystallization high pressure rolling at 1190 to 960'C disclosed in Japanese Patent Application Laid-open No. 1191/1983
The method of rolling with a high reduction of 30% or more at 1230 to 960°C in a state containing 3% or more of γ phase disclosed in '26, and the start of rough rolling disclosed in JP-A-57-11614. Method for lowering the temperature to 1250°C or less, JP-A-59
-1050 to 1200°C disclosed in Publication No. 93828
A method is already known in which the strain rate is 15 s-' or less and the rolling reduction is 15%/bath or more. All of these have in common that they are rolled under high pressure in a temperature range of around 1200° C. to refine the structure. In other words, these are all "Tetsu to Hagane J 67 (1981) S
It is based on the knowledge regarding the recrystallization limit published in 1200, or the same technical idea. Figure 1 illustrates this finding. This figure shows that rolling at high temperatures does not contribute to recrystallization at all, and only large strain addition in the recrystallization region at low temperatures contributes to recrystallization. In other words, this shows that even with a slab heated to a high temperature, it is essential to cool it to 1250° C. or lower and then roll it in order to achieve microstructural refinement through recrystallization. In all of these techniques, the heating temperature is set at 1250° C. or higher, and no upper limit is specified. They are common in that by holding the slab in a furnace for a long time, the inhibitor is dissolved into solid solution, allowing slab grain growth to some extent, and refining by hot rolling.

しかしこれらの技術の実際を考えた場合、インヒビター
を完全固溶させるためにスラブを高温加熱するとホット
ストリップミル上に、冷却装置が必要であり、また低温
熱延のためにミルパワーが余計に必要となるなど、省エ
ネルギー、高生産性を目的とする、ホットストリップミ
ルの思想と相反する。また低温圧延の効果に関しても必
ずしも明確ではなかった。
However, when considering the reality of these technologies, heating the slab at high temperatures to completely dissolve the inhibitor requires a cooling device on the hot strip mill, and additional mill power is required for low-temperature hot rolling. This contradicts the idea of a hot strip mill, which aims to save energy and increase productivity. Furthermore, the effects of low-temperature rolling were not always clear.

つまり、これらの方法を実工程に適用するにはその効果
が小さいわりには余りにも多くの問題を残していたので
ある。
In other words, the effectiveness of these methods was small and too many problems remained to be applied to actual processes.

(発明が解決しようとする課題) この発明は、上記の問題を有利に解決するもので、ホッ
トストリップミルの量産性というメリットを最大限に生
かし、かつインヒビター完全固溶に有利な高温加熱を適
用した条件下でも、完全に微細均一な組織を確実に得て
、線状細粒のない均一で優れた磁気特性を有する方向性
電磁鋼板の有利な製造方法を提案することを目的とする
(Problems to be Solved by the Invention) This invention advantageously solves the above-mentioned problems by making the most of the mass-productivity advantage of a hot strip mill and applying high-temperature heating that is advantageous for complete solid solution of the inhibitor. The purpose of the present invention is to propose an advantageous manufacturing method for grain-oriented electrical steel sheets that reliably obtain a completely fine and uniform structure even under such conditions and have uniform and excellent magnetic properties without linear fine grains.

(課題を解決するための手段) すなわちこの発明は、含けい素鋼スラブを、加熱したの
ち、熱間圧延、ついで1回または中間焼鈍を挟む2回の
冷間圧延を施し、その後脱炭・一次再結晶焼鈍および最
終仕上げ焼鈍を施す一連の工程からなる方向性けい素鋼
板の製造方法において、 熱間圧延に先立つスラブ加熱を誘導加熱で行うものとし
、スラブ平均温度が1380〜1470℃の範囲におい
て、下記の関係式を満足する条件下に加熱することによ
り、表層から1710厚み位置の温度を中心部および最
表層の温度よりも15〜50℃高くして、引き続く熱間
粗圧延工程で結晶組織を厚み方向に制御することからな
る磁気特性の優れた電磁鋼板の製造方法である。
(Means for Solving the Problems) That is, the present invention heats a silicon-containing steel slab, then hot-rolls it, then cold-rolls it once or twice with intermediate annealing in between, and then decarburizes and decarburizes it. In a method for producing a grain-oriented silicon steel sheet, which consists of a series of steps of primary recrystallization annealing and final annealing, the slab heating prior to hot rolling is performed by induction heating, and the slab average temperature is in the range of 1380 to 1470 ° C. By heating under conditions that satisfy the following relational expression, the temperature at the 1,710-thickness position from the surface layer is raised 15 to 50 degrees Celsius higher than the temperature at the center and the outermost layer, and crystallization occurs in the subsequent hot rough rolling process. This is a method for producing electrical steel sheets with excellent magnetic properties, which involves controlling the structure in the thickness direction.

記 20 ≦ x −V′;「7τ〒+273) ≦ 60
(14Q/P)ここでXニスラブ厚み(mm) ω:加熱炉周波数(Hz) Tニスラブ平均温度(℃) Qニスラブ放熱量(k−) P:投入電力量(kW) 以下、この発明を具体的に説明する。
Note 20 ≦ x −V′; “7τ〒+273) ≦ 60
(14Q/P) Here, Explain in detail.

さて発明者らは、高温域での再結晶挙動について数多く
の実験と検討を行った結果、従来は歪回復域であるとし
て、全く研究の対象とされなかった高温域でも、歪量が
十分に大きければ再結晶が十分に進行することを新たに
見出した。
As a result of numerous experiments and studies on recrystallization behavior in high-temperature ranges, the inventors have found that the amount of strain is sufficient even in high-temperature ranges, which have traditionally been considered to be strain recovery regions and have not been the subject of research at all. We have newly discovered that if the size is large, recrystallization will proceed sufficiently.

この点についてはこれまで全く報告はない。というのは
工業的には高温加熱が非常に難しかったこと、そして実
験室的に検討する場合でも、高温圧延で圧延を行うには
高温に加熱する必要があるが、スケール生成や実験炉の
補修などの問題があり、非常な困難を伴ったからである
。なお普通鋼については多数の実験報告があるが、12
00℃以上の高温域は動的復旧領域であり回復または動
的再結晶が主であるとされ、それ以上の検討は十分には
行われていなかった。とくに方向性けい素鋼板の場合、
3wt%(以下単に%で示す)程度のSiを含むのでほ
とんどがα相であり、このα相は回復し易いとされてい
るので動的再結晶は起こらないであろうということで、
全く興味の対象とされていなかったのである。
There have been no reports on this point so far. This is because high-temperature heating has been extremely difficult in an industrial setting, and even in the laboratory, high-temperature rolling requires heating to high temperatures, but it is difficult to prevent scale formation and repair of experimental furnaces. This is because there were problems such as these, and it was extremely difficult. There are many experimental reports on ordinary steel, but 12
The high temperature region of 00° C. or higher is considered to be a dynamic recovery region where recovery or dynamic recrystallization is the main activity, and further studies have not been conducted sufficiently. Especially in the case of grain-oriented silicon steel sheets,
Since it contains about 3 wt% (hereinafter simply expressed as %) of Si, most of it is α phase, and this α phase is said to be easy to recover, so dynamic recrystallization will not occur.
It was not a subject of interest at all.

しかしながら発明者らは、上記の通説に疑問をもち、超
高温加熱が可能なスケールの影響の少ない加熱炉を開発
し、種々の実験を行った末に上述したような現象を初め
て見出したのである。
However, the inventors had doubts about the above-mentioned conventional wisdom, developed a heating furnace capable of ultra-high temperature heating with little influence of scale, and after conducting various experiments, discovered the above-mentioned phenomenon for the first time. .

以下、この発明を由来するに至った実験結果について説
明する。
Below, the experimental results that led to this invention will be explained.

c:o、o4%、Si : 3.36%、Mn : 0
.05%およびSe70.022%を含み、残部は実質
的にFeの組成になるけい素鋼スラブを、1350″C
で30分間加熱し、所定の温度になったときに種々の圧
延温度及び圧下率で1パス圧延し、その後水冷したのち
の断面組織を観察して再結晶率を測定した。
c: o, o4%, Si: 3.36%, Mn: 0
.. A silicon steel slab containing 0.05% and 70.022% Se, with the remainder being essentially Fe, was heated at 1350″C.
The specimens were heated for 30 minutes at a predetermined temperature, and when the temperature reached a predetermined temperature, they were rolled for one pass at various rolling temperatures and reduction ratios, and after cooling with water, the cross-sectional structure was observed and the recrystallization rate was measured.

かくして得られた調査結果を第2図に示す。The survey results thus obtained are shown in Figure 2.

同図より明らかなように、従来の知見では全く再結晶し
ないとされていた高温域たとえば1350℃でも、30
%以上の圧下率があれば再結晶が進むことが判明した。
As is clear from the figure, even at high temperatures such as 1350°C, where conventional knowledge suggests that no recrystallization occurs, 30°C
It was found that recrystallization progresses if the rolling reduction is % or more.

この現象は次のように理解される。まず圧延後の未再結
晶粒内には粗いネットワーク状の転位組織で構成される
サブグレインが形成されているのが観察された。したが
って、回復は圧延後のかなり速い時点で終了していると
推定される。しかも結晶粒間でこのネットワークの粗さ
すなわち転位密度が異なる。そこでこの転位密度の差が
再結晶の駆動力となると考えられる。高温では粒界が熱
活性化されて移動可能となり、その移動した粒界がある
程度以上の曲率をもつとそれは再結晶核となり得る。上
記したような現象により、従来は動的再結晶を起こすほ
ど歪は残留しないとされた高温域でも実際は再結晶が可
能であることが確認された。ただしこの再結晶挙動は上
述したように未再結晶域の転位密度が低いため、その成
長の駆動力は非常に小さい。しかし粒界の易動度が非常
に大きいとき、すなわち温度が高いとき(1280℃以
上)にはある程度の時間はかかるものの十分再結晶可能
となるのである。
This phenomenon can be understood as follows. First, it was observed that subgrains consisting of a coarse network-like dislocation structure were formed within the unrecrystallized grains after rolling. Therefore, it is presumed that recovery is completed fairly quickly after rolling. Moreover, the roughness of this network, that is, the dislocation density, differs between crystal grains. Therefore, this difference in dislocation density is considered to be the driving force for recrystallization. At high temperatures, grain boundaries are thermally activated and become movable, and if the migrated grain boundaries have a curvature above a certain level, they can become recrystallization nuclei. The above-mentioned phenomenon confirmed that recrystallization is actually possible even in high-temperature ranges, where it was previously thought that strain would not remain to the extent that dynamic recrystallization would occur. However, the driving force for this recrystallization behavior is very small because the dislocation density in the unrecrystallized region is low as described above. However, when the mobility of grain boundaries is very high, that is, when the temperature is high (1280° C. or higher), sufficient recrystallization becomes possible, although it takes some time.

この現象は従来のよく知られている静的再結晶とは様子
がかなり異なる。
This phenomenon is quite different from the conventional well-known static recrystallization.

ここまで述べた点は、3%5ijilで1300℃以上
の温度域圧延の場合、すなわちα相単相の状態での再結
晶機構であり、今回はじめて明らかになった点である。
The point described so far is the recrystallization mechanism in the case of rolling in a temperature range of 1300° C. or higher with 3% 5ijil, that is, in the α phase single phase state, and this is a point that has been clarified for the first time.

これに対して、3%けい素鋼で従来知られていた、前掲
第1図に示したような再結晶限界線を与えるのは硬質の
γ相が析出しその近傍のみで再結晶が促進される場合で
ある。つまり従来は圧延実験でデータを出してはいるが
、その圧延前の熱処理方法が省略され過ぎていたため、
この発明の基礎となった実験結果とは異なった結果が得
られたものと考えられる。すなわち従来は、高温で溶体
化処理したサンプルを室温まで一度冷却してから再加熱
して所定の圧延温度として圧延に供していたのである。
On the other hand, the reason for the recrystallization limit line shown in Figure 1, which was previously known for 3% silicon steel, is that the hard γ phase precipitates and recrystallization is promoted only in its vicinity. This is the case. In other words, in the past, data was obtained from rolling experiments, but the heat treatment method before rolling was too often omitted.
It is thought that the results obtained were different from the experimental results that formed the basis of this invention. That is, conventionally, a sample solution-treated at high temperature was once cooled to room temperature and then reheated to a predetermined rolling temperature and subjected to rolling.

この場合、組織中には必ずγ相が一部生成するが、かか
るγ相はα粒の粒界付近に優先的に生成し、そこでは再
結晶が容易に進行する。しかしこの場合でも、元の粒径
がスラブ鋳造粒のように粗大な場合には再結晶は完了し
難く、旧誼中心部にはどうしても未再結晶部が残り易い
。またγ相分率とその分散は温度のみならず、C,Si
量や歪量そして冷却速度(保持時間)にも大きく依存す
る。したがって僅かの処理条件の違いでも、その効果は
大きく変化するものと考えられる。これが従来、低温熱
延による杭機細化効果が安定して得られかった大きな理
由であると推定される。また、一方で、c4を増すこと
(粗大カーバイトの増加)により、後工程で集積度の高
い圧延集合組織が得られにくくなるという欠点もある。
In this case, some γ phase is always generated in the structure, but the γ phase is preferentially generated near the grain boundaries of α grains, where recrystallization easily progresses. However, even in this case, if the original grain size is coarse, such as slab cast grains, recrystallization is difficult to complete, and unrecrystallized portions tend to remain in the center of the old core. In addition, the γ phase fraction and its dispersion are determined not only by temperature but also by
It also depends greatly on the amount of strain, amount of strain, and cooling rate (holding time). Therefore, it is thought that even a slight difference in processing conditions can significantly change the effect. This is presumed to be a major reason why the pile machine thinning effect by low-temperature hot rolling has not been stably obtained in the past. On the other hand, there is also a drawback that increasing c4 (increasing coarse carbide) makes it difficult to obtain a rolled texture with a high degree of integration in the subsequent process.

ところが今回、発明者らが見出した高温でのα単相域に
おける再結晶挙動は、従来の低温でのγ相存在下におけ
る再結晶と異なり、γ相を再結晶核生成サイトとせず、
単に粒界が核生成サイトとなり、また再結晶粒径も比較
的大きくなりやすいので、未再結晶部が残存しにくく、
均一な再結晶粒組織が得やすい。そしてこの時点で未再
結晶粒がなければ、線状細粒は出現しない。
However, the recrystallization behavior in the α single phase region at high temperatures that the inventors discovered this time is different from conventional recrystallization in the presence of the γ phase at low temperatures, and does not use the γ phase as the recrystallization nucleation site.
Grain boundaries simply serve as nucleation sites, and the recrystallized grain size tends to become relatively large, so it is difficult for unrecrystallized parts to remain.
It is easy to obtain a uniform recrystallized grain structure. If there are no unrecrystallized grains at this point, no linear fine grains will appear.

また第2図には、圧延前の初期粒径の影響も同時に示さ
れていて、従来までの再結晶挙動に関する知見に見られ
るように、初期粒径が大であるほど、再結晶しづらくな
るが、圧延温度を高くすれば、十分に再結晶可能となる
ことも判った。
Figure 2 also shows the influence of the initial grain size before rolling, and as can be seen from previous knowledge on recrystallization behavior, the larger the initial grain size, the more difficult it is to recrystallize. However, it was also found that sufficient recrystallization can be achieved by increasing the rolling temperature.

次に発明者らは、連鋳スラブのような、厚み方向に組織
が不均一な場合の粒成長挙動について調査した。
Next, the inventors investigated grain growth behavior in a case where the structure is non-uniform in the thickness direction, such as in a continuously cast slab.

その結果、粒成長率(成長後の粒径7元の粒径)は温度
が高くなるに従って太き(なるが、柱状晶(スラブ表層
部)と等軸晶(スラブ中心部)とでは、その温度依存性
が大きく異なることの知見を得た。すなわち柱状晶の粒
成長は、加熱温度の上昇に伴ってゆるやかに進行するが
、等軸晶の場合は成分に依存したある特定の温度までは
粒成長は抑制され、その温度を超えると急激に成長率が
増加し、柱状品部より粗大になる場合もあることを見出
した。したがって、スラブを通常の方法でインヒビター
固溶温度域に加熱した場合、つまり厚み方向に均一に加
熱しようとしても、表層と中心部の粒径差を一定にする
ことは、非常に困難である。したがって、粗圧延終了ま
で圧延する条件が一定であっても、このように初期条件
が変わっている場合が多いため、厚み方向すべてにわた
って均一な組織を得ることは難しい。また圧延時には厚
み方向での熱履歴も変化するので、つまり表層の方が冷
却速度が速いのでスラブ温度が厚み方向で均一な場合さ
らに、均一な組織を得ることは難しいということが結論
できる。
As a result, the grain growth rate (grain size after growth) becomes thicker as the temperature increases, but the difference between columnar crystals (surface layer of slab) and equiaxed grains (center of slab) We obtained the knowledge that the temperature dependence is significantly different.In other words, the grain growth of columnar crystals progresses slowly as the heating temperature increases, but in the case of equiaxed crystals, grain growth progresses slowly up to a certain temperature that depends on the composition. It was found that grain growth was suppressed, and when the temperature exceeded that temperature, the growth rate increased rapidly, and in some cases it became coarser than the columnar part.Therefore, the slab was heated to the inhibitor solid solution temperature range by the usual method. In other words, even if you try to heat uniformly in the thickness direction, it is very difficult to keep the difference in grain size between the surface layer and the center constant.Therefore, even if the rolling conditions are constant until the end of rough rolling, Because the initial conditions often change in this way, it is difficult to obtain a uniform structure throughout the thickness.Furthermore, during rolling, the thermal history in the thickness direction also changes, meaning that the cooling rate is faster in the surface layer. Therefore, it can be concluded that it is difficult to obtain a uniform structure when the slab temperature is uniform in the thickness direction.

以上に述べた高温再結晶挙動、スラブ加熱時の粒成長挙
動および圧延時の厚み方向での温度履歴に関する知見か
ら明らかなように、厚み方向に均一な組織を得るにはス
ラブ加熱時における厚み方向の温度分布が極めて重要で
ある。
As is clear from the above-mentioned knowledge regarding high-temperature recrystallization behavior, grain growth behavior during slab heating, and temperature history in the thickness direction during rolling, in order to obtain a uniform structure in the thickness direction, temperature distribution is extremely important.

この発明は、上記の点に関して研究を重ねた結果、開発
されたものである。
This invention was developed as a result of repeated research regarding the above points.

つまりこの発明は、含けい素鋼スラブを熱間圧延前に加
熱する際に、厚み方向にわざと温度分布を有するように
加熱してスラブ粒成長を厚み方向で制御すれば、熱延時
には前述したとおり、発明者らが発見した再結晶挙動に
従う、ので、圧延中のスラブ冷却の厚み方向分布を考慮
すると、粗圧延終了時には板厚方向に均一な完全再結晶
組織を有するシートバーが得られ、ひいては後続の通常
の工程を経て得られる製品に、線状細粒のない良好な特
性を付与しようとするものである。
In other words, in this invention, when heating a silicon-containing steel slab before hot rolling, if the slab grain growth is controlled in the thickness direction by intentionally heating it to have a temperature distribution in the thickness direction, the above-mentioned effect can be achieved during hot rolling. This follows the recrystallization behavior discovered by the inventors, so if we consider the distribution of slab cooling in the thickness direction during rolling, a sheet bar with a complete recrystallized structure uniform in the thickness direction can be obtained at the end of rough rolling. Furthermore, it is intended to impart good characteristics free of linear fine particles to the product obtained through the subsequent normal steps.

ここに上記の要件を満足するスラブ加熱時の厚み方向温
度制御は、従来から行なわれている連続ブツシャ−型ガ
ス加熱炉では困難で、誘導加熱方式による急速加熱方式
ではじめて可能になったものである。つまり、ガス加熱
炉による通常のスラブ加熱では、第3図(a)に示すよ
うな温度分布しか得られないので、最表層で温度が高く
なりすぎて柱状晶が表層から伸び、表層が均一に高温の
場合より、かえって粗大化しやすくなるのである。
Thickness temperature control during slab heating that satisfies the above requirements is difficult with the conventional continuous butcher type gas heating furnace, and was only possible with the rapid heating method using the induction heating method. be. In other words, with normal slab heating using a gas heating furnace, only the temperature distribution shown in Figure 3(a) can be obtained, so the temperature at the outermost layer becomes too high and the columnar crystals extend from the surface layer, causing the surface layer to become uniform. On the contrary, it becomes more likely to become coarse than at high temperatures.

この発明における好適な温度分布は、第3図(b)に示
したような温度分布で、そのためには、厚み方向に加熱
温度を制御できる誘導加熱方式の利用が不可欠である。
The preferred temperature distribution in this invention is the temperature distribution shown in FIG. 3(b), and for this purpose, it is essential to use an induction heating method that can control the heating temperature in the thickness direction.

しかも熱拡散による表面と中心部の温度差の減少を抑制
するためには短時間加熱が一層効果的である。
Moreover, short-term heating is more effective in suppressing the decrease in temperature difference between the surface and the center due to thermal diffusion.

以下、この発明の構成をより具体的に説明する。Hereinafter, the configuration of the present invention will be explained in more detail.

この発明では、まず後述する成分組成から成るけい素鋼
スラブを、誘導加熱炉に装入して加熱する。このときイ
ンヒビターの固溶温度はその種類や量によって幾分異な
るけれども、1380″C以上であれば全てのインヒビ
ターについてほぼ完全ニ固溶させることができるので、
少なくとも1380″Cの温度で加熱するものとした。
In this invention, first, a silicon steel slab having the composition described below is charged into an induction heating furnace and heated. At this time, the solid solution temperature of the inhibitor varies somewhat depending on its type and amount, but if it is 1380''C or higher, all inhibitors can be almost completely dissolved in solid solution.
The heating was to be at a temperature of at least 1380''C.

一方、加熱温度が高くなりすぎると成分系によってはス
ラブががなり溶解し出すので上限を1470’Cに定め
た。
On the other hand, if the heating temperature becomes too high, the slab may crack and begin to melt depending on the component system, so the upper limit was set at 1470'C.

ただしここで重要なのは、スラブ加熱時に厚み方向に温
度分布を与え、とくに柱状晶が発達し易い表層から17
10層の温度を高くすることと、厚み中心での等軸品の
異常粒成長での粒成長を抑制することである。
However, what is important here is to give a temperature distribution in the thickness direction when heating the slab, especially from the surface layer where columnar crystals are likely to develop.
The purpose is to increase the temperature of the 10th layer and to suppress the abnormal grain growth of the equiaxed product at the center of the thickness.

この点についての実験結果を第4図および第5図に示す
Experimental results regarding this point are shown in FIGS. 4 and 5.

第4図によると、圧延中に最表層と中心部の温度差は縮
まるが、その縮まり方は、初期温度差によって決まるこ
とが判る。
According to FIG. 4, the temperature difference between the outermost layer and the center portion decreases during rolling, and it can be seen that the manner in which it decreases is determined by the initial temperature difference.

第5図によれば、初期の平均粒径の差は、表面層と中心
部の温度差に依存するが、粗圧延を施すことにより、粗
圧延終了時の粒径がほぼ等しくなる場合がある。なお第
5図における平均粒径は、再結晶粒径と未再結晶粒径の
存在比より算出したものである。平均粒径でみると、初
期粒径と再結晶粒径の関係が逆転して、かえって厚み方
向の粒径が均一になる場合があるということである。
According to Figure 5, the difference in initial average grain size depends on the temperature difference between the surface layer and the center, but by rough rolling, the grain sizes at the end of rough rolling can become almost equal. . Note that the average grain size in FIG. 5 is calculated from the abundance ratio of the recrystallized grain size and the unrecrystallized grain size. When looking at the average grain size, the relationship between the initial grain size and the recrystallized grain size may be reversed, and the grain size in the thickness direction may become more uniform.

さらに詳細な検討の結果、この例で示すような厚み方向
の粒径の均一化が実現されるのは、スラブ組織における
柱状晶の占有率にもよるが中心部よりも1710層の温
度が高いことが必要であることが判明した。
As a result of a more detailed study, it was found that the uniformity of the grain size in the thickness direction as shown in this example is achieved when the temperature of the 1710 layer is higher than that of the center, although it depends on the occupancy rate of columnar crystals in the slab structure. It turned out that this was necessary.

ここに表層から1710厚み位置の温度をとくに問題と
したのは、この位置が表層部の代表位置としてとくに好
適だからである。つまり最表層、1/10厚み層および
中心部の3点の温度が決まれば、厚み方向の温度分布は
ほぼ一義的に定まるからである。
The reason why the temperature at the 1710-thickness position from the surface layer was particularly considered here is because this position is particularly suitable as a representative position of the surface layer portion. In other words, once the temperatures at the three points of the outermost layer, the 1/10 thickness layer, and the center are determined, the temperature distribution in the thickness direction is almost uniquely determined.

そして厚み方向における粒径の均一化のためには、表層
から1710層と中心部との温度差は、15〜50″C
とすることが肝要である。というのは均一な組織という
ためには、各位置の平均粒径の差が20%以内に収まる
こと必要であるが、第6図に示すとおり、1/10厚み
位置と中心部とで圧延後の平均結晶粒径の差を20%以
内とするためには、両者の加熱温度差を15〜50℃と
することが必要だからである。
In order to make the grain size uniform in the thickness direction, the temperature difference between the 1710th layer from the surface and the center must be 15 to 50"C.
It is important to do so. This is because in order to obtain a uniform structure, it is necessary that the difference in the average grain size at each position is within 20%, but as shown in Figure 6, the difference in the average grain size at each position and the central part after rolling is This is because in order to keep the difference in average crystal grain size within 20%, it is necessary to set the heating temperature difference between the two to be 15 to 50°C.

そこで次に、表層から1/101gと中心部および最表
層との温度差が上記の範囲を満足するような加熱方法を
見出すべく、スラブ厚みをはじめとして、スラブの厚み
方向の温度分布に影響を与えるような種々の要因、すな
わち加熱炉周波数、スラブ平均温度、スラブ放熱量およ
び投入電力量などを種々に変化させて数多くの実験を行
い、これらの影響について調査検討したところ、所期し
た目的を達成できる条件として、次の回帰式を得た。
Therefore, in order to find a heating method that satisfies the above range for the temperature difference between 1/101g from the surface layer and the center and outermost layer, we investigated the temperature distribution in the thickness direction of the slab, including the slab thickness. We conducted a number of experiments by varying various factors such as heating furnace frequency, slab average temperature, slab heat radiation amount, and input power, and investigated and examined the effects of these factors. The following regression equation was obtained as a condition that can be achieved.

すなわちスラブ平均温度が1380〜1470’cの範
囲において、次式 %式%) ここでXニスラブ厚み(mm) ω:加熱炉周波数(Hz) Tニスラブ平均温度(℃) 0ニスラブ放熱量(k讐) P:投入電力it (kW) の関係を満足する条件下で加熱を行えば、表層から17
10層と中心部および最表層との温度差を所望の15〜
50℃の範囲に収めることができたのである。
In other words, when the average slab temperature is in the range of 1380 to 1470'c, ) P: If heating is carried out under conditions that satisfy the relationship of input power it (kW), 17
The temperature difference between the 10th layer and the center and outermost layer is set to the desired 15~
It was possible to keep the temperature within the range of 50°C.

ここにX・〜r;バ〒+273)は誘導加熱における表
皮効果(表層部への電力集中)を示す尺度であり、この
値が大きくなると、表皮効果が大となって表層に電流が
集中し、表層が加熱され易くなり、−方この値が小さい
と、表皮効果が小となって表層から中心にかけて均一に
電流が流れ、スラブは均一に加熱されるようになる。
Here, X・~r; +273) is a measure of the skin effect (power concentration on the surface layer) in induction heating, and as this value increases, the skin effect increases and current concentrates on the surface layer. If this value is small, the skin effect will be small and the current will flow uniformly from the surface layer to the center, and the slab will be heated uniformly.

スラブ加熱時に上記の温度差をに与えておけば、その後
の粗圧延条件は特に変わるところはなく、ホットストリ
ップミルでの通常の圧延方法(省エネルギー、大量生産
の思想に基づいて)の下で行なえば、常に板厚方向に均
一な粒径分布をもつシートバーを得ることができる。
If the above temperature difference is applied during heating of the slab, there is no particular change in the subsequent rough rolling conditions, and rolling can be carried out under the normal rolling method (based on the idea of energy saving and mass production) in a hot strip mill. For example, it is possible to obtain a sheet bar that always has a uniform grain size distribution in the thickness direction.

その後の熱間仕上げ圧延条件は通常と特に変わるところ
はない。仕上げ圧延前に均一な組織(未再結晶粒なし)
を得ていれば、仕上げ圧延前段において、(α+γ)2
相域での再結晶が起こり組織微細化は容易に達成できる
。仕上げ圧延された熱延鋼帯は必要に応じて焼鈍後酸洗
され、1回又は中間焼鈍を挟む2回の冷延で0.115
〜0.50mm厚程度0最終板厚となる。
The subsequent hot finish rolling conditions are not particularly different from normal conditions. Uniform structure before finish rolling (no unrecrystallized grains)
If the result is (α+γ)2 in the first stage of finish rolling,
Recrystallization occurs in the phase region, and microstructure can be easily achieved. Finish-rolled hot-rolled steel strips are annealed and pickled if necessary, and cold-rolled once or twice with intermediate annealing to achieve a 0.115
The final plate thickness is approximately 0.50 mm.

ついで常法に従い、脱炭・一次回結晶焼鈍を施したのち
、MgOを主成分とする焼鈍分離剤を塗布してから、二
次再結晶焼鈍ついで純化焼鈍からなる最終仕上げ焼鈍を
施して最終製品とする。
Next, following conventional methods, decarburization and primary crystal annealing are performed, followed by application of an annealing separator containing MgO as the main component, followed by final finish annealing consisting of secondary recrystallization annealing and purification annealing to produce the final product. shall be.

なおその後に、上塗り絶縁コーティングなどを施しても
よいのは言うまでもない。
It goes without saying that a top insulating coating or the like may be applied after that.

(作 用) この発明の素材である含けい素鋼としては、従来公知の
成分組成のものいずれもが適合するが、代表組成を掲げ
ると次のとおりである。
(Function) As the silicon-containing steel that is the material of this invention, any conventionally known compositions are suitable, but typical compositions are as follows.

C: Q、01〜0.10% Cは、熱間圧延、冷間圧延中のa織の均一微細化のみら
なす、ゴス包囲の発達に有用な元素であり、少なくとも
0.01%以上の添加が好ましい。しかしながら0.1
0%を超えて含有されるとかえってゴス方位に乱れが生
じるので上限は0.10%程度が好ましい。
C: Q, 01 to 0.10% C is an element useful for the development of Goss surroundings, which results in uniform refinement of the a weave during hot rolling and cold rolling, and is an element that is useful for the development of Goss surroundings during hot and cold rolling. Addition is preferred. However, 0.1
If the content exceeds 0%, the Goss orientation will be disturbed, so the upper limit is preferably about 0.10%.

Si : 2.0〜4.5% Siは、鋼板の比抵抗を高め鉄損の低減に有効に寄与す
るが、4.5%を上回ると冷延性が損なわれ、一方2.
0%に満たないと比抵抗が低下するだけでなく、2次再
結晶・純化のために行われる最終高温焼鈍中にα−T変
態によって結晶方位のランダム化を生じ、十分な鉄損改
善効果が得られないので、Si量は2.0〜4.5%程
度とするのが好ましい。。
Si: 2.0 to 4.5% Si increases the resistivity of the steel sheet and effectively contributes to reducing iron loss, but if it exceeds 4.5%, cold rollability is impaired;
If it is less than 0%, not only will the resistivity decrease, but also randomization of crystal orientation will occur due to α-T transformation during the final high-temperature annealing performed for secondary recrystallization and purification, resulting in a sufficient iron loss improvement effect. is not obtained, the amount of Si is preferably about 2.0 to 4.5%. .

Hn : 0.02〜0.12% Mnは、熱間脆化を防止するため少なくとも0.02%
程度を必要とするが、あまりに多すぎると磁気特性を劣
化させるので上限は0.12%程度に定めるのが好まし
い。
Hn: 0.02-0.12% Mn is at least 0.02% to prevent hot embrittlement
It is preferable to set the upper limit at about 0.12%, since too much content deteriorates the magnetic properties.

インヒビターとしては、いわゆるMnS、MnSe系と
AIN系とがある。MnS、 MnSe系の場合は、S
e、 Sのうちから選ばれる少なくとも1種: 0.0
05〜0.06% Se、  Sはいずれも、方向性けい素鋼板の2次再結
晶を制御するインヒビターとして有力な元素である。抑
制力確保の観点からは、少なくとも0.005%程度を
必要とするが、0.06%を超えるとその効果が損なわ
れるので、その下限、上限はそれぞれ0.01%、 0
.06%程度とするのが好ましい。
Inhibitors include so-called MnS, MnSe, and AIN inhibitors. In the case of MnS, MnSe, S
At least one selected from e, S: 0.0
05 to 0.06% Se and S are both effective elements as inhibitors that control secondary recrystallization of grain-oriented silicon steel sheets. From the perspective of securing suppressive power, at least 0.005% is required, but if it exceeds 0.06%, the effect will be impaired, so the lower and upper limits are 0.01% and 0, respectively.
.. It is preferable to set it to about 0.06%.

^IN系の場合は、 Al : 0.005〜0.10%、 N : 0.0
04〜0.015%AIおよびNの範囲についても、上
述したMnS、MnSe系の場合と同様な理由により、
上記の範囲に定めた。ここに上記したMnS、 MnS
e系およびAIN系はそれぞれ併用が可能である。
^In case of IN type, Al: 0.005-0.10%, N: 0.0
Regarding the range of 04 to 0.015% AI and N, due to the same reason as in the case of MnS and MnSe systems mentioned above,
It is set within the above range. Here, the above-mentioned MnS, MnS
The e system and the AIN system can each be used in combination.

インヒビター成分としては上記したS、 Se、 AI
の他、Cu+ Sn+ Crs Ge、 Sb、 Mo
、 Te、 BiおよびPなども有利に適合するので、
それぞれ少量併せて含有させることもできる。ここに上
記成分の好適添加範囲はそれぞれ、Cu、 Sn、 C
r : 0.01〜0.15%、Ge、 Sb、 Mo
、 Te、 Bi : 0.005〜0.1%、P:0
.01〜0.2%であり、これらの各インヒビター成分
についても、単独使用および複合使用いずれもが可能で
ある。
As inhibitor components, the above-mentioned S, Se, AI
In addition to Cu+ Sn+ Crs Ge, Sb, Mo
, Te, Bi and P etc. are also advantageously suited, so
They can also be contained together in small amounts. Here, the preferred addition ranges of the above components are Cu, Sn, and C.
r: 0.01-0.15%, Ge, Sb, Mo
, Te, Bi: 0.005-0.1%, P: 0
.. 01 to 0.2%, and each of these inhibitor components can be used alone or in combination.

なおスラブは、連続鋳造されたものもしくはインゴット
より分塊されたものを対象とするが、連続鋳造された後
に、分塊再圧されたスラブも対象に含まれることはいう
までもない。
Note that the target slab is one that has been continuously cast or one that has been bloomed from an ingot, but it goes without saying that the target also includes slabs that have been continuously cast and then re-blushed.

(実施例) C: 0.040%、Si : 3.30%、Mn :
 0.054%、Se:0.022%およびSb : 
0.024%を含有し、残部は実質的にFeよりなる厚
み:215mmの連鋳スラブを、連続式加熱炉にて予熱
後、誘導加熱方式の加熱炉に装入して表1に示す条件で
加熱処理し、装入後30分で第7図中にA−Dで示すよ
うな厚み方向温度分布をもつように制御し、直ちに粗圧
延に供した。
(Example) C: 0.040%, Si: 3.30%, Mn:
0.054%, Se: 0.022% and Sb:
A continuous cast slab with a thickness of 215 mm containing 0.024% and the remainder substantially made of Fe was preheated in a continuous heating furnace and then charged into an induction heating furnace under the conditions shown in Table 1. 30 minutes after charging, the material was controlled to have a temperature distribution in the thickness direction as shown by A-D in FIG. 7, and immediately subjected to rough rolling.

粗圧延終了後は30mm厚のシートバーとし、以後は仕
上タンデムミルで2.〇−厚の熱延鋼板とした。
After rough rolling, it is made into a sheet bar with a thickness of 30 mm, and after that, it is finished with a finishing tandem mill. A hot-rolled steel plate of 〇-thickness was used.

この熱延鋼板を焼鈍酸洗後、一次冷延し、中間焼鈍後、
2次冷延を施して0.23mm厚の製品厚に仕上げた。
After annealing and pickling, this hot-rolled steel sheet is first cold-rolled, and after intermediate annealing,
Secondary cold rolling was performed to produce a product with a thickness of 0.23 mm.

その後、脱炭焼鈍を施したのち、MgOを主成分とする
焼鈍分離剤を塗布してから、2次再結晶および純化を目
的とする最終仕上げ焼鈍を経て、最終製品とした。
Thereafter, after decarburization annealing was performed, an annealing separation agent containing MgO as a main component was applied, and a final product was obtained through secondary recrystallization and final finish annealing for the purpose of purification.

か(して得られた製品の磁気特性および線状細粒の有無
について調べた結果を表1に示す。
Table 1 shows the results of examining the magnetic properties and presence or absence of linear fine particles of the product obtained.

同表より明らかなように、この発明に従い得られた製品
は、良好な電磁特性を示している。
As is clear from the table, the products obtained according to the present invention exhibit good electromagnetic properties.

(実施例) 表2に示す種々の組成になる厚み:215mmのスラブ
を、連続式加熱炉にて予熱後、誘導加熱方式の加熱炉に
装入し、表3の条件A、Bで加熱処理したのち、直ちに
粗圧延に供した。粗圧延終了後は35ffiI11厚の
シートバーとし、以後は仕上げタンデムミルで2.4m
m厚の熱延鋼板とした。この熱延鋼板を酸洗後、1次冷
延で0.851厚とし、950℃,2分間の中間焼鈍後
、2次冷延を施して0.30mm厚の製品厚に仕上げた
。その後、湿水素中で820℃13分間の脱炭焼鈍を施
したのち、MgOを主成分とする焼鈍分離剤を塗布して
から、軸木素中で1180℃、7時間の最終仕上げ焼鈍
を経て、最終製品とした。
(Example) Slabs with a thickness of 215 mm having various compositions shown in Table 2 were preheated in a continuous heating furnace, then charged into an induction heating furnace, and heat-treated under conditions A and B in Table 3. Thereafter, it was immediately subjected to rough rolling. After rough rolling, it is made into a sheet bar with a thickness of 35ffiI11, and after that it is rolled into a 2.4m sheet bar with a finishing tandem mill.
A hot-rolled steel plate with a thickness of m. After pickling, this hot rolled steel sheet was first cold rolled to a thickness of 0.851, and after intermediate annealing at 950° C. for 2 minutes, it was second cold rolled to a product thickness of 0.30 mm. After that, decarburization annealing was performed at 820°C for 13 minutes in wet hydrogen, an annealing separator containing MgO as the main component was applied, and a final finish annealing was performed at 1180°C for 7 hours in the base wood. , and the final product.

かくして得られた製品の磁気特性および線状細粒の有無
について調べた結果を表4に示す。
Table 4 shows the results of examining the magnetic properties of the thus obtained product and the presence or absence of linear fine particles.

(発明の効果) かくしてこの発明によれば、高温スラブ加熱条゛件下で
も、厚み方向にわたり微細均一な組織とすることができ
、ひいては均一で優れた磁気特性の方向性けい素鋼板を
得ることができる。
(Effects of the Invention) Thus, according to the present invention, even under high-temperature slab heating conditions, it is possible to obtain a grain-oriented silicon steel sheet that has a fine and uniform structure throughout the thickness direction and has uniform and excellent magnetic properties. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、(α+r)2相域での再結晶率に及ぼす圧下
率と圧延温度との関係を示したグラフ、第2図は、α単
相域での再結晶率に及ぼす圧下率と圧延温度との関係を
初期粒径の影響のをパラメータとして示したグラフ、 第3図は、スラブ加熱時の板厚方向温度分布図、第4図
は、熱間圧延時における表層1710層および中心部の
温度変化を示したグラフ、 第5図は、粗圧延前後における表層1/10mおよび中
心部の結晶粒径変化を示したグラフ、第6図は、表層1
ノ10層および中心部の温度差と、再位置での平均結晶
粒径比との関係を示したグラフ、 一第7図は、この発明と従来法でのスラブ加熱時の板厚
方向温度分布の比較図である。 同
Figure 1 is a graph showing the relationship between the rolling reduction and rolling temperature on the recrystallization rate in the (α+r) two-phase region, and Figure 2 is a graph showing the relationship between the rolling reduction and rolling temperature on the recrystallization rate in the α single-phase region. A graph showing the influence of the initial grain size on the relationship with rolling temperature as a parameter. Figure 3 is a temperature distribution diagram in the plate thickness direction during slab heating. Figure 4 is a graph of the surface layer 1710 layer and center layer during hot rolling. Figure 5 is a graph showing the change in grain size in the surface layer 1/10 m and the center before and after rough rolling, and Figure 6 is a graph showing the temperature change in the surface layer 1.
Figure 7 is a graph showing the relationship between the temperature difference between the 10 layers and the center and the average grain size ratio at the repositioning. FIG. same

Claims (1)

【特許請求の範囲】 1、含けい素鋼スラブを、加熱したのち、熱間圧延、つ
いで1回または中間焼鈍を挟む2回の冷間圧延を施し、
その後脱炭・一次再結晶焼鈍および最終仕上げ焼鈍を施
す一連の工程からなる方向性けい素鋼板の製造方法にお
いて、 熱間圧延に先立つスラブ加熱を誘導加熱で 行うものとし、スラブ平均温度が1380〜1470℃
の範囲において、下記の関係式を満足する条件下に加熱
することにより、表層から1/10厚み位置の温度を中
心部および最表層の温度よりも15〜50℃高くして、
引き続く熱間粗圧延工程で結晶組織を厚み方向に制御す
ることを特徴とする磁気特性の優れた電磁鋼板の製造方
法。 記 20≦X・√(ω/(T+273)≦60(1+Q/P
))ここでX:スラブ厚み(mm) ω:加熱炉周波数(Hz) T:スラブ平均温度(℃) Q:スラブ放熱量(kw) P:投入電力量(kw)
[Claims] 1. A silicon-containing steel slab is heated, then hot rolled, and then cold rolled once or twice with intermediate annealing in between,
In the method for producing grain-oriented silicon steel sheets, which consists of a series of steps of subsequent decarburization, primary recrystallization annealing, and final finish annealing, the slab is heated by induction heating prior to hot rolling, and the slab average temperature is 1380 to 1,380. 1470℃
In the range of , by heating under conditions that satisfy the following relational expression, the temperature at the 1/10th thickness position from the surface layer is made 15 to 50 ° C higher than the temperature at the center and the outermost layer,
A method for manufacturing an electrical steel sheet with excellent magnetic properties, characterized by controlling the crystal structure in the thickness direction in a subsequent hot rough rolling process. Note 20≦X・√(ω/(T+273)≦60(1+Q/P
)) Here, X: Slab thickness (mm) ω: Heating furnace frequency (Hz) T: Slab average temperature (℃) Q: Slab heat radiation (kW) P: Input power (kW)
JP1249069A 1989-09-27 1989-09-27 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JPH0678573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1249069A JPH0678573B2 (en) 1989-09-27 1989-09-27 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1249069A JPH0678573B2 (en) 1989-09-27 1989-09-27 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH03115525A true JPH03115525A (en) 1991-05-16
JPH0678573B2 JPH0678573B2 (en) 1994-10-05

Family

ID=17187545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1249069A Expired - Lifetime JPH0678573B2 (en) 1989-09-27 1989-09-27 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH0678573B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014549A1 (en) * 1992-12-28 1994-07-07 Kawasaki Steel Corporation Method of manufacturing hot rolled silicon steel sheets of excellent surface properties
JP2017186587A (en) * 2016-04-01 2017-10-12 新日鐵住金株式会社 Hot rolled sheet for unidirectional electromagnetic steel sheet and manufacturing method therefor, manufacturing method of the unidirectional electromagnetic steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014549A1 (en) * 1992-12-28 1994-07-07 Kawasaki Steel Corporation Method of manufacturing hot rolled silicon steel sheets of excellent surface properties
US5572892A (en) * 1992-12-28 1996-11-12 Kawasaki Steel Corporation Method of producing silicon steel hot rolled sheets having excellent surface properties
JP2017186587A (en) * 2016-04-01 2017-10-12 新日鐵住金株式会社 Hot rolled sheet for unidirectional electromagnetic steel sheet and manufacturing method therefor, manufacturing method of the unidirectional electromagnetic steel sheet

Also Published As

Publication number Publication date
JPH0678573B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
JP5564571B2 (en) Low iron loss high magnetic flux density grain-oriented electrical steel sheet and manufacturing method thereof
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
KR0169734B1 (en) Process for manufacturing unidirectional steel sheet excellent in magnetic properties
JPH08100216A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JPH03115525A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3340754B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction
JPH0310020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and surface characteristic
KR970007033B1 (en) Method for manufacturing oriented electrical steel sheet
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP2872404B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP2612074B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties and surface properties
JP2612075B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties and surface properties
JP3301622B2 (en) Method for producing grain-oriented silicon steel sheet having uniform and excellent magnetic properties in the sheet width direction
JP3538855B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP4239276B2 (en) Directional electromagnetic steel hot rolled steel sheet manufacturing method
JP2726295B2 (en) Method for producing oriented silicon steel sheet with excellent magnetic properties and surface properties
JPH0387316A (en) Production of grain-oriented silicon steel sheet having stable magnetic property
JPH02159319A (en) Manufacture of grain-oriented silicon steel sheet excellent in surface characteristic and magnetic property
JP2574583B2 (en) Method for manufacturing oriented silicon steel sheet with good iron loss
JP3858280B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH1030125A (en) Production of grain oriented silicon steel sheet
JPH09104924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06269901A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH06330174A (en) Production of low iron loss grain oriented silicon steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 15

EXPY Cancellation because of completion of term