JPH0726156B2 - Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface properties - Google Patents
Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface propertiesInfo
- Publication number
- JPH0726156B2 JPH0726156B2 JP63287520A JP28752088A JPH0726156B2 JP H0726156 B2 JPH0726156 B2 JP H0726156B2 JP 63287520 A JP63287520 A JP 63287520A JP 28752088 A JP28752088 A JP 28752088A JP H0726156 B2 JPH0726156 B2 JP H0726156B2
- Authority
- JP
- Japan
- Prior art keywords
- slab
- temperature
- grain
- steel sheet
- oriented electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性に優れしかも表面欠陥の少ない方
向性電磁鋼板の有利な製造方法に関するものである。Description: TECHNICAL FIELD The present invention relates to an advantageous method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and few surface defects.
(従来の技術) 一方向性電磁鋼板は、主に変圧器や発電機の鉄心材料と
して使用され、磁束密度が高く、かつ鉄損が低いことが
必要とされる。(Prior Art) A unidirectional electrical steel sheet is mainly used as an iron core material of a transformer or a generator, and is required to have a high magnetic flux density and a low iron loss.
ところで近年、省エネルギーに対する強い要請を反映し
て、特性の優れた方向性電磁鋼板の安価な供給が強く望
まれており、特性を安定させることと共に、製造コスト
を如何に低減させるかが重要な課題となっている。By the way, in recent years, reflecting the strong demand for energy saving, there is a strong demand for inexpensive supply of grain-oriented electrical steel sheets having excellent characteristics, and it is an important issue how to stabilize the characteristics and reduce the manufacturing cost. Has become.
磁気特性に優れた方向性電磁鋼板を得るには、基本的に
{110}<001>方位いわゆるゴス方位に高度に集積した
2次再結晶組織を得ることが必要である。ゴス方位の2
次再結晶粒を発達させるためには粒界移動を適度に抑制
する分散析出相いわゆるインヒビターの存在が必要であ
り、かようなインヒビターとしてMnSe,MnS,AlNなどが一
般的に利用されている。この場合、熱延に先だつスラブ
加熱時にMnSe,MnSなどを十分に解離固溶させた後、適切
な条件で熱間圧延ついで冷却を行うことによって微細か
つ均一に分散析出させることが非常に重要であり、かか
るMnSe,MnS等の固溶解離のためには高いスラブ加熱温度
を必要とする。したがって特性向上を目的とした高温ス
ラブ加熱方法に関しては、これまでにも多くの技術が提
案されている。In order to obtain a grain-oriented electrical steel sheet having excellent magnetic properties, it is basically necessary to obtain a secondary recrystallized structure highly integrated in the {110} <001> orientation, the so-called Goss orientation. Goth bearing 2
In order to develop secondary recrystallized grains, it is necessary to have a so-called inhibitor, which is a dispersed precipitation phase that appropriately suppresses grain boundary migration, and MnSe, MnS, AlN, etc. are generally used as such inhibitors. In this case, it is very important to disperse and precipitate MnSe, MnS, etc. sufficiently during slab heating prior to hot rolling, followed by hot rolling and cooling under appropriate conditions for fine and uniform dispersion precipitation. Therefore, a high slab heating temperature is required for such solid dissolution separation of MnSe, MnS and the like. Therefore, many techniques have been proposed so far for the high-temperature slab heating method for improving the characteristics.
例えば特公昭47−14627号、特公昭57−41526号、特公昭
54−27820号、特公昭61−0530号、特公昭59−37330号、
特開昭61−69724号、特開昭61−246317号および特開昭6
1−288020号各公報。For example, Japanese Patent Publication No. 47-14627, Japanese Patent Publication No. 57-41526, Japanese Patent Publication No.
54-27820, JP 61-0530, JP 59-37330,
JP-A 61-69724, JP-A 61-246317 and JP-A 6-
1-288020 each gazette.
上記の技術はいずれも、スラブを高温で加熱することに
よって特性の向上を狙ったものである。このようにスラ
ブを高温加熱すればインヒビターが十分に溶解し、特性
がある程度向上することは良く知られており、その点に
ついて多大の努力が払われてきた。しかしながら既存の
設備,操業技術では、加熱温度を上げるとはいってもそ
れには自ら限界があった。また従来、インヒビターを十
分に固溶、均一化するためには高温のみならず長時間の
加熱が必要であるとされ、一般的に1〜2時間の均熱が
必要とされたが、この点にも難があった。All of the above techniques aim to improve the characteristics by heating the slab at a high temperature. It is well known that heating the slab at a high temperature dissolves the inhibitor sufficiently to improve the properties to some extent, and great efforts have been made in this respect. However, even though the existing equipment and operating technology raised the heating temperature, there was a limit to it. Further, in the past, it was said that not only high temperature but also long time heating was required to sufficiently dissolve and homogenize the inhibitor, and soaking was generally required for 1 to 2 hours. There was also a problem.
(発明が解決しようとする課題) 上述のとおり、従来の技術ではスラブを高温に加熱する
ことは設備的に困難であり、またSi含有鋼は高温で酸化
溶融し易く加熱効率も良好とはいえなかった。したがっ
て加熱温度を高くするために多大な努力が払われてきた
にもかかわらず、その実現可能な温度はせいぜい1400℃
までとされていた。(Problems to be Solved by the Invention) As described above, it is difficult to heat the slab to a high temperature in the conventional technology in terms of equipment, and the Si-containing steel is easily oxidized and melted at a high temperature, but the heating efficiency is good. There wasn't. Therefore, despite the great efforts made to raise the heating temperature, the achievable temperature is at most 1400 ° C.
It was said that.
また一方で、温度確保のためにスラブを高温域で長時間
加熱するとスラブ結晶粒の異常成長を誘発、粗大化した
結晶粒は熱間圧延においても十分に破壊再結晶せず、し
ばしば2次再結晶不良の原因となるだけでなく、表面粒
界酸化等により致命的な表面欠陥を生成してしまうこと
も多い。On the other hand, if the slab is heated for a long time in a high temperature range to secure the temperature, abnormal growth of slab crystal grains is induced, and the coarsened crystal grains do not sufficiently recrystallize even in hot rolling, and often secondary recrystallization occurs. In addition to causing crystal defects, fatal surface defects are often generated due to surface grain boundary oxidation or the like.
このように従来のスラブ加熱技術では、磁気特性および
表面特性を同時に満足させることは極めて困難であっ
た。As described above, with the conventional slab heating technique, it was extremely difficult to satisfy the magnetic properties and the surface properties at the same time.
なお上記の問題を解決するものとして、最近、特開昭63
−109115号公報において、低酸化雰囲気の誘導加熱炉に
てスラブ表面温度が1420〜1495℃の温度域に短時間加熱
する方法が提案された。しかしながらこの方法でも、表
面温度を中心温度より高くすることを前提としているの
で、スラブ表層部をこのような高温に加熱した場合の結
晶粒粗大化に起因する2次再結晶不良が避けられなかっ
た。そのためかかる高温加熱に起因した不良発生を避け
るべくスラブ再圧処理すなわちスラブ加熱前に10〜30%
程度の歪を加え再結晶させ組織を均一化する処理の如き
特別な処理を別途必要とし、大幅なコスト上昇の原因と
なっていた。Incidentally, as a means for solving the above-mentioned problems, recently, Japanese Patent Laid-Open No.
In Japanese Patent Laid-Open No. 109115, there has been proposed a method of heating a slab surface temperature to a temperature range of 1420 to 1495 ° C. for a short time in an induction heating furnace having a low oxidizing atmosphere. However, even in this method, since it is premised that the surface temperature is higher than the central temperature, the secondary recrystallization failure due to the coarsening of the crystal grains when the surface layer of the slab is heated to such a high temperature cannot be avoided. . Therefore, in order to avoid the occurrence of defects due to such high temperature heating, the slab repressing process, that is, 10 to 30% before slab heating
A special process such as a process of applying a certain degree of strain to recrystallize and homogenize the structure is separately required, which causes a large increase in cost.
この発明は、上記の問題を有利に解決するもので、とく
にスラブ加熱を適切な条件で行うことによって、磁気特
性および表面特性に優れた方向性電磁鋼板を安価に得る
ことができる製造法を提案することを目的とする。The present invention advantageously solves the above problems, and proposes a manufacturing method capable of inexpensively obtaining a grain-oriented electrical steel sheet excellent in magnetic characteristics and surface characteristics by performing slab heating under appropriate conditions. The purpose is to do.
(課題を解決するための手段) さて発明者らは、種々検討した結果、上記の諸問題の原
因が、必要とされる適正なスラブ内加熱温度分布と実際
に付与される加熱温度分布とが、うまく合致していなか
ったことによるものであることを知見し、かかる知見に
基づいてこの発明を完成させるに至ったものである。(Means for Solving the Problem) As a result of various studies, the inventors have found that the causes of the above-mentioned problems are that the required proper heating temperature distribution in the slab and the heating temperature distribution actually given are It was discovered that this is due to the fact that they did not match well, and the present invention has been completed based on this finding.
以下、この発明の解明経緯について説明する。Hereinafter, the clarification process of the present invention will be described.
発明者らはまず、けい素を含有した一方向性電磁鋼板の
内部性状の調査から始めた。The inventors first began by investigating the internal properties of a grain-oriented electrical steel sheet containing silicon.
Si:3.4wt%(以下単に%で示す)、Se:0.02% を含有する連続鋳造スラブの粗大析出物すなわち直径が
5μm以上の(Mn,Fe)Seなどの析出物のスラブ厚み方
向における分布を調べた。その結果を第1図に示す。The distribution of coarse precipitates of continuously cast slabs containing Si: 3.4wt% (simply expressed as%) and Se: 0.02%, that is, precipitates such as (Mn, Fe) Se with a diameter of 5μm or more in the slab thickness direction, Examined. The results are shown in FIG.
同図より明らかなように、解離固溶が非常に困難な粗大
析出物(インヒビター)は、スラブ表層より厚みで約1/
5付近までは少なく、それより中心部にかけて急激に増
加しているのが確認された。As is clear from the figure, coarse precipitates (inhibitors) that are extremely difficult to dissociate and dissolve are approximately 1 / thick in thickness than the slab surface.
It was confirmed that the number was low up to around 5, and increased sharply toward the center.
このような粗大析出物はスラブ凝固時に生成するが、通
常のスラブ厚みが100〜300mm程度のスラブ連続鋳造方法
においては、多くの努力をしたにもかかわらずかかる粗
大析出物の生成を避けることにいまだ成功していない。
実際、通常の鋳込み条件においては、冷却水比の増加や
凝固部に対する電磁撹拌処理の付与によってもこれら析
出物の大きさと分散状態には顕著な変化がないことが確
認された。もちろん中心偏析部や内部割れ発生部におい
てはさらに大きな析出物が偏在しているのが観察され
た。Such coarse precipitates are formed during slab solidification.However, in the usual slab continuous casting method with a slab thickness of about 100 to 300 mm, it is necessary to avoid the formation of such coarse precipitates despite many efforts. Not yet successful.
In fact, under normal casting conditions, it was confirmed that there is no significant change in the size and dispersion state of these precipitates even if the cooling water ratio is increased or the solidified portion is subjected to electromagnetic stirring treatment. Of course, it was observed that larger precipitates were unevenly distributed in the central segregation portion and the internal crack generation portion.
これらの析出物が存在していても、通常のマクロ的化学
分析方法では、その有無によるスラブ厚み方向の成分変
化は検出できないものであり、従来から知られているマ
クロ的中心偏析とは異なる分布を持ったものである。Even if these precipitates are present, it is not possible to detect the component change in the slab thickness direction due to the presence or absence of them with the usual macrochemical analysis method, which is different from the conventionally known macrocenter segregation. It is a thing with.
一般に溶解温度以上では、析出物の解離溶解過程は析出
物を構成する溶質元素の拡散速度に律速される。したが
って析出物の大きさが大きくなると溶解時間は析出物の
大きさのほぼ2乗に比例して大きくなる。それ故表層に
比べ中心層に存在する粗大なインヒビターは非常に溶解
しにくいことになる。Generally, above the melting temperature, the dissociation and dissolution process of the precipitate is limited by the diffusion rate of the solute elements constituting the precipitate. Therefore, as the size of the precipitate increases, the dissolution time increases in proportion to the square of the size of the precipitate. Therefore, the coarse inhibitor existing in the central layer is much less likely to dissolve than the surface layer.
とくに短時間でインヒビターを完全に溶解させようとす
るならば、中心層は表層より一層の高温度が必要とな
る。If it is desired to completely dissolve the inhibitor in a short time, the central layer requires a higher temperature than the surface layer.
しかしながら一方では、けい素鋼スラブは、高温加熱時
に結晶粒が粗大化し易く、それが2次再結晶不良あるい
は表面欠陥の原因となることが知られている。とくにス
ラブ表層部は柱状晶になっているので結晶粒の異常成長
が極めて起き易い。従ってスラブ組織の変化を防止する
ためのインヒビターの溶解とは逆に鋼板表面は低温が好
ましい。On the other hand, however, it is known that in the silicon steel slab, the crystal grains are likely to coarsen when heated at a high temperature, which causes secondary recrystallization failure or surface defect. In particular, since the slab surface layer has columnar crystals, abnormal growth of crystal grains is extremely likely to occur. Therefore, in contrast to the dissolution of the inhibitor for preventing the change of the slab structure, the steel plate surface is preferably at a low temperature.
第2図に、一般的なスラブ加熱方式で加熱処理を施した
場合のスラブ厚み方向の温度分布を示す。FIG. 2 shows the temperature distribution in the slab thickness direction when heat treatment is performed by a general slab heating method.
最新の高温加熱タイプのウオーキングビーム式ガス加熱
炉で加熱されたスラブの典型的な断面温度分布は、曲線
(2)で示したとおりであり、中心部に比べて表面の温
度が少なくとも数10℃は高くなっている。一方第1図か
ら予想されるスラブ内部組織を考慮した最適加熱温度分
布は曲線(1)のとおりである。従ってとくに加熱時間
を可能な限り短くしようとする場合には加熱温度確保が
絶対となる。Typical cross-sectional temperature distribution of the slab heated by the latest high-temperature heating type walking beam type gas heating furnace is as shown by the curve (2), and the surface temperature is at least several tens of degrees Celsius compared to the central part. Is high. On the other hand, the optimum heating temperature distribution considering the slab internal structure expected from FIG. 1 is as shown by the curve (1). Therefore, especially when trying to shorten the heating time as much as possible, it is absolutely necessary to secure the heating temperature.
設備能力を無視して従来のウオーキングビーム式ガス加
熱炉(これは主として表層からのふく射で加熱される)
でスラブ中心部の温度をインヒビターが十分溶解する温
度まで上げた場合のスラブ内温度分布は曲線(3)のよ
うになる。この場合にはスラブ表面はけい素鋼の溶融温
度となってしまい原理的に不可能となってしまう。ある
いは溶融しないまでも、粒界部分等がぜい弱となり、著
しい表面欠陥を生成してしまう。Conventional walking beam gas heating furnace ignoring equipment capacity (this is mainly heated by radiation from the surface)
The temperature distribution in the slab when the temperature of the central part of the slab is raised to a temperature at which the inhibitor sufficiently dissolves is as shown by the curve (3). In this case, the slab surface becomes the melting temperature of silicon steel, which is impossible in principle. Alternatively, even before melting, the grain boundary portion and the like become vulnerable, and significant surface defects are generated.
このように既存の加熱方法ではインヒビターの完全溶解
とスラブ組織粗大化の防止を両立させることは極めて難
しかったのである。Thus, it was extremely difficult for the existing heating method to achieve both complete dissolution of the inhibitor and prevention of coarsening of the slab structure.
そこで発明者らは、従来の加熱方法とは異なった原理的
にもそして経済的にも好ましい加熱方法の開発に着手し
た。Therefore, the inventors set out to develop a heating method which is different from the conventional heating method and which is preferable in principle and economically.
その結果、スラブ加熱手段として電磁誘導加熱を適用し
て、特定の条件下で処理した場合に、所期した目的の達
成に関して、望外の成果が得られたのである。As a result, when electromagnetic induction heating was applied as the slab heating means and the treatment was performed under specific conditions, unexpected results were achieved in achieving the intended purpose.
この発明は、上記の知見に立脚するものである。The present invention is based on the above findings.
すなわちこの発明は、 C:0.01〜0.08%、 Si:2.5〜4.0%、 Mn:0.03〜0.10%、 SおよびSeのうちいずれか一種又は二種合計:0.01〜0.0
6%を含有し、 ときにはさらに Sb,Mo,CuおよびSnのうちから選ばれる少なくとも一種:
0.005〜0.2% 又は/及び Al:0.01〜0.1% を含有し、残部は実質的にFeの組成になるけい素鋼スラ
ブを、熱間圧延後、1回又は中間焼鈍を挟む2回の冷間
圧延を施して最終板厚としたのち、脱炭・1次再結晶焼
鈍を施し、ついで最終仕上げ焼鈍を施す一連の工程によ
って方向性電磁鋼板を製造するに当り、熱間圧延に先立
ち、周波数:30Hz以上、300Hz未満の電磁誘導加熱によ
り、スラブ中心を1400〜1470℃に昇温する一方、スラブ
表面については、該表面からの抜熱を強化して、中心温
度よりも10〜100℃低い温度となる、スラブ加熱処理を
施すことを特徴とする磁気特性および表面性状に優れた
方向性電磁鋼板の製造方法である。That is, the present invention is C: 0.01 to 0.08%, Si: 2.5 to 4.0%, Mn: 0.03 to 0.10%, any one or two kinds of S and Se: 0.01 to 0.0
6% and sometimes additionally at least one selected from Sb, Mo, Cu and Sn:
A silicon steel slab containing 0.005 to 0.2% or / and Al: 0.01 to 0.1%, the balance of which is substantially Fe, is cold-rolled once after hot rolling or twice with intermediate annealing. Prior to hot rolling, in order to produce a grain-oriented electrical steel sheet by a series of steps in which rolling is performed to a final thickness, decarburization / primary recrystallization annealing is performed, and then final finishing annealing is performed, the frequency: 30Hz or more, by electromagnetic induction heating of less than 300Hz, while raising the slab center to 1400 ~ 1470 ℃, for the slab surface, strengthen the heat removal from the surface, 10 ~ 100 ℃ lower than the center temperature The present invention is a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and surface properties, which is characterized by performing a slab heat treatment.
この発明は、電磁誘導加熱方式を適用しかつ周波数及び
投入電力を適正に制御することにより第3図に示すよう
なスラブ内温度分布が達成されることの知見に基づいて
開発されたものである。The present invention was developed based on the finding that the temperature distribution in the slab as shown in FIG. 3 can be achieved by applying the electromagnetic induction heating method and appropriately controlling the frequency and the input power. .
すなわち従来の方式は、加熱方式が主に輻射によるので
あったため、あるいは誘導加熱方式を採用した場合でも
加熱能率にのみ注目するあまり、表層部のみが集中的に
加熱されるという状態になっていた。That is, in the conventional method, the heating method was mainly due to radiation, or even when the induction heating method was adopted, only the heating efficiency was so much focused that only the surface layer portion was heated intensively. .
これに対し発明者らは、スラブ中心部分を高温度に加熱
することがとくに重要であることを知見し、中心部分を
加熱する方法について検討した結果、誘導加熱時の周波
数を適当に制御し、かつスラブ表面からの放熱を適当に
制御することにより従来必要とされる温度分布を得るこ
とに成功したものである。On the other hand, the inventors have found that it is particularly important to heat the central part of the slab to a high temperature, and as a result of examining the method of heating the central part, the frequency during induction heating is appropriately controlled, Moreover, the temperature distribution conventionally required has been successfully obtained by appropriately controlling the heat radiation from the slab surface.
誘導加熱の周波数を30Hz以上、300Hz(未満)として熱
をできるだけスラブ内部まで浸透させるようにするこ
と、そして1400℃以上の超高温に加熱すると共に表面か
らの熱放散をある程度大きくするよう炉内壁温度と雰囲
気温度を制御することが重要であり、この2つの因子の
組み合わせによりスラブ厚み方向の温度分布の制御が可
能となったのである。The frequency of induction heating should be 30Hz or more and 300Hz (less than) so that heat can penetrate into the slab as much as possible, and the temperature of the inner wall of the furnace should be heated to an extremely high temperature of 1400 ℃ or more and heat dissipation from the surface should be increased to some extent It is important to control the ambient temperature, and the combination of these two factors has made it possible to control the temperature distribution in the slab thickness direction.
鋼板表面からの具体的抜熱手段としては、 (1)炉内雰囲気のガス流量を増し、表面の冷却効果を
高めること、 (2)炉周辺部耐火物への輻射放熱を若干大きくするこ
と、具体的には、断熱耐火物内あるいはその外層に冷却
管を配し、抜熱の大きさを制御できるようにすること、
あるいは周辺断熱材をガスで冷却し抜熱を制御するこ
と、さらには厚さを機械的に変えること、 等が効果的である。Specific means for removing heat from the surface of the steel sheet include (1) increasing the gas flow rate in the furnace atmosphere to enhance the cooling effect on the surface, (2) increasing slightly the radiation heat dissipation to the refractories around the furnace, Specifically, arrange a cooling pipe inside or outside the adiabatic refractory so that the magnitude of heat removal can be controlled.
Alternatively, it is effective to cool the peripheral heat insulating material with a gas to control heat removal, and mechanically change the thickness.
そして上記の手段を組み合わせることにより表面温度を
中心より0〜50℃低い範囲に制御することが可能となっ
たのである。By combining the above means, it became possible to control the surface temperature within a range of 0 to 50 ° C lower than the center.
この発明において、上記の効果を十分高めるためには、
加熱時のスラブ表面温度は中心温度より少なくとも10℃
は低くする必要がある。とはいえあまり低くするとかえ
ってコストの上昇を招くので、その下限を中心温度より
100℃低い値とした。より好ましい表面温度は中心温度
より20〜50℃低い温度範囲である。In order to sufficiently enhance the above effects in the present invention,
The slab surface temperature during heating is at least 10 ° C above the core temperature
Needs to be low. However, if it is too low, the cost will rise, so the lower limit is lower than the center temperature.
The value was set to be 100 ° C lower. A more preferable surface temperature is a temperature range 20 to 50 ° C. lower than the core temperature.
なお方向性けい素鋼板用スラブの加熱に電磁誘導加熱を
適用することに関しては、すでに特開昭62−103322号公
報にて提案されている。同公報に開示の技術は、誘導加
熱時の周波数を制御することによりスラブ中心部の温度
を1300〜1400℃に昇温し、表面から中心部に至るまでを
均一に加熱する方法の改良に関するものである。このよ
うに上記の技術は、スラブ内の加熱温度分布を均一にす
ることを最大かつ唯一の目的としており、さらにその前
提のもとに最適なスラブ中心加熱温度の上限を1400℃と
している。したがってこの技術は、スラブ中心部のみを
1400℃以上に加熱し優れた特性を得ようとするこの発明
とは技術内容が全く異なります。The application of electromagnetic induction heating to the heating of slabs for grain-oriented silicon steel sheets has already been proposed in JP-A-62-103322. The technology disclosed in the publication relates to an improvement in a method of heating the temperature of the central portion of the slab to 1300 to 1400 ° C. by controlling the frequency during induction heating, and heating uniformly from the surface to the central portion. Is. As described above, the above-mentioned technique has a maximum and sole purpose to make the heating temperature distribution in the slab uniform, and further sets the upper limit of the optimum slab center heating temperature to 1400 ° C based on the premise. Therefore, this technology only covers the center of the slab.
The technical content is completely different from this invention, which is intended to obtain excellent characteristics by heating to over 1400 ° C.
さて、一般にインヒビターを均一溶解させるためには高
温で長時間均熱することが不可欠であることはよく知ら
れており、長時間加熱が通常適用されていた。しかし一
方ではスラブを高温長時間加熱することにより結晶粒が
粗大化して2次再結晶不良と表面欠陥の原因となってい
た。Generally, it is well known that uniform heating at high temperature for a long time is indispensable for uniform dissolution of the inhibitor, and long-time heating was usually applied. However, on the other hand, when the slab is heated at a high temperature for a long time, the crystal grains are coarsened, causing secondary recrystallization defects and surface defects.
そこで通常のスラブ加熱条件においてはやむなく結晶粒
粗大化は犠牲にしてインヒビターの均一溶解を達成せざ
るを得なかった。Therefore, under normal slab heating conditions, it was unavoidable to achieve uniform dissolution of the inhibitor at the expense of crystal grain coarsening.
この点発明者らは、結晶粒粗大化防止とインヒビターが
完全溶解する条件を種々検討した結果、均熱時間につい
ては第4図に示すような範囲で、インヒビターの溶解な
らびに結晶粒の粗大化防止が併せて達成できることを究
明した。したがってこの発明では、スラブ中心加熱温度
は1400〜1470℃の範囲に限定されるものとした。またス
ラブ表面温度は前述したとおり、中心温度よりも10〜10
0℃低い温度とし、さらに均熱時間は5〜20分の範囲と
することが望ましい。As a result of various studies on the conditions for preventing crystal grain coarsening and for the complete dissolution of the inhibitor, the inventors have found that the soaking time is within the range shown in FIG. Have also determined that they can achieve this. Therefore, in this invention, the slab center heating temperature is limited to the range of 1400 to 1470 ° C. Also, the slab surface temperature is 10 to 10% higher than the core temperature as described above.
It is desirable that the temperature is 0 ° C. lower and the soaking time is in the range of 5 to 20 minutes.
(作 用) この発明において素材の成分組成を上記の範囲に限定し
た理由について説明する。(Operation) The reason why the component composition of the raw material in the present invention is limited to the above range will be described.
C:熱間圧延、冷間圧延中の組織の均一微細化とゴス方位
の発達に有用な元素であり、少なくとも0.01%以上の添
加を必要とする。しかしながら0.08%を超えて含有され
るとかえってゴス方位に乱れが生じるので上限を0.08%
に定めた。C: This element is useful for making the structure uniform and fine during hot rolling and cold rolling and for developing the Goss orientation, and it is necessary to add at least 0.01% or more. However, if the content exceeds 0.08%, the Goss orientation will be disturbed, so the upper limit is 0.08%.
Stipulated in.
Si:鋼板の比抵抗を高め鉄損の低減に有効に寄与する
が、4.0%を上まわると冷延性が損なわれ、一方2.5%に
満たないと比抵抗が低下するだけでなく、純化2次再結
晶のために行われる最終高温焼鈍中にα−γ変態によっ
て結晶方位のランダム化を生じ、十分な鉄損改善効果が
得られないので、Si量は2.5〜4.0%の範囲に限定した。Si: Increases the specific resistance of the steel sheet and effectively contributes to the reduction of iron loss, but if it exceeds 4.0%, the cold rolling property is impaired, while if it is less than 2.5%, not only the specific resistance decreases, but also the secondary purification. Since the crystal orientation is randomized by α-γ transformation during the final high temperature annealing performed for recrystallization, and a sufficient iron loss improving effect cannot be obtained, the Si content was limited to the range of 2.5 to 4.0%.
Mn:熱間脆化を防止するため少なくとも0.03%を必要と
するが、あまりに多すぎると磁気特性を劣化させるので
上限を0.10%とした。Mn: At least 0.03% is required to prevent hot embrittlement, but if it is too much, the magnetic properties deteriorate, so the upper limit was made 0.10%.
Se,S:いずれも方向性けい素鋼板の2次再結晶を制御す
るインヒビターとして不可欠な元素である。抑制力確保
の観点からは少なくとも0.01%の含有が必要であるが0.
06%を超えるとその効果が損なわれるのでその下限、上
限はそれぞれ0.01%,0.06%とした。Se and S: Both are essential elements as inhibitors that control the secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of securing suppression power, it is necessary to contain at least 0.01%.
If it exceeds 06%, the effect is impaired, so the lower and upper limits were made 0.01% and 0.06%, respectively.
インヒビターとしては上記S,Seの他にSb,Mo,CuおよびSn
なども有効に適合する。As inhibitors, in addition to the above S and Se, Sb, Mo, Cu and Sn
Etc. are also effectively matched.
とくにSb,Moの共存は実用的に重要でありその効果は良
く知られているところである。さらにAlを添加したこと
場合は一回圧延法で良好な特性が得られることが知られ
ている。これらの元素の共存は原理的に言ってこの発明
の効果を何ら損なうものではない。In particular, the coexistence of Sb and Mo is practically important, and its effect is well known. Further, when Al is added, it is known that good characteristics can be obtained by the single rolling method. In principle, the coexistence of these elements does not impair the effects of the present invention.
ここにCu,Sn,Sb,Moはその総量が0.005〜0.2%の範囲
で、そしてAlは0.01〜0.1%の範囲でその効果が利用さ
れているので、この発明でも上記の成分範囲で活用する
ものとした。Since Cu, Sn, Sb, and Mo have their effects utilized in the total amount of 0.005 to 0.2% and Al in the range of 0.01 to 0.1%, they are also utilized in the present invention in the above range of components. I decided.
(実施例) 実施例1 C:0.045%,Si:3.20%,Mn:0.08%,Se:0.025%,Sb:0.02%
およびMo:0.01%を含有し、残部は実質的にFeの組成に
なる240mm厚の連続鋳造スラブを、スラブ温度が800℃を
下回らない間に、以下の各加熱方式 (1)ウオーキングビーム式従来タイプのガス加熱方
式、 (2)従来型の電磁誘導加熱方式(周波数:300Hz)、 (3)この発明に従う改良型の電磁誘導加熱方式(周波
数:100Hz) で、スラブ中心温度が1350℃以上になるように加熱し
た。(Example) Example 1 C: 0.045%, Si: 3.20%, Mn: 0.08%, Se: 0.025%, Sb: 0.02%
And a continuous casting slab of 240 mm thickness containing Mo: 0.01% and the balance being substantially Fe, while the slab temperature does not fall below 800 ° C, the following heating methods (1) Walking beam type conventional Type gas heating method, (2) conventional electromagnetic induction heating method (frequency: 300Hz), (3) improved electromagnetic induction heating method (frequency: 100Hz) according to the present invention, the slab center temperature is more than 1350 ℃ Heated to
加熱後のスラブは、常法に従う熱間圧延で2.0mm厚に仕
上げ、さらに1次冷延で0.5mmとし、ついで1000℃で5
分間の中間焼きなまし後、2次冷延で0.23mmの製品厚に
仕上げたのち、50%H2+50%N2雰囲気(露点60℃中で80
0℃)、3分の脱炭焼鈍を行い、焼鈍分離剤MgOを塗布し
た後、水素中で1200℃、10時間の箱焼鈍を行って製品と
した。The slab after heating is finished by hot rolling according to the usual method to a thickness of 2.0 mm, and further cold-rolled to 0.5 mm, and then at 1000 ° C for 5
After the intermediate annealing for 2 minutes, the product is finished in a secondary cold rolling to a product thickness of 0.23 mm, and then in a 50% H 2 + 50% N 2 atmosphere (80 at a dew point of 60 ° C).
(0 ° C.), decarburization annealing was performed for 3 minutes, the annealing separating agent MgO was applied, and then box annealing was performed in hydrogen at 1200 ° C. for 10 hours to obtain a product.
スラブ内推定温度分布と製品コイルの磁気特性分布、方
面性状について調べた結果を表1に示す。Table 1 shows the results of an examination of the estimated temperature distribution in the slab, the magnetic property distribution of the product coil, and the surface properties.
(1)ウオーキングビーム方式の従来型加熱では、スラ
ブ加熱に長時間を要しかつ表面からの輻射によってのみ
加熱されるので、表面温度が中心より常にかなり高くな
っている。また加熱中の雰囲気制御ができないので表面
酸化が避けられず、高温加熱により著しく表面欠陥が発
生した。 (1) In the conventional heating method of the walking beam system, since the slab heating requires a long time and is heated only by the radiation from the surface, the surface temperature is always considerably higher than the center. Further, since the atmosphere cannot be controlled during heating, surface oxidation was unavoidable, and significant surface defects occurred due to high temperature heating.
実際スラブ中心温度を確保するため高温加熱に努力した
がスラブ中心温度は1370℃まであげるのがせいぜいであ
り、その時点で表面温度は1410℃で1時間以上も雰囲気
にさらされてしまった。また磁束密度や鉄損の値も不十
分であった。この原因は、インヒビターの固溶、とくに
スラブ中心部や通常の鋳込みでは不可避の内部割れ付近
の粗大析出物の固溶が不十分だったことが推定される。
さらに高温長時間加熱によりスラブ組織が粗大化し、そ
れが2次再結晶不良を起こしたことも原因となってい
る。In fact, we tried to heat the slab at a high temperature in order to secure the slab center temperature, but at most the slab center temperature was raised to 1370 ° C, at which time the surface temperature was 1410 ° C and the surface was exposed to the atmosphere for more than 1 hour. The values of magnetic flux density and iron loss were also insufficient. It is presumed that the cause of this is that the solid solution of the inhibitor, especially the coarse precipitate in the central part of the slab and in the vicinity of internal cracks, which is unavoidable in ordinary casting, was insufficient.
Further, heating at high temperature for a long time causes the slab structure to become coarse, which causes secondary recrystallization failure.
なお表面不良は表面が高温で長時間酸化性雰囲気にさら
されたことに起因すると推定される。The surface defect is presumed to be due to the surface being exposed to the oxidizing atmosphere at high temperature for a long time.
一方、最近電磁誘導方式のスラブ加熱方法が検討されて
きておりその典型的な加熱ヒートパターンで加熱した結
果が表1(2)の結果である。On the other hand, an electromagnetic induction type slab heating method has been studied recently, and the results obtained by heating with a typical heating heat pattern are shown in Table 1 (2).
この場合、温度は十分高くできたものの、やはり電磁誘
導加熱の特徴として表面近傍のみがとくに高温になっ
た。その結果、スラブ結晶粗大化に起因する2次再結晶
不良とそれに伴う磁気特性の低下が認められ、スラブを
このように高温に加熱した時に期待される磁気特性は得
られなかった。また表層粗大粒に起因する表面欠陥に伴
う絶縁被膜の不均一も観察された。In this case, although the temperature could be made sufficiently high, as a characteristic of electromagnetic induction heating, only the vicinity of the surface became particularly high. As a result, secondary recrystallization failure due to coarsening of the slab crystal and accompanying deterioration of magnetic properties were observed, and the expected magnetic properties were not obtained when the slab was heated to such a high temperature. In addition, non-uniformity of the insulating coating due to surface defects caused by coarse particles in the surface layer was also observed.
これに対し、この発明法すなわち(3)改良型電磁誘導
加熱方式で加熱した場合には、表面温度は1410℃ながら
中心部温度は1430℃に達し、中心部のインヒビターは十
分に溶解しかつ表層付近は必要以上に高温に加熱されな
いという理想的な温度分布が達成された。On the other hand, when the method of the present invention, namely (3) the improved electromagnetic induction heating method is used for heating, the surface temperature is 1410 ° C, but the central temperature reaches 1430 ° C, and the central inhibitor is sufficiently dissolved and the surface layer is An ideal temperature distribution was achieved in which the vicinity was not heated to an unnecessarily high temperature.
なおこの場合には中心より表面の温度を低くするために
誘導加熱方式による急熱を採用すると同時に加熱後期に
断熱材の温度を強制冷却することによって低くし(抜熱
を大きくし)、スラブ表層のみの温度を効果的に制御し
低下させた。参考までにつけ加えるならば1400℃程度の
超高温においては輻射による放熱は非常に大きくなり、
(その大きさは加熱物温度と周囲の温度の絶対温度の4
乗の差に比例することが知られているように)外周の断
熱材の温度を変えるのみで加熱スラブ表面の温度を容易
に変化させ得た。In this case, in order to lower the temperature of the surface from the center, rapid heating by the induction heating method is adopted, and at the same time, the temperature of the heat insulating material is lowered by forced cooling in the latter half of the heating (the heat removal is increased), and The temperature of the chisel was effectively controlled and lowered. If you add it for reference, the heat radiation by radiation becomes extremely large at an ultrahigh temperature of about 1400 ° C.
(The size is 4 of the absolute temperature of the heating object temperature and the ambient temperature.
The temperature of the heating slab surface could be easily changed by only changing the temperature of the outer insulation (as is known to be proportional to the power difference).
その結果磁束密度、鉄損ともに十分良好な値が得られ、
しかも通常ある程度発生する磁気特性不良部もきわめて
少なくすることができた。また表面が必要以上に高温に
加熱されなかったために、表面欠陥発生率も非常に小さ
かった。As a result, magnetic flux density and iron loss were sufficiently good,
Moreover, it is possible to extremely reduce the magnetic characteristic defective portion which usually occurs to some extent. Further, since the surface was not heated to an unnecessarily high temperature, the surface defect occurrence rate was also very small.
実施例2 表2に示す種々の成分組成になる溶鋼をそれぞれ、150m
m厚の鋳型に鋳造後、100mm厚まで分塊圧延し、ついで得
られたスラブに実施例1の加熱方式(3)と同様な周囲
温度・制御による厚み方向温度制御を伴う電磁誘導加熱
(周波数:100Hz)および通常の電気抵抗加熱を施し、表
3に示すような温度分布とした後、5パスの熱間圧延で
板厚:2.4mmの熱延板に仕上げた。Example 2 Molten steels having various compositional compositions shown in Table 2 were each treated with 150 m
After casting in a m-thick mold, slab rolling to a thickness of 100 mm, and then the obtained slab was subjected to electromagnetic induction heating (frequency control) in the thickness direction temperature control by the same ambient temperature and control as in the heating method (3) of Example 1. : 100 Hz) and ordinary electric resistance heating to obtain a temperature distribution as shown in Table 3, and then hot rolling with 5 passes to finish a hot rolled sheet with a thickness of 2.4 mm.
その後、鋼A〜DおよびH〜Jについては、通常の2回
冷延・2回焼鈍法によって、また鋼E〜Gについては通
常の1回冷延・1回焼鈍法によって0.23mm厚の冷延板と
した。Then, for steels A to D and H to J, a 0.23 mm thick cold was applied by a normal double cold rolling and double annealing method, and for steels E to G, a normal single cold rolling and single annealing method. It was a rolled sheet.
ついで露点:60℃の(50%H2+50%N2)雰囲気中で800
℃、3分間の脱炭・1次再結晶焼鈍を施したのち、MgO
を主成分とする焼鈍分離剤を塗布してから、乾水素中で
1200℃、10時間の最終仕上げ焼鈍を施した。Dew point: 800 in a 60 ° C (50% H 2 + 50% N 2 ) atmosphere
After decarburization and primary recrystallization annealing at ℃ for 3 minutes, MgO
After applying an annealing separator containing
Final finishing annealing was performed at 1200 ° C for 10 hours.
得られた各製品板の磁気特性、2次再結晶異常発生率お
よび表面欠陥発生率について調べた結果を表4にまとめ
て示す。Table 4 shows the results of examining the magnetic properties, the secondary recrystallization anomaly occurrence rate, and the surface defect occurrence rate of each obtained product plate.
表4に示した成績から明らかなように、この発明に従う
スラブ加熱処理を施した場合に、すぐれた磁気特性と良
好な表面性状の両者が同時に得られている。 As is clear from the results shown in Table 4, when the slab heat treatment according to the present invention is performed, both excellent magnetic properties and good surface properties are obtained at the same time.
(発明の効果) かくしてこの発明によれば、磁気特性が優れるだけでな
く表面欠陥の少ない方向性電磁鋼板を、特殊な処理など
の必要なしに安価に得ることができる。(Effects of the Invention) Thus, according to the present invention, a grain-oriented electrical steel sheet having not only excellent magnetic properties but also few surface defects can be obtained at low cost without the need for special treatment.
第1図は、粗大析出物のスラブ厚み方向における分布状
態を示したグラフ、 第2図は、従来法に従うスラブ加熱処理後のスラブ厚み
方向における温度分布図、 第3図は、この発明法に従うスラブ加熱後のスラブ厚み
方向における温度分布図、 第4図は、結晶粒の粗大化条件とインヒビターの完全溶
解条件を、スラブ加熱温度と均熱時間との関係で示した
グラフである。FIG. 1 is a graph showing the state of distribution of coarse precipitates in the slab thickness direction, FIG. 2 is a temperature distribution diagram in the slab thickness direction after slab heat treatment according to the conventional method, and FIG. 3 is according to the method of the present invention. FIG. 4 is a graph showing the temperature distribution in the slab thickness direction after slab heating, and FIG. 4 is a graph showing the conditions for grain coarsening and the complete dissolution of the inhibitor in terms of the relationship between slab heating temperature and soaking time.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 嘉明 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (56)参考文献 特開 昭63−100128(JP,A) 特開 昭62−10214(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshiaki Iida 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (56) Reference JP-A-63-100128 (JP, A) JP-A-62 -10214 (JP, A)
Claims (4)
6wt%、を含有し、残部は実質的にFeの組成になるけい
素鋼スラブを、熱間圧延後、1回又は中間焼鈍を挟む2
回の冷間圧延を施して最終板厚としたのち、脱炭・1次
再結晶焼鈍を施し、ついで最終仕上げ焼鈍を施す一連の
工程によって方向性電磁鋼板を製造するに当り、熱間圧
延に先立ち、周波数:30Hz以上、300Hz未満の電磁誘電加
熱により、スラブ中心を1400〜1470℃に昇温する一方、
スラブ表面については、該表面からの抜熱を強化して、
中心温度よりも10〜100℃低い温度となる、スラブ加熱
処理を施すことを特徴とする磁気特性および表面性状に
優れた方向性電磁鋼板の製造方法。1. C: 0.01 to 0.08 wt%, Si: 2.5 to 4.0 wt%, Mn: 0.03 to 0.10 wt%, any one or two of S and Se: 0.01 to 0.0
A silicon steel slab containing 6 wt%, and the balance of which is substantially Fe, is subjected to hot rolling, one time or intermediate annealing.
After performing cold rolling once to obtain the final plate thickness, decarburizing / primary recrystallization annealing, and then final finishing annealing, the grain-oriented electrical steel sheet is manufactured by hot rolling. Previously, the frequency of 30Hz or more, less than 300Hz by electromagnetic induction heating, while raising the slab center to 1400 ~ 1470 ℃,
For the slab surface, strengthen the heat removal from the surface,
A method for producing a grain-oriented electrical steel sheet excellent in magnetic properties and surface properties, which comprises performing a slab heat treatment at a temperature 10 to 100 ° C lower than a central temperature.
0.06wt%、Sb,Mo,CuおよびSnのうちから選ばれる少なく
とも一種:0.005〜0.2wt%、 を含有し、残部は実質的にFeの組成になるけい素鋼スラ
ブを、熱間圧延後、1回又は中間焼鈍を挟む2回の冷間
圧延を施して最終板厚としたのち、脱炭・1次再結晶焼
鈍を施し、ついで最終仕上げ焼鈍を施す一連の工程によ
って方向性電磁鋼板を製造するに当り、熱間圧延に先立
ち、周波数:30Hz以上、300Hz未満の電磁誘導加熱によ
り、スラブ中心を1400〜1470℃に昇温する一方、スラブ
表面については、該表面からの抜熱を強化して、中心温
度よりも10〜100℃低い温度となる、スラブ加熱処理を
施すことを特徴とする磁気特性および表面性状に優れた
方向性電磁鋼板の製造方法。2. C: 0.01 to 0.08 wt%, Si: 2.5 to 4.0 wt%, Mn: 0.03 to 0.10 wt%, any one or two of S and Se: 0.01 to
0.06 wt%, at least one selected from Sb, Mo, Cu and Sn: 0.005 to 0.2 wt%, the rest is a composition of Fe, the silicon steel slab, after hot rolling, A grain-oriented electrical steel sheet is manufactured by a series of processes in which cold rolling is performed once or two times with intermediate annealing sandwiched to obtain the final plate thickness, decarburization and primary recrystallization annealing are performed, and then final finish annealing is performed. In doing so, prior to hot rolling, the frequency: 30 Hz or more, by electromagnetic induction heating of less than 300 Hz, while raising the slab center to 1400 ~ 1470 ° C., for the slab surface, strengthen the heat removal from the surface. And a slab heat treatment at a temperature 10 to 100 ° C. lower than the central temperature, which is a method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and surface properties.
6wt%、 Al:0.01〜0.1wt%、 を含有し、残部は実質的にFeの組成になるけい素鋼スラ
ブを、熱間圧延後、1回又は中間焼鈍を挟む2回の冷間
圧延を施して最終板厚としたのち、脱炭・1次再結晶焼
鈍を施し、ついで最終仕上げ焼鈍を施す一連の工程によ
って方向性電磁鋼板を製造するに当り、熱間圧延に先立
ち、周波数:30Hz以上、300Hz未満の電磁誘導加熱によ
り、スラブ中心を1400〜1470℃に昇温する一方、スラブ
表面については、該表面からの抜熱を強化して、中心温
度よりも10〜100℃低い温度となる、スラブ加熱処理を
施すことを特徴とする磁気特性および表面性状に優れた
方向性電磁鋼板の製造方法。3. C: 0.01 to 0.08 wt%, Si: 2.5 to 4.0 wt%, Mn: 0.03 to 0.10 wt%, any one or two kinds of S and Se: 0.01 to 0.0
A silicon steel slab containing 6 wt%, Al: 0.01 to 0.1 wt%, and the balance of which is substantially Fe, is hot-rolled and then cold-rolled once or twice with intermediate annealing. Prior to hot rolling, a frequency of 30Hz or more is used to manufacture grain-oriented electrical steel sheets by a series of processes in which decarburization / primary recrystallization annealing is performed after the final sheet thickness is applied, and then final finish annealing is performed. , The temperature of the slab center is raised to 1400 to 1470 ° C by electromagnetic induction heating of less than 300 Hz, while the heat removal from the slab surface is strengthened, resulting in a temperature 10 to 100 ° C lower than the center temperature. A method for manufacturing a grain-oriented electrical steel sheet having excellent magnetic properties and surface properties, which is characterized by performing a slab heat treatment.
6wt%、Sb,Mo,CuおよびSnのうちから選ばれる少なくと
も一種:0.005〜0.2wt%、 Al:0.01〜0.1wt%、 を含有し、残部は実質的にFeの組成になるけい素鋼スラ
ブを、熱間圧延後、1回又は中間焼鈍を挟む2回の冷間
圧延を施して最終板厚としたのち、脱炭・1次再結晶焼
鈍を施し、ついで最終仕上げ焼鈍を施す一連の工程によ
って方向性電磁鋼板を製造するに当り、熱間圧延に先立
ち、周波数:30Hz以上、300Hz未満の電磁誘導加熱によ
り、スラブ中心を1400〜1470℃に昇温する一方、スラブ
表面については、該表面からの抜熱を強化して、中心温
度よりも10〜100℃低い温度となる、スラブ加熱処理を
施すことを特徴とする磁気特性および表面性状に優れた
方向性電磁鋼板の製造方法。4. C: 0.01 to 0.08 wt%, Si: 2.5 to 4.0 wt%, Mn: 0.03 to 0.10 wt%, any one or two of S and Se: 0.01 to 0.0
6% by weight, at least one selected from Sb, Mo, Cu and Sn: 0.005 to 0.2% by weight, Al: 0.01 to 0.1% by weight, with the balance being essentially Fe composition silicon steel slab After hot rolling, the steel sheet is subjected to one or two cold rolling steps with an intermediate anneal between them to obtain the final thickness, followed by decarburization / primary recrystallization anneal, followed by a final finish anneal. Prior to hot rolling in producing a grain-oriented electrical steel sheet by a frequency: 30Hz or more, by electromagnetic induction heating of less than 300Hz, the slab center is heated to 1400 ~ 1470 ℃, while the slab surface, the surface A method for producing a grain-oriented electrical steel sheet having excellent magnetic properties and surface properties, which is characterized by performing a slab heat treatment at a temperature 10 to 100 ° C. lower than a central temperature by enhancing heat removal from the steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63287520A JPH0726156B2 (en) | 1988-11-16 | 1988-11-16 | Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63287520A JPH0726156B2 (en) | 1988-11-16 | 1988-11-16 | Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02138418A JPH02138418A (en) | 1990-05-28 |
JPH0726156B2 true JPH0726156B2 (en) | 1995-03-22 |
Family
ID=17718410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63287520A Expired - Fee Related JPH0726156B2 (en) | 1988-11-16 | 1988-11-16 | Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0726156B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2807351B2 (en) * | 1991-01-11 | 1998-10-08 | 川崎製鉄株式会社 | Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction |
JPH04341518A (en) * | 1991-01-29 | 1992-11-27 | Nippon Steel Corp | Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss |
US5572892A (en) * | 1992-12-28 | 1996-11-12 | Kawasaki Steel Corporation | Method of producing silicon steel hot rolled sheets having excellent surface properties |
CN112430775A (en) * | 2019-08-26 | 2021-03-02 | 宝山钢铁股份有限公司 | High-strength non-oriented electrical steel plate with excellent magnetic property and manufacturing method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0657854B2 (en) * | 1985-07-08 | 1994-08-03 | 川崎製鉄株式会社 | Method of heating grain-oriented silicon steel slab |
JPH0663032B2 (en) * | 1986-06-30 | 1994-08-17 | 川崎製鉄株式会社 | Method for producing grain-oriented silicon steel sheet having good magnetic properties and surface properties |
-
1988
- 1988-11-16 JP JP63287520A patent/JPH0726156B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02138418A (en) | 1990-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4258349B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4203238B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JP2951852B2 (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties | |
JPH08269571A (en) | Production of grain-oriented silicon steel strip | |
JPH0726156B2 (en) | Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface properties | |
JP2607331B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP3369443B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JP2787776B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP2784687B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP2000073120A (en) | Production of grain oriented silicon steel sheet free from edge crack and edge distortion | |
JP3849146B2 (en) | Method for producing unidirectional silicon steel sheet | |
JP4258156B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP3133855B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JP2002105537A (en) | Method for manufacturing grain oriented silicon steel sheet hardly causing edge crack and having satisfactory film characteristic, excellent magnetic property and high magnetic flux density | |
JPH08269553A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP3612717B2 (en) | Method for producing grain-oriented silicon steel sheet | |
JP4196416B2 (en) | Method for producing Al-containing grain-oriented silicon steel sheet | |
JP3536306B2 (en) | Method for producing oriented silicon steel sheet excellent in magnetic properties with few steel sheet flaws | |
JP3538855B2 (en) | Manufacturing method of grain-oriented silicon steel sheet | |
JP3538852B2 (en) | Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties | |
JP3474594B2 (en) | Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness | |
JP3326083B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics | |
JP3536303B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with uniform magnetic properties in the width direction | |
JPH06306474A (en) | Production of grain-oriented magnetic steel sheet excellent in magnetic property | |
JPS61149432A (en) | Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |