JP3538855B2 - Manufacturing method of grain-oriented silicon steel sheet - Google Patents

Manufacturing method of grain-oriented silicon steel sheet

Info

Publication number
JP3538855B2
JP3538855B2 JP18509693A JP18509693A JP3538855B2 JP 3538855 B2 JP3538855 B2 JP 3538855B2 JP 18509693 A JP18509693 A JP 18509693A JP 18509693 A JP18509693 A JP 18509693A JP 3538855 B2 JP3538855 B2 JP 3538855B2
Authority
JP
Japan
Prior art keywords
temperature
slab
heating furnace
heating
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18509693A
Other languages
Japanese (ja)
Other versions
JPH0741859A (en
Inventor
峰男 村木
芳宏 尾崎
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP18509693A priority Critical patent/JP3538855B2/en
Publication of JPH0741859A publication Critical patent/JPH0741859A/en
Application granted granted Critical
Publication of JP3538855B2 publication Critical patent/JP3538855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、方向性けい素鋼板の
製造方法に関し、特にスラブ加熱時におけるふくれ欠陥
の発生を効果的に抑止して、磁気特性を初めとする製品
品質の向上を図ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet, and more particularly to a method for effectively suppressing the occurrence of blistering defects during slab heating and improving the product quality including magnetic properties. I'm trying.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、主として変圧器そ
の他の電気機器の鉄心材料として使用され、磁束密度及
び鉄損等の磁気特性に優れることが基本的に要求され
る。かような方向性けい素鋼板を製造するに当たって、
特に重要なことは、いわゆる仕上げ焼鈍工程で一次再結
晶粒を{110}<001>方位の結晶粒に優先的に二
次再結晶させることである。
2. Description of the Related Art Grain-oriented silicon steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are basically required to have excellent magnetic properties such as magnetic flux density and iron loss. In producing such oriented silicon steel sheet,
What is particularly important is that the primary recrystallized grains are preferentially recrystallized into crystal grains of the {110} <001> orientation in a so-called finish annealing step.

【0003】このような二次再結晶を効果的に促進させ
るためには、まず一次再結晶粒の正常成長を抑制するイ
ンヒビターと呼ばれる分散相を、均一かつ適正なサイズ
に分散させることが重要である。かかるインヒビターと
して代表的なものは、MnS,MnSe, AlN及びVNのよう
な硫化物や窒化物等で、鋼中への溶解度が極めて小さい
物質が用いられている。このため従来から、熱間圧延前
にスラブを高温に加熱してインヒビター成分を完全に固
溶させる方法がとられ、熱間圧延工程以降、二次再結晶
工程までの間の析出状態を制御している。なお、インヒ
ビターとしては、上記したものの他、Sb, Sn, As, Pb,
Ce, Cu及びMo等の粒界偏析型元素も利用されている。
In order to effectively promote such secondary recrystallization, it is important to first disperse a dispersed phase called an inhibitor, which suppresses the normal growth of primary recrystallized grains, into a uniform and appropriate size. is there. Typical examples of such inhibitors include sulfides and nitrides such as MnS, MnSe, AlN, and VN, and substances having extremely low solubility in steel are used. For this reason, conventionally, a method of heating the slab to a high temperature before hot rolling to completely dissolve the inhibitor component has been adopted.From the hot rolling step, the precipitation state during the secondary recrystallization step is controlled. ing. In addition, as inhibitors, Sb, Sn, As, Pb,
Grain boundary segregation elements such as Ce, Cu and Mo are also used.

【0004】従来、方向性けい素鋼板を製造するには、
厚さ 100〜300 mm程度のスラブを、1250℃以上の温度に
長時間にわたって加熱し、インヒビター成分を完全に固
溶させた後、熱間圧延し、ついでこの熱延板を1回又は
中間焼鈍を挟む2回以上の冷間圧延によって最終板厚と
したのち、脱炭焼鈍後、焼鈍分離剤を塗布してから、二
次再結晶及び純化を目的とした最終仕上げ焼鈍を行うの
が一般的である。
[0004] Conventionally, to manufacture a grain-oriented silicon steel sheet,
A slab having a thickness of about 100 to 300 mm is heated to a temperature of 1250 ° C or higher for a long time to completely dissolve the inhibitor component, and then hot-rolled. Then, the hot-rolled sheet is subjected to once or intermediate annealing. It is common practice to apply the annealing separator after decarburizing annealing, apply the annealing separating agent, and then perform the final finishing annealing for the purpose of secondary recrystallization and purification after cold rolling two or more times with cold rolling It is.

【0005】しかし、このようなスラブ加熱を長時間施
した場合には、加熱終了後の結晶粒の粗大化が著しい。
スラブ中の粗大結晶粒は、その後の熱間圧延で再結晶し
にくく、未再結晶粒内の亜粒界や転位が析出サイトとし
て働くため、一旦固溶させたインヒビター成分が粗大に
析出し、製品の磁気特性の劣化原因となっていた。
[0005] However, when such slab heating is performed for a long time, the crystal grains after heating are remarkably coarsened.
The coarse crystal grains in the slab are difficult to recrystallize in the subsequent hot rolling, and the sub-grain boundaries and dislocations in the non-recrystallized grains act as precipitation sites, so that the inhibitor component once dissolved is coarsely precipitated, This was a cause of deterioration of the magnetic properties of the product.

【0006】ところで近年、技術の進歩によって、スラ
ブ加熱に電磁誘導加熱炉や抵抗加熱炉等の電気式加熱炉
が使用されるようになった。これによって、より高温で
の加熱が可能となり、インヒビター成分の溶体化が短時
間で済むようになった。また、加熱時間の短縮によっ
て、スラブ粒の粗大成長も抑制されるため、粗大成長に
起因した二次再結晶不良に伴う磁気特性の劣化も大幅に
改善されるようになった。
In recent years, with the advance of technology, electric heating furnaces such as an electromagnetic induction heating furnace and a resistance heating furnace have been used for slab heating. As a result, heating at a higher temperature became possible, and the solution of the inhibitor component was completed in a short time. Also, the shortening of the heating time also suppresses the coarse growth of the slab grains, so that the deterioration of the magnetic characteristics due to the secondary recrystallization failure caused by the coarse growth has been greatly improved.

【0007】しかしながら、スラブに上記のような高温
加熱を施した場合、スラブにふくれ欠陥が発生するとい
う新たな問題が生起した。このふくれ欠陥がひどい場合
には、熱間圧延が不可能になるのは勿論であるが、軽度
の場合でも二枚板や板切れ、穴あき等の重大な欠陥の要
因となる。特に、内部温度が表面温度よりも高くなる電
気式加熱炉では、厚み方向の均一加熱が難しく、このト
ラブルに適切に対処することは極めて困難であった。
However, when the slab is subjected to the high-temperature heating as described above, a new problem arises in that the slab has blistering defects. If the blistering defect is severe, it is of course impossible to perform hot rolling, but even if the blistering defect is slight, it causes serious defects such as double plate, plate breakage, and perforation. Particularly, in an electric heating furnace in which the internal temperature is higher than the surface temperature, uniform heating in the thickness direction is difficult, and it is extremely difficult to appropriately cope with this trouble.

【0008】なお、方向性けい素鋼スラブを連続鋳造す
る際、溶鋼の電磁攪拌を行うことによって磁気特性が向
上することが知られている(例えば特公昭57-41526号公
報)が、このような電磁攪拌を採用した場合には、磁気
特性は向上するものの、一方でふくれ欠陥の発生が顕著
になる傾向があり、重大な問題となっていた。
[0008] It is known that, when continuously casting a directional silicon steel slab, the magnetic properties are improved by electromagnetically stirring the molten steel (for example, Japanese Patent Publication No. 57-41526). In the case where a suitable magnetic stirring is employed, the magnetic properties are improved, but on the other hand, the occurrence of blister defects tends to be remarkable, which has been a serious problem.

【0009】ところで従来、けい素鋼板におけるふくれ
状の欠陥としては、ブリスターが知られている。ここに
ブリスターとは、薄板を熱処理した際、鋼中に含有され
ているガスが膨張することにより生じた薄板表面のふく
れ状欠陥を指し、かかるブリスターの防止策としては、
以下に述べるような種々の方法が提案されている。たと
えば、特公昭49-42208号公報には、けい素鋼中のAl、
H、N量を制御することにより、最終製品にブリスター
が発生しない条件が開示されている。また、特公昭49-4
2211号公報には、上記の3成分に加えO濃度も制御する
ことによりブリスターが発生しない条件が開示されてい
る。
Conventionally, blisters have been known as blister-like defects in silicon steel sheets. Here, the blister refers to a blister-like defect on the surface of the thin plate caused by expansion of the gas contained in the steel when the thin plate is heat-treated, and as a measure for preventing such blister,
Various methods have been proposed as described below. For example, Japanese Patent Publication No. 49-42208 discloses Al in silicon steel,
It discloses a condition in which blisters do not occur in the final product by controlling the amounts of H and N. In addition, Tokiko 49-4
Japanese Patent No. 2211 discloses a condition in which blisters are not generated by controlling the O concentration in addition to the above three components.

【0010】さらに特開平2−259016号公報には、冷間
圧延時のロール直径を 150mm以上とすることによって表
面ふくれ欠陥を低減した方向性けい素鋼板の製造法が開
示されている。またさらに特開平5−1324号公報には、
予備加熱後の温度差と電気加熱炉の昇温速度を制御する
ことにより、スラブ内部開口を起因とする製品表面のふ
くれ状欠陥を抑止する技術が開示されている。
Further, Japanese Patent Application Laid-Open No. Hei 2-259016 discloses a method for producing a grain-oriented silicon steel sheet in which the roll bulge during cold rolling is reduced to 150 mm or more to reduce surface blister defects. Further, JP-A-5-1324 discloses that
There is disclosed a technique for controlling a temperature difference after preheating and a heating rate of an electric heating furnace to suppress a blister-like defect on a product surface caused by an opening in a slab.

【0011】上記の改善技術はいずれも、薄板で高温焼
鈍を行う際に生じる製品表面の欠陥を防止する技術であ
るが、薄板焼鈍工程で発生するブリスターとこの発明で
問題とするスラブ段階でのふくれでは、その発生機構が
全く異なり、従って上記技術によってスラブふくれの発
生を防止することはできなかった。
All of the above-mentioned improvement techniques are techniques for preventing defects on the product surface which occur when high-temperature annealing is performed on a thin plate. However, the blister generated in the thin-plate annealing process and the blister at the slab stage which are a problem in the present invention are considered. The blistering has a completely different mechanism of occurrence, so that the above technique could not prevent slab blistering.

【0012】[0012]

【発明が解決しようとする課題】以上述べたように、現
在までのところ、インヒビターを完全に溶体化するため
にスラブを高温に加熱した場合に、ふくれの発生を完全
に防止できる技術はまだ知られてなく、その開発が望ま
れていた。この発明は、上記の要請に有利に応えるもの
で、磁気特性上有利な電磁溶鋼攪拌の利用下に連続鋳造
を実施した場合であっても、高温加熱時におけるスラブ
ふくれの発生を効果的に防止し、ひいては良好な磁気特
性及び表面外観を得ることができる方向性けい素鋼板の
製造方法を提案することを目的とする。
As described above, up to now, there is still no known technique capable of completely preventing the occurrence of blistering when a slab is heated to a high temperature in order to completely form a solution of an inhibitor. The development was desired. The present invention advantageously satisfies the above-mentioned requirements, and effectively prevents the occurrence of slab swelling during high-temperature heating even when continuous casting is performed using electromagnetically molten steel stirring, which is advantageous in terms of magnetic properties. Further, it is an object of the present invention to propose a method for manufacturing a grain-oriented silicon steel sheet that can obtain good magnetic properties and surface appearance.

【0013】[0013]

【課題を解決するための手段】まず、この発明の解明経
緯について説明する。さて、発明者らは、上記の目的を
達成すべく、成分条件や鋳造偏析、スラブ加熱条件等が
ふくれの発生に及ぼす影響について綿密な検討を加えた
結果、加熱によって、添加成分元素の偏析部(結晶粒
界)がその固相線温度以上に保持されると、結晶粒界が
部分的に溶融し、加熱の継続によりこの液相部に窒素を
初めとする溶質成分の濃化を生じ、その後冷却過程にお
ける再凝固時に固溶成分が過飽和となってガス化し、か
くして生じた窒素ガス等の内圧によって粒界部が割れ、
これがふくれの起点となることの知見を得た。
First, the details of the invention will be described. By the way, the present inventors have conducted a thorough study on the effects of component conditions, casting segregation, slab heating conditions, etc. on the occurrence of blisters in order to achieve the above object. When the (grain boundary) is maintained at or above its solidus temperature, the crystal grain boundary is partially melted, and continuation of heating causes concentration of solute components including nitrogen in the liquid phase portion, Then, during re-solidification in the cooling process, the solid solution component becomes supersaturated and gasifies, and the internal pressure of the nitrogen gas and the like thus generated breaks the grain boundary,
We have learned that this is the starting point of blistering.

【0014】以下、このスラブふくれの成因について詳
細に説明する。誘導式電気加熱炉周辺での観察及び同様
な条件下での確認試験、さらには詳細な成分分析の結
果、スラブふくれは最大濃度偏析帯を中心に発生するこ
とが判明した。この時、最大濃厚偏析位置は、通常知ら
れている中心偏析位置とは限らず、連続鋳造の際、電磁
溶鋼攪拌を付加したものでは、中心厚み以外の位置に最
大濃厚偏析帯が現れることも併せて知見した。またふく
れは高温加熱後の冷却過程で現れることも確認された。
Hereinafter, the cause of the slab swelling will be described in detail. As a result of observation around the induction heating furnace, confirmation tests under similar conditions, and detailed component analysis, it was found that slab swelling occurred mainly in the maximum concentration segregation zone. At this time, the maximum concentrated segregation position is not limited to the commonly known center segregation position.In continuous casting, with the addition of electromagnetic molten steel stirring, the maximum concentrated segregation zone may appear at a position other than the center thickness. We also found out. It was also confirmed that blisters appeared during the cooling process after high-temperature heating.

【0015】引き続き、スラブふくれ部周辺の組織を詳
細に観察した結果、結晶粒界に一旦溶融した部分が観察
され、またこの元溶融部では、けい素、炭素、その他の
成分元素が著しく濃化していることが明らかとなった。
一方、粒界部分と接する粒周辺部分では、窒素、炭素、
その他の成分元素が減少している層が観察された。そし
て、この欠乏層幅は高温での保持時間に比例して増加す
る傾向を示した。これらのことから、上述したふくれの
成因が明らかとなったのである。
Subsequently, as a result of closely observing the structure around the slab bulge, a portion once melted at the crystal grain boundary was observed, and silicon, carbon, and other component elements were significantly concentrated in the original melted portion. It became clear that.
On the other hand, nitrogen, carbon,
A layer in which other component elements were reduced was observed. The width of the deficient layer tended to increase in proportion to the holding time at a high temperature. From these facts, the cause of the above-mentioned blister has been clarified.

【0016】BOF Steel Making Vol.II Iron & Steel S
oc. AIME (1975) 等に示されるように、鉄及びけい素鉄
中の融点直下での大気圧の窒素の溶解度は0.01%前後で
あり、一方これと平衡する溶鉄中では約4倍程度の溶解
度を有する。以上のことから粒界の部分溶融状態が一定
時間が継続すると、粒界近傍の固相中から溶融相中に成
分元素が移動し、これは拡散により律速されるため、時
間の経過とともに移動量が増加する。引き続く凝固過程
において、液相中に濃縮されたガス成分である窒素の濃
度が約0.01%以上であると過飽和となり、この結果スラ
ブふくれの発生につながるものと考えられる。この際、
放出されるガス量は、粒界溶融状態が継続された時間、
スラブ加熱最終段階での粒界密度及び冷却速度によって
変化することも詳細な検討の結果明らかとなった。さら
に、上下面の加熱温度ばらつきが大きいと、最大偏析部
が溶融する可能性が高くなることも判明した。以上の結
果から、加熱温度のばらつきの低減が粒界溶融の発生を
抑え、スラブふくれ抑止に有効であること、さらには最
大濃厚偏析帯位置での温度コントロールが重要であるこ
とが理解される。
BOF Steel Making Vol.II Iron & Steel S
As shown in oc. AIME (1975), etc., the solubility of nitrogen at atmospheric pressure just below the melting point in iron and silicon iron is around 0.01%, while in molten iron which is in equilibrium with it, it is about 4 times. Has solubility. From the above, when the partial melting state of the grain boundary continues for a certain period of time, the component elements move from the solid phase near the grain boundary to the molten phase, and this is controlled by diffusion. Increase. In the subsequent coagulation process, if the concentration of nitrogen, which is a gas component concentrated in the liquid phase, is about 0.01% or more, supersaturation is caused, which is considered to lead to slab blistering. On this occasion,
The amount of gas released is the time during which the grain boundary melting state is maintained,
The detailed examination also revealed that the temperature changes depending on the grain boundary density and the cooling rate in the final stage of slab heating. Furthermore, it was also found that if the heating temperature variation between the upper and lower surfaces was large, the possibility of melting the maximum segregated portion was increased. From the above results, it is understood that the reduction in the variation in the heating temperature suppresses the generation of the grain boundary melting and is effective in suppressing the slab swelling, and furthermore, it is important to control the temperature at the position of the maximum concentrated segregation zone.

【0017】従来、スラブをガス燃焼式加熱炉でのみ加
熱する場合は、圧延制御の最も難しい仕上げ圧延機での
通板安定性を向上させるために、通常、上面側の温度を
下面側に対して幾分高く設定して仕上げ圧延機通板時に
おける温度均一性を高め、主に下反りの発生を抑制して
いた。スラブ上下面の加熱炉内での温度推移の一例を図
1(圧延技術〔日刊工業新聞社〕1971より)に示す。さ
らに、加熱温度のばらつきは最終の電気式加熱炉でのば
らつきが原因であると考えられていたが、この点に関す
る発明者らの検討によれば、1次加熱のガス燃焼式加熱
炉でのばらつきの方が電気式加熱炉の温度ばらつきより
も影響が大きいことが見出された。この発明は、上記知
見に立脚して開発されたもので、含けい素鋼スラブの高
温加熱時に発生が懸念されるスラブふくれを効果的に防
止して、良好な磁気特性及び表面外観を得ることができ
る方向性けい素鋼板の有利な製造方法である。
Conventionally, when a slab is heated only by a gas-fired heating furnace, the temperature of the upper surface is usually set to be lower than that of the lower surface in order to improve the threading stability in a finishing mill where the rolling control is most difficult. By setting it somewhat higher, the temperature uniformity at the time of passing through the finishing mill is increased, and the occurrence of warpage is mainly suppressed. An example of the temperature transition in the heating furnace on the upper and lower surfaces of the slab is shown in FIG. 1 (from rolling technology [Nikkan Kogyo Shimbun] 1971). Further, it was thought that the variation in the heating temperature was caused by the variation in the final electric heating furnace. However, according to the study by the inventors regarding this point, the variation in the primary heating gas-fired heating furnace was considered. It has been found that the variation has a greater effect than the temperature variation of the electric heating furnace. The present invention has been developed on the basis of the above knowledge, and effectively prevents slab blistering, which may occur during high-temperature heating of a silicon-containing steel slab, to obtain good magnetic properties and surface appearance. This is an advantageous method for producing a grain-oriented silicon steel sheet.

【0018】すなわちこの発明は、N:0.0025wt%(以
下単に%で示す)以上を含有する含けい素鋼スラブを、
電磁溶鋼攪拌を行いつつ連続鋳造し、ついでガス燃焼型
加熱炉及び電気式加熱炉で加熱したのち、熱間圧延し、
ついで1回又は中間焼鈍を挟む2回以上の冷間圧延を施
して最終板厚に仕上げたのち、脱炭焼鈍し、その後鋼板
表面に焼鈍分離剤を塗布してから、最終仕上げ焼鈍を施
す一連の工程からなる方向性けい素鋼板の製造方法にお
いて、含けい素鋼スラブを、ガス燃焼型加熱炉で 900〜
1300℃の温度に予備加熱した後、非酸化性雰囲気の電気
式加熱炉にて1350℃以上の温度に加熱するに際し、 a) ガス燃焼型加熱炉内の加熱帯上部及び下部の設定温
度を調節して、該加熱炉から抽出後のスラブ上下面の温
度差を20℃以内に抑制する、 b) 電気式加熱炉での加熱を、表面温度を基準として13
50℃以上で、60分未満に制限する ことを特徴とする方向性けい素鋼板の製造方法である。
That is, the present invention relates to a silicon-containing steel slab containing N: 0.0025 wt% (hereinafter simply referred to as%) or more,
Continuous casting while stirring the electromagnetic molten steel, then heated in a gas combustion type heating furnace and an electric heating furnace, then hot rolled,
Next, after performing cold rolling once or twice or more with intermediate annealing to finish the final sheet thickness, decarburizing annealing, then applying an annealing separating agent to the steel sheet surface, and then performing a final finish annealing In the method for producing a grain-oriented silicon steel sheet comprising the steps of:
After preheating to a temperature of 1300 ° C, when heating to a temperature of 1350 ° C or more in an electric furnace with a non-oxidizing atmosphere, a) Adjust the set temperatures of the upper and lower heating zones in a gas-fired furnace. Then, the temperature difference between the upper and lower surfaces of the slab after extraction from the heating furnace is suppressed to within 20 ° C. B) Heating in the electric heating furnace is performed with reference to the surface temperature.
A method for producing a grain-oriented silicon steel sheet, wherein the temperature is limited to 50 ° C. or more and less than 60 minutes.

【0019】この発明に従えば、素材スラブとして、磁
気特性の向上を目指して電磁溶鋼攪拌を付与した連続鋳
造スラブを用いた場合であっても、スラブふくれを生じ
ることなしに、電気式加熱炉を用いて高温短時間加熱を
行うことができる。ここでスラブ加熱温度は、より好適
にはスラブ内部の測温を行うことによって制御できるも
のと考えられるが、表面温度の制御によっても充分に所
定の目的を達成できることが確かめられたので、この発
明では測温の容易な表面温度で規定することにした。こ
こに、ガス燃焼式加熱炉でのスラブ上下面の温度差が20
℃を超えると、ふくれが発生する場合が多くなるので20
℃以内に制限した。また、電気式加熱炉での加熱が表面
温度で1350℃に満たない場合には、インヒビターを短時
間で十分に固溶させることができないので、加熱温度は
1350℃以上とする場合を対象とした。さらに加熱時間が
60分以上になると、粒成長が著しく磁気特性の劣化を招
き、またスラブふくれの抑止効果が小さいことから、加
熱時間は60分未満とした。
According to the present invention, even when a continuous cast slab to which magnetic molten steel is agitated for the purpose of improving magnetic properties is used as the material slab, the electric heating furnace can be used without causing slab swelling. Can be used to perform high-temperature short-time heating. Here, it is considered that the slab heating temperature can be more preferably controlled by measuring the temperature inside the slab. However, it has been confirmed that the predetermined object can be sufficiently achieved by controlling the surface temperature. Then, it was decided that the surface temperature would be easy to measure. Here, the temperature difference between the upper and lower surfaces of the slab in the gas-fired heating furnace is 20
If the temperature exceeds ℃, blistering often occurs.
Limited to ° C. If the heating in the electric furnace is less than 1350 ° C at the surface temperature, the inhibitor cannot be sufficiently dissolved in a short time, so the heating temperature is
1350 ℃ or higher. Further heating time
When the heating time is 60 minutes or more, the grain growth remarkably deteriorates the magnetic properties, and the effect of suppressing slab swelling is small. Therefore, the heating time is set to less than 60 minutes.

【0020】[0020]

【作用】以下、素材の成分組成範囲について説明する。
この発明の素材である含けい素鋼としては、N以外の成
分については従来公知のものいずれもが適合する。な
お、この発明で特にN含有量を規定したのは、この発明
で解決しようとするスラブのふくれ欠陥の発生原因は偏
析部における部分溶融であり、それによって生じた液相
へのH,N等のガス成分とくにNの濃化である。従っ
て、鋼中N濃度が少ない場合には偏析部が部分溶融をき
たしても、ふくれ欠陥を生じるだけのNの濃化が起こら
ない。従って、この発明では、鋼中にNを0.0025%以上
含有するもののみを対象としたのである。
The following is a description of the component composition range of the material.
As the silicon-containing steel that is the material of the present invention, any conventionally known components can be used for components other than N. It should be noted that the reason why the N content is particularly defined in the present invention is that the cause of the slab blistering defect to be solved by the present invention is partial melting in the segregated portion, and the H, N, etc. in the liquid phase generated thereby. Is a concentration of N, especially N. Therefore, when the N concentration in the steel is low, even if the segregated portion is partially melted, the N concentration that causes blistering defects does not occur. Therefore, in the present invention, only the steel containing 0.0025% or more of N is targeted.

【0021】参考のために、他成分の好適組成範囲を掲
げると、次のとおりである。 C:0.01〜0.10% Cは、熱間圧延及び冷間圧延中における組織の均一微細
化だけでなく、ゴス方位の発達に有用な元素であり、少
なくとも0.01%含有することが好ましい。しかしなが
ら、0.10%を超えて含有した場合には脱炭が困難とな
り、かえってゴス方位に乱れが生じるので、上限は0.10
%とすることが好ましい。
For reference, preferred composition ranges of other components are as follows. C: 0.01 to 0.10% C is an element useful not only for uniform micronization of the structure during hot rolling and cold rolling, but also for development of the Goss orientation, and is preferably contained at least 0.01%. However, if the content exceeds 0.10%, decarburization becomes difficult, and the Goss direction is disturbed. Therefore, the upper limit is 0.10%.
% Is preferable.

【0022】Si:2.5 〜4.5 % Siは、鋼板の比抵抗を高め鉄損の低減に寄与するが、含
有量が 4.5%を上回ると冷延性が損なわれ、一方 2.5%
に満たないと比抵抗が低下するだけでなく、二次再結晶
及び純化のために行われる最終焼鈍中にα−γ変態によ
って結晶方位のランダム化を生じ、十分な鉄損改善効果
が得られないので、Siは 2.5〜4.5 %程度とするのが好
ましい。
Si: 2.5 to 4.5% Si increases the specific resistance of the steel sheet and contributes to a reduction in iron loss. However, when the content exceeds 4.5%, the cold rolling property is impaired, while 2.5% to 4.5%.
Not only lowers the specific resistance, but also causes randomization of the crystal orientation due to α-γ transformation during the final annealing performed for secondary recrystallization and purification, and a sufficient iron loss improvement effect is obtained. Therefore, the content of Si is preferably set to about 2.5 to 4.5%.

【0023】Mn:0.02〜0.12% Mnは、熱間脆化を防止するためには少なくとも0.02%程
度を必要とするが、あまり多すぎると磁気特性を劣化さ
せるので、上限は0.12%程度とするのが好ましい。
Mn: 0.02 to 0.12% Mn requires at least about 0.02% in order to prevent hot embrittlement, but too much Mn degrades magnetic properties, so the upper limit is about 0.12%. Is preferred.

【0024】イヒビターとしては、いわゆるMnS, MnSe
系とAlN系とがある。 MnS, MnSe系の場合 S, Seのうちから選ばれる少なくとも一種:0.005 〜0.
06% S, Seはいずれも、方向性けい素鋼板の二次再結晶を制
御するインヒビターとして有力な元素である。抑制力の
観点からは、少なくとも 0.005%程度を必要とするが0.
06%を超えるとその効果が損なわれる。従って、その上
限、下限はそれぞれ 0.005%、0.06%程度とするのが好
ましい。 AlN系の場合 Al:0.005〜0.10% Alの範囲についても、上述のMnS, MnSe系の場合と同様
の理由から上記の範囲に定めた。なお、上述のMnS, Mn
Se系及びAlN系はそれぞれ併用が可能である。さらに、
インヒビター成分としては、上記したS, Se, Alの他、
Cu, Sn, Sb,Mo, Te及びBi等も有利に作用するのでそれ
ぞれ少量併せて含有させることもできる。これらの成分
の好適添加範囲はそれぞれ、Cu, Sn:0.01〜0.15%、S
b, Mo,Te, Bi:0.005 〜0.1 %であり、これらの各イン
ヒビター成分についても、単独使用及び複合使用のいず
れもが可能である。
As inhibitors, so-called MnS, MnSe
System and AlN system. In the case of MnS and MnSe, at least one selected from S and Se: 0.005 to 0.
06% S and Se are both effective elements as inhibitors for controlling secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of suppressing power, at least about 0.005% is required,
If it exceeds 06%, its effect will be lost. Therefore, the upper and lower limits are preferably set to about 0.005% and 0.06%, respectively. In the case of the AlN system, the range of Al: 0.005 to 0.10% Al is also set in the above range for the same reason as in the case of the MnS and MnSe systems described above. Note that the above MnS, Mn
Se-based and AlN-based can be used in combination. further,
As the inhibitor component, in addition to S, Se, and Al described above,
Cu, Sn, Sb, Mo, Te, Bi and the like also act advantageously, so that they can be incorporated together in small amounts. The preferred addition ranges of these components are respectively Cu, Sn: 0.01 to 0.15%, S
b, Mo, Te, Bi: 0.005 to 0.1%, and each of these inhibitor components can be used alone or in combination.

【0025】なおスラブは、連続鋳造により製造された
ものを対象とするが、連続鋳造後に分塊再圧されたスラ
ブも対象に含まれることはいうまでもない。スラブは通
常そのまま、又は仮置き後加熱炉に装入、加熱、あるい
は徐冷却後、表面手入れ等を施した後、加熱炉に装入、
加熱される。この発明では、この加熱処理が特に重要で
あり、前述したとおり、 a) ガス燃焼型加熱炉内の加熱帯上部及び下部の設定温
度を調節して、該加熱炉から抽出後のスラブ上下面の温
度差を20℃以内に抑制する、 b) 電気式加熱炉での加熱を、表面温度を基準として13
50℃以上で、60分未満に制限する ことによって、スラブふくれの発生を防止するのであ
る。ここに、電気式加熱炉としては、電磁誘導加熱や抵
抗加熱等が好適である。
The slab is intended for a slab manufactured by continuous casting, but it goes without saying that a slab which has been subjected to lumping and repressing after continuous casting is also included. The slab is usually put into the heating furnace as it is or after temporary placement, heating, or after slow cooling, after performing surface care, etc., then loading into the heating furnace,
Heated. In the present invention, this heat treatment is particularly important. As described above, a) adjusting the set temperatures of the upper and lower heating zones in the gas-fired heating furnace to adjust the upper and lower surfaces of the slab extracted from the heating furnace. B) Reduce the temperature difference to within 20 ° C. B) Heat the electric heating furnace based on the surface temperature.
By limiting the temperature to 50 ° C or more and less than 60 minutes, the occurrence of slab swelling is prevented. Here, as the electric heating furnace, electromagnetic induction heating, resistance heating, or the like is preferable.

【0026】上記のようにしてスラブを加熱したのち、
熱間圧延によって 1.4〜3.5 mm厚の熱延鋼帯とする。こ
の熱延鋼帯の酸洗工程、その後の1回又は中間焼鈍を挟
む2回以上の冷間圧延工程、それに続く脱炭焼鈍、焼鈍
分離剤塗布及び最終仕上げ焼鈍工程は、それぞれ公知の
手段を用いることができる。
After heating the slab as described above,
Hot rolled steel strip with a thickness of 1.4 to 3.5 mm is formed by hot rolling. The pickling step of the hot-rolled steel strip, the subsequent one or two or more cold rolling steps sandwiching intermediate annealing, the subsequent decarburizing annealing, the application of an annealing separator, and the final finishing annealing step are performed by known means. Can be used.

【0027】[0027]

【実施例】【Example】

実施例1 C:0.08%, Si:3.4 %, Mn:0.06%, Se:0.017 %,
Al:0.029 %及びN:0.007 %を含有し、残部は実質的
にFeの組成になる溶鋼を、電磁溶鋼攪拌を施しつつ連続
鋳造してスラブとした。このスラブを、下面温度は1200
℃と一定温度に設定する一方、上面温度を1200℃から12
30℃までの範囲で種々に変化させてガス燃焼型加熱炉で
加熱したのち、誘導加熱炉に移送し、この誘導加熱炉に
て表面温度が1390〜1410℃の範囲の各温度にそれぞれ50
分間保持したのち、冷却した。ついで、厚さ:45mmのシ
ートバーとしてから、 2.2mm厚の熱延板としたのち、一
次冷間圧延ついで中間焼鈍を挟む二次冷間圧延により0.
22mmの最終板厚に仕上げた。その後、 MgOを主成分とす
る焼鈍分離剤を塗布してから、水素雰囲気中で1200℃、
8時間の最終仕上げ焼鈍を施した。かくして得られた製
品の磁気特性及びスラブ段階におけるふくれ欠陥の有無
について調べた結果を、表1に示す。またとくに、各ス
ラブのふくれ発生の有無については、加熱温度と上下面
の温度差との関係で図2に整理して示す。
Example 1 C: 0.08%, Si: 3.4%, Mn: 0.06%, Se: 0.017%,
Molten steel containing 0.029% of Al and 0.007% of N and substantially the balance of Fe was continuously cast into a slab while stirring with electromagnetic molten steel. This slab has a lower surface temperature of 1200
℃ and a constant temperature, while the upper surface temperature from 1200 ℃ to 12
After heating in a gas-fired heating furnace with various changes up to 30 ° C, it is transferred to an induction heating furnace, where the surface temperature is raised to 50 ° C for each temperature in the range of 1390 to 1410 ° C.
After holding for a minute, the mixture was cooled. Then, from a sheet bar having a thickness of 45 mm, a hot-rolled sheet having a thickness of 2.2 mm was formed, and then subjected to primary cold rolling and then to secondary cold rolling with intermediate annealing.
Finished to a final thickness of 22mm. Then, after applying an annealing separator mainly composed of MgO, 1200 ° C in a hydrogen atmosphere,
A final finish annealing of 8 hours was performed. Table 1 shows the results obtained by examining the magnetic properties of the products thus obtained and the presence or absence of blister defects at the slab stage. In particular, the presence or absence of blistering of each slab is shown in FIG. 2 in relation to the heating temperature and the temperature difference between the upper and lower surfaces.

【0028】[0028]

【表1】 [Table 1]

【0029】表1及び図2から明らかなように、この発
明に従いスラブの下面温度と上面温度との差を20℃以内
に調整した場合には、スラブふくれ欠陥が全く発生しな
かっただけでなく、磁気特性も良好であった。また、適
合例はいずれも、美麗な表面外観を呈していた。
As is clear from Table 1 and FIG. 2, when the difference between the lower surface temperature and the upper surface temperature of the slab was adjusted within 20 ° C. according to the present invention, not only did the slab blister defect not occur at all, but also Also, the magnetic properties were good. In addition, each of the conforming examples exhibited a beautiful surface appearance.

【0030】実施例2 C:0.07%, Si:3.2 %, Mn:0.05%, Se:0.019 %,
Al:0.031 %及びN:0.08%を含有し、残部は実質的に
Feの組成になる溶鋼を、電磁溶鋼攪拌を施しつつ連続鋳
造してスラブとした。このスラブを、下面温度は1150℃
と一定温度に設定する一方、上面温度を1150℃から1180
℃までの範囲で種々に変化させてガス燃焼型加熱炉で加
熱したのち、誘導加熱炉に移送し、この誘導加熱炉にて
表面温度:1400℃の温度に1〜90分間保持したのち、冷
却した。ついで、厚さ:45mmのシートバーとしてから、
2.2mm厚の熱延板としたのち、一次冷間圧延ついで中間
焼鈍を挟む二次冷間圧延により0.22mmの最終板厚に仕上
げた。その後、 MgOを主成分とする焼鈍分離剤を塗布し
てから、水素雰囲気中で1200℃、10時間の最終仕上げ焼
鈍を施した。かくして得られた製品の磁気特性及びスラ
ブ段階におけるふくれ欠陥の有無について調べた結果
を、表2に示す。また図3には、各スラブのふくれ発生
の有無を、加熱時間と上下面の温度差との関係で整理し
て示す。
Example 2 C: 0.07%, Si: 3.2%, Mn: 0.05%, Se: 0.019%,
Al: 0.031% and N: 0.08%, with the balance being substantially
The molten steel having the composition of Fe was continuously cast while performing electromagnetic molten steel stirring to form a slab. The lower surface temperature of this slab is 1150 ℃
And the upper surface temperature from 1150 ° C to 1180
After heating in a gas-fired heating furnace with various changes up to ℃, transfer to an induction heating furnace, and keep it at a surface temperature of 1400 ℃ for 1 to 90 minutes in this induction heating furnace, then cool did. Then, as a sheet bar of thickness: 45mm,
After forming a hot-rolled sheet having a thickness of 2.2 mm, the sheet was finished to a final sheet thickness of 0.22 mm by primary cold rolling and then secondary cold rolling with intermediate annealing. After that, an annealing separator containing MgO as a main component was applied, and then a final finish annealing was performed at 1200 ° C. for 10 hours in a hydrogen atmosphere. Table 2 shows the results obtained by examining the magnetic properties of the products thus obtained and the presence or absence of blister defects at the slab stage. FIG. 3 shows the occurrence of blistering in each slab, organized according to the relationship between the heating time and the temperature difference between the upper and lower surfaces.

【0031】[0031]

【表2】 [Table 2]

【0032】表2及び図3から明らかなように、この発
明に従いスラブの下面温度と上面温度との差を20℃以内
に調整すると共に、高温保持時間を60分以内に制限した
場合には、スラブふくれ欠陥の発生は全くなく、また磁
気特性も良好であった。さらに、適合例はいずれも、美
麗な表面外観を呈していた。
As is apparent from Table 2 and FIG. 3, when the difference between the lower surface temperature and the upper surface temperature of the slab is adjusted within 20 ° C. and the high temperature holding time is limited to 60 minutes or less according to the present invention, No slab blister defects were generated, and the magnetic properties were good. Furthermore, all of the conforming examples exhibited a beautiful surface appearance.

【0033】[0033]

【発明の効果】かくしてこの発明によれば、磁気特性の
向上を目的して電磁溶鋼攪拌を付与した場合であって
も、スラブ加熱時におけるふくれ欠陥の発生完全に防止
して、良好な磁気特性及び表面外観を有する方向性けい
素鋼板を安定して得ることができる。
Thus, according to the present invention, even when electromagnetic molten steel is agitated for the purpose of improving magnetic properties, the occurrence of blistering defects during slab heating is completely prevented, and good magnetic properties are obtained. And a grain-oriented silicon steel sheet having a surface appearance can be stably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来法に従うスラブ加熱要領を示した昇温曲線
図である。
FIG. 1 is a temperature rise curve showing a slab heating procedure according to a conventional method.

【図2】スラブの上下面の温度差及び加熱温度がスラブ
ふくれに及ぼす影響を示した図である。
FIG. 2 is a diagram showing the influence of a temperature difference between upper and lower surfaces of a slab and a heating temperature on slab swelling.

【図3】スラブの上下面の温度差及び高温における保持
時間がスラブふくれに及ぼす影響を示した図である。
FIG. 3 is a diagram showing an influence of a temperature difference between upper and lower surfaces of a slab and a holding time at a high temperature on a slab blister.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−43936(JP,A) 特開 平5−51638(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C21D 9/46 501 C22C 38/00 - 38/60 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-43936 (JP, A) JP-A-5-51638 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/12 C21D 9/46 501 C22C 38/00-38/60

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 N:0.0025wt%以上を含有する含けい素
鋼スラブを、電磁溶鋼攪拌を付加しつつ連続鋳造し、つ
いでガス燃焼型加熱炉及び電気式加熱炉で加熱したの
ち、熱間圧延し、ついで1回又は中間焼鈍を挟む2回以
上の冷間圧延を施して最終板厚に仕上げたのち、脱炭焼
鈍し、その後鋼板表面に焼鈍分離剤を塗布してから、最
終仕上げ焼鈍を施す一連の工程からなる方向性けい素鋼
板の製造方法において、 含けい素鋼スラブを、ガス燃焼型加熱炉で 900〜1300℃
の温度に予備加熱した後、非酸化性雰囲気の電気式加熱
炉にて1350℃以上の温度に加熱するに際し、 a) ガス燃焼型加熱炉内の加熱帯上部及び下部の設定温
度を調節して、該加熱炉から抽出後のスラブ上下面の温
度差を20℃以内に抑制する、 b) 電気式加熱炉での加熱を、表面温度を基準として13
50℃以上で、60分未満に制限することを特徴とする方向
性けい素鋼板の製造方法。
1. A silicon steel slab containing N: 0.0025% by weight or more is continuously cast while stirring magnetically molten steel, and then heated in a gas combustion type heating furnace and an electric heating furnace. Rolled and then cold-rolled once or twice or more with intermediate annealing to finish to the final thickness, decarburized annealing, then apply an annealing separating agent to the steel sheet surface, then final finish annealing In a method for producing a grain-oriented silicon steel sheet, comprising a series of steps of applying a silicon steel slab to a gas-fired heating furnace at 900 to 1300 ° C.
After preheating to the temperature of 1), when heating to a temperature of 1350 ° C or more in an electric heating furnace in a non-oxidizing atmosphere, a) adjusting the set temperature of the upper and lower heating zones in the gas combustion type heating furnace The temperature difference between the upper and lower surfaces of the slab after extraction from the heating furnace is controlled to within 20 ° C. B) Heating in the electric heating furnace is performed based on the surface temperature.
A method for producing a grain-oriented silicon steel sheet, wherein the temperature is limited to 50 ° C or more and less than 60 minutes.
JP18509693A 1993-07-27 1993-07-27 Manufacturing method of grain-oriented silicon steel sheet Expired - Fee Related JP3538855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18509693A JP3538855B2 (en) 1993-07-27 1993-07-27 Manufacturing method of grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18509693A JP3538855B2 (en) 1993-07-27 1993-07-27 Manufacturing method of grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH0741859A JPH0741859A (en) 1995-02-10
JP3538855B2 true JP3538855B2 (en) 2004-06-14

Family

ID=16164780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18509693A Expired - Fee Related JP3538855B2 (en) 1993-07-27 1993-07-27 Manufacturing method of grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JP3538855B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898409B (en) * 2014-04-26 2016-08-17 河北联合大学 Reduce inhibitor and the preparation method of directional silicon steel slab heating-up temperature

Also Published As

Publication number Publication date
JPH0741859A (en) 1995-02-10

Similar Documents

Publication Publication Date Title
WO2006132095A1 (en) Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same
JP2001152250A (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic property
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP3538855B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP3340754B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction
JP3849146B2 (en) Method for producing unidirectional silicon steel sheet
JPH10226819A (en) Production of grain oriented silicon steel sheet excellent in core loss characteristic
JP4206538B2 (en) Method for producing grain-oriented electrical steel sheet
JP3612717B2 (en) Method for producing grain-oriented silicon steel sheet
JP3133868B2 (en) Heating method of directional silicon steel slab
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH04124218A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3538852B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JPH0726156B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface properties
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JPH0699751B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JP3536303B2 (en) Manufacturing method of grain-oriented electrical steel sheet with uniform magnetic properties in the width direction
JPH0754045A (en) Manufacture of grain-oriented silicon steel sheet
JPH0892644A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP3301622B2 (en) Method for producing grain-oriented silicon steel sheet having uniform and excellent magnetic properties in the sheet width direction
JPS59173218A (en) Manufacture of single-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees