JPH0657854B2 - Method of heating grain-oriented silicon steel slab - Google Patents

Method of heating grain-oriented silicon steel slab

Info

Publication number
JPH0657854B2
JPH0657854B2 JP60148179A JP14817985A JPH0657854B2 JP H0657854 B2 JPH0657854 B2 JP H0657854B2 JP 60148179 A JP60148179 A JP 60148179A JP 14817985 A JP14817985 A JP 14817985A JP H0657854 B2 JPH0657854 B2 JP H0657854B2
Authority
JP
Japan
Prior art keywords
temperature
slab
heating
silicon steel
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60148179A
Other languages
Japanese (ja)
Other versions
JPS6210214A (en
Inventor
洋 清水
輝幸 西出
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP60148179A priority Critical patent/JPH0657854B2/en
Publication of JPS6210214A publication Critical patent/JPS6210214A/en
Publication of JPH0657854B2 publication Critical patent/JPH0657854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 圧延方向にすぐれた磁気特性を有する一方向性珪素鋼板
の素材としての珪素鋼スラブに有利な熱間圧延を施すた
めの加熱方法の改良に関してこの明細書では、誘導加熱
の適切な適用についての開発研究の成果について以下に
のべる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) Regarding improvement of heating method for performing advantageous hot rolling on a silicon steel slab as a material of a unidirectional silicon steel sheet having excellent magnetic properties in the rolling direction In this specification, the results of the development research on the proper application of induction heating are described below.

いうまでもなく一方向性珪素鋼板は、板面に{110}
面、圧延方向に<100>軸が揃った2次再結晶粒によ
って構成され、圧延方向に沿う方向ですぐれた磁気特性
を有することから変圧器の鉄心材料として広く使用され
る。
Needless to say, unidirectional silicon steel plate has {110} on the plate surface.
It is widely used as a core material for transformers because it is composed of secondary recrystallized grains having <100> axes aligned in the plane and rolling direction and has excellent magnetic properties in the direction along the rolling direction.

このような結晶方位の2次再結晶粒を発達させるために
はインヒビターとよばれる微細なMnS,MnSe,AIN,BNの
ごときが鋼中に分散析出していて、高温仕上焼鈍中に他
の方位の結晶粒の成長を効果的に抑制することが必要で
ある。
In order to develop secondary recrystallized grains with such crystallographic orientation, fine MnS, MnSe, AIN, and BN called inhibitors are dispersed and precipitated in the steel, and other orientations occur during high-temperature finish annealing. It is necessary to effectively suppress the growth of the crystal grains.

そのためのインヒビター分散形態のコントロールとして
は、既によく知られているように熱間圧延に先立つスラ
ブ加熱中に、これらの析出物を一たん固溶させた後、適
当な冷却パターンの下に熱間圧延を施すことが必要であ
る。
As a control of the inhibitor dispersion morphology for that purpose, as is well known, after these precipitates are once solid-dissolved during slab heating prior to hot rolling, hot rolling is performed under an appropriate cooling pattern. It is necessary to carry out rolling.

ここにスラブ加熱は通常、1300℃以上の高温で行われる
るが、スラブの中心まで十分な加熱を実現するには通常
のガス燃焼型加熱炉の場合、スラブの表面温度は1350℃
をこえることになるのが通例で、その際多量の溶融スケ
ールが発生してこれが加熱炉の操業性を損うばかりでな
く、粒界酸化に伴う表面欠陥や耳割れの原因ともなって
いる。
Here, slab heating is usually performed at a high temperature of 1300 ° C or higher, but in the case of an ordinary gas combustion type heating furnace to realize sufficient heating to the center of the slab, the surface temperature of the slab is 1350 ° C.
In general, a large amount of molten scale is generated, which not only impairs the operability of the heating furnace, but also causes surface defects and edge cracks due to grain boundary oxidation.

(従来の技術) 特公昭47-14627号公報には、上記したところにつき1300
℃以下のスラブ加熱では必要な磁気特性が得られないと
して、そのようなスラブ加熱に加えて1350℃〜1400℃、
とくに1380℃の温度に電気的方法による誘導加熱又は抵
抗加熱を行うことが開示されているが、誘導加熱の場合
にいわゆる表皮効果によるスラブ表面での局部加熱を来
し易いところ、その制御については触れられていない。
(Prior Art) Japanese Patent Publication No. 47-14627 discloses 1300 for the above-mentioned points.
1350 ℃ ~ 1400 ℃, in addition to such slab heating, because the required magnetic properties cannot be obtained by slab heating below ℃,
In particular, it is disclosed to perform induction heating or resistance heating by an electric method at a temperature of 1380 ° C., but in the case of induction heating, local heating on the slab surface due to the so-called skin effect is likely to occur, and regarding its control, Not touched.

一般に、誘導加熱炉によるスラブ加熱方法は、これまで
設備や搬送方法に関する特許、実用新案がいくつか提案
され、堅型誘導過熱炉の鋼片昇降装置や堅型炉への挿入
抽出方法を示した実公昭51−41052号、同51−41053号各
公報その他、誘導加熱における、スラブの温度不均一を
防止する加熱方法を示した特公昭52−47179号公報など
がそれである。しかし、方向性珪素鋼のように高温加熱
を必要とするスラブに誘導加熱を適用する事例に乏し
く、上に掲げた特公昭47−14627号が僅か1例あるにす
ぎないが、この方法はすでに触れたように誘導加熱炉で
1350℃〜1400℃という高温加熱をスラブ表面での局部過
熱のうれいの下に行うので結晶粒の粗大化傾向のため製
品の磁気特性は必ずしも安定しない。
In general, as for the slab heating method using an induction heating furnace, several patents and utility models related to equipment and transportation methods have been proposed so far, and a method for inserting and extracting a steel strip lifting device for a rigid induction heating furnace and a rigid furnace was shown. In addition to JP-B-51-41052, JP-B-51-41053, and JP-B-52-47179, which shows a heating method for preventing temperature nonuniformity of the slab in induction heating. However, there are few cases where induction heating is applied to slabs that require high temperature heating such as grain-oriented silicon steel, and there is only one Japanese Patent Publication No. 4714627 listed above, but this method has already been used. In an induction heating furnace as touched
Since the high temperature heating of 1350 ℃ to 1400 ℃ is performed under the grate of local overheating on the surface of the slab, the magnetic properties of the product are not always stable due to the tendency of crystal grains to coarsen.

(発明が解決しようとする問題点) 発明者らもさきに誘導加熱炉による珪素鋼のスラブ加熱
を試みた。
(Problems to be Solved by the Invention) The inventors of the present invention first tried to slab-heat silicon steel with an induction heating furnace.

すなわち一般のガス燃焼炉にてスラブ中心温度が1000〜
1230℃に達するまで加熱した後、好ましくは実質的に非
酸化性雰囲気とした誘導加熱炉にて、スラブをその中心
温度で1250〜1380℃に達しさせることであり、ここに誘
導加熱炉の利点の一つは短時間に所定の温度まで加熱で
き、とくに表面温度について容易に高温化しやすいこと
から、加熱初期に投入電力を高めることとして末期には
スラブの表面と中心内部との熱落差を利用することによ
り短時間で効率のよいスラブ加熱も可能であることがわ
かったのである。
That is, the slab center temperature is 1000 ~
After heating until reaching 1230 ° C, preferably in an induction heating furnace with a substantially non-oxidizing atmosphere, to allow the slab to reach 1250 ~ 1380 ° C at its core temperature, where the advantages of induction heating furnace One of them is that it can be heated up to a predetermined temperature in a short time, and especially the surface temperature is easy to increase. Therefore, in order to increase the input power in the early stage of heating, the heat drop between the surface of the slab and the center of the slab is used in the final stage. By doing so, it was found that efficient slab heating is possible in a short time.

しかしながら、スラブの表面温度を高くしすぎると、す
でに述べたように表面層の結晶粒の粗大化を招いてこれ
が熱間圧延で粗大伸長粒となって最終製品の帯状細粒に
よる磁性不良をもたらした。
However, if the surface temperature of the slab is set too high, the crystal grains of the surface layer become coarse, as described above, and these become coarse elongated grains in hot rolling, which causes magnetic defects due to strip fine grains in the final product. It was

発明者らは誘導加熱炉によるスラブの加熱方法、特に、
表面層と中心部の昇温パターンについて種々検討した結
果に基づき上記した諸問題点を解消し、有利なスラブ加
熱を実現しようとするものである。
The inventors have proposed a method for heating a slab by an induction heating furnace, in particular,
It is intended to solve the above-mentioned problems and realize advantageous slab heating based on the results of various studies on the temperature rising patterns of the surface layer and the central portion.

(問題点を解決するための手段) スラブの中心温度が、インヒビターの解離固溶に必要な
1250〜1380℃の範囲にて少なくとも10分間保持するスラ
ブ加熱を行うことの有用性を踏まえてとくにこの保持の
間に、スラブの中心温度が1300℃以上においては表面温
度(Ts)と中心温度(Tc)の温度差を−40℃≦Ts−Tc≦
20℃、なかでもスラブの中心温度1320℃以上において上
記温度差を−30℃≦Ts−Tc≦−5℃にすることによっ
て、有利にスラブの表面における結晶粒の異常成長を抑
え得ることを見出し、この発明を完成させるにいたっ
た。
(Means for solving the problem) The central temperature of the slab is necessary for dissociation of the inhibitor to form a solid solution.
Considering the usefulness of heating the slab in the range of 1250 to 1380 ℃ for at least 10 minutes, especially during this slab, when the center temperature of the slab is 1300 ℃ or more, the surface temperature (Ts) and the center temperature ( Tc) temperature difference is -40 ℃ ≤ Ts-Tc ≤
It has been found that abnormal growth of crystal grains on the surface of the slab can be advantageously suppressed by setting the temperature difference to -30 ° C ≤ Ts-Tc ≤ -5 ° C at a temperature of 20 ° C, especially at a slab center temperature of 1320 ° C or higher. , Came to complete this invention.

この発明はC:0.025〜0.080重量%(以下単に%で示
す),Si:2.0〜4.5%,Mn:0.02〜0.10%のほか、イン
ヒビター成分として、S,Se,Al及びBのうちから選ば
れる少なくとも1種を合計0.005〜0.10%にて含有する
組成の珪素鋼スラブを素材とし、熱間圧延と、引続く冷
間圧延とを含む工程によって、0.15〜0.5mm厚の一方向
性珪素鋼板を製造するに当たり、 熱間圧延に先立つスラブ加熱の際に誘導加熱炉での昇温
とこの昇温を経て該炉内における少なくとも10分間にわ
たる調温保持とによりスラブ中心温度Tcが1300〜1380℃
の範囲内の温度域でスラブ表面との間の熱伝導のもとに
上記中心温度Tcと比べて40℃よりは大きく下まわらずし
かも20℃を超えて上まわらぬ温度較差となる表面温度Ts
の調整を行い、しかるのち熱間圧延を開始することによ
りなる、方向性珪素鋼スラブの加熱方法である。
The present invention is selected from C: 0.025 to 0.080% by weight (hereinafter simply indicated by%), Si: 2.0 to 4.5%, Mn: 0.02 to 0.10%, and S, Se, Al and B as an inhibitor component. Using a silicon steel slab having a composition containing at least one of 0.005 to 0.10% in total, a unidirectional silicon steel sheet having a thickness of 0.15 to 0.5 mm is produced by a process including hot rolling and subsequent cold rolling. In the production, the slab center temperature Tc is 1300 to 1380 ° C by the temperature rising in the induction heating furnace during the slab heating prior to the hot rolling and the temperature keeping for at least 10 minutes in the furnace through this temperature rising.
Under the heat conduction with the slab surface in the temperature range within the range of Ts, the surface temperature Ts does not fall below 40 ° C compared to the central temperature Tc and exceeds 20 ° C, which is a temperature range that does not rise.
Is adjusted, and then hot rolling is started, which is a method for heating the directional silicon steel slab.

ここにおいてスラブの表面温度Tsの調整を、1320℃以上
におけるスラブの中心温度Tcに対しこれを5〜30℃の範
囲内で下まわる温度較差にて行うこと、また誘導加熱炉
が実質的に非酸化性の雰囲気であることが、何れも一層
のぞましい。
Here, the surface temperature Ts of the slab is adjusted by adjusting the temperature range of the center temperature Tc of the slab at 1320 ° C or higher to fall within the range of 5 to 30 ° C. It is even more desirable to have an oxidizing atmosphere.

この発明によりスラブ表面での過熱を有利に防止して、
電磁特性の安定を図ることができる。
This invention advantageously prevents overheating on the slab surface,
It is possible to stabilize the electromagnetic characteristics.

この発明はとくにSi量の他にC量やインヒビター量を規
制し、このような成分系の方向性珪素鋼スラブの加熱に
おいて表面と中心の温度差を規制したことにより、加熱
の際における結晶粒粗大化にもとづく磁性不良の回避を
可能にしたのであって、とくにC量の下限を0.025%と
したことが熱延中の組織改善に好結果をもたらし、中心
部のスラブ加熱温度上限を上記の過熱のうれいを伴わず
に1380℃にまで高め得るのである。
In particular, the present invention regulates the amount of C and the amount of inhibitor in addition to the amount of Si, and regulates the temperature difference between the surface and the center in the heating of such a component-oriented directional silicon steel slab. It was possible to avoid magnetic defects due to coarsening. Especially, setting the lower limit of the C content to 0.025% has a good result in improving the structure during hot rolling, and the upper limit of the slab heating temperature at the center is set to the above value. It can be raised to 1380 ° C without overheating.

なお誘導加熱炉による昇温を高温寄りで行うときには、
実質的に非酸化性雰囲気、とくにのぞましくは不活性雰
囲気とすることにより、スラブ表面性状の改善を図るこ
とができる。
When the temperature is raised by the induction heating furnace near the high temperature,
By setting a substantially non-oxidizing atmosphere, and particularly preferably an inert atmosphere, the surface properties of the slab can be improved.

(作用) この発明を適用する素材は、C:0.025〜0.080%、Si:
2.0〜4.5%、Mn:0.02〜0.10%、そしてインヒビター成
分としてはS,Se,Al,Bのうちから選ばれる1種ない
し2種以上を合計で0.005〜0.10%を含む方向性珪素鋼
用スラブであり、連続鋳造や鋼塊を分塊圧延して得られ
る。スラブ厚は特に限定しないが一般に150〜350mm厚で
適合する。
(Function) The material to which this invention is applied is C: 0.025 to 0.080%, Si:
A slab for grain-oriented silicon steel containing 2.0 to 4.5%, Mn: 0.02 to 0.10%, and a total of 0.005 to 0.10% of one or more selected from S, Se, Al and B as an inhibitor component. It is obtained by continuous casting or slab rolling of steel ingot. Although the slab thickness is not particularly limited, a thickness of 150 to 350 mm is generally suitable.

Cは0.025〜0.080%に規制することによって熱延中にα
+γ域を通過させ、効果的に熱延集合組織の改善をはか
るもので、これによってスラブ中心温度の上限を1380℃
まで高めることができるのはすでにのべた。
C is controlled to 0.025 to 0.080%,
It passes through the + γ region and effectively improves the hot rolling texture, which results in an upper limit of the slab center temperature of 1380 ° C.
It has already been mentioned that it can be increased to.

Si量は鋼板の比抵抗を高め鉄損低減に有効であるが、4.
5%を上廻ると冷延性が損われ、2.0%を下廻ると鉄損改
善効果が弱まることとα−γ変態による結晶方位のラン
ダム化により十分な特性が得られない。
The amount of Si increases the specific resistance of the steel sheet and is effective in reducing iron loss, but 4.
If it exceeds 5%, the cold ductility is impaired, and if it is less than 2.0%, the iron loss improving effect is weakened and sufficient properties cannot be obtained due to randomization of the crystal orientation due to α-γ transformation.

Mn量の下限は熱間脆性による割れを生じないためで、上
限はMnSやMnSeの解離固溶温度を高めないために0.10%
に規制される。
The lower limit of the amount of Mn is to prevent cracking due to hot brittleness, and the upper limit is 0.10% in order not to raise the dissociation solid solution temperature of MnS and MnSe.
Regulated by.

S,Se,Al及びBは、それぞれMnS,MnSe,AIN,BNの形
で鋼中に微細に分散し、インヒビターとして作用するも
ので、これら総量の下限0.005%はインヒビターとして
機能する最低量であり、上限の0.10%は主に経済的理由
から決まる。なお、Al,Bをインヒビター成分とする場
合、これにバランスするN量が必要になるのは云うまで
もない。
S, Se, Al and B are finely dispersed in the steel in the form of MnS, MnSe, AIN and BN, respectively, and act as inhibitors. The lower limit of 0.005% of these total amounts is the minimum amount that functions as an inhibitor. , The upper limit of 0.10% is mainly determined by economic reasons. Needless to say, when Al and B are used as the inhibitor components, the amount of N is required to be balanced with them.

インヒビターとしてはこの他にSb,Sn,As,Pb,Bi,C
u,Mo等の粒界偏析型元素が知られているが、これらが
加わることによってもこの発明の効果は何ら損われな
い。
Other inhibitors include Sb, Sn, As, Pb, Bi, C
Although grain boundary segregation type elements such as u and Mo are known, addition of these elements does not impair the effect of the present invention.

上記したスラブは、熱間圧延に先立ち加熱されるが直接
誘導加熱炉にて加熱するか、あるいは通常のガス燃焼型
加熱炉にて約1250℃まで加熱した後、のぞましくは実質
上非酸化性雰囲気の誘導加熱炉にて、インヒビターを解
離固溶させるためその量や種類に応じとくに中心温度が
1250℃〜1380℃の間にて10分間以上保持されるような加
熱を施す。このときスラブ表面で異常な高温加熱となら
ないようにすることが必要で、特に中心温度が1300℃を
超えたとき、表面温度Tsと中心温度Tcの温度差を−40℃
≦Ts−Tc≦20℃にすることが最終製品の磁気特性を安定
させる上で重要である。
The above-mentioned slab is heated prior to hot rolling, but is heated directly in an induction heating furnace, or after being heated up to about 1250 ° C. in a normal gas combustion type heating furnace, and is preferably substantially non-heated. In an induction heating furnace in an oxidizing atmosphere, the central temperature is especially dependent on the amount and type of dissociating inhibitor solid solution.
Heat at 1250 ℃ ~ 1380 ℃ for 10 minutes or more. At this time, it is necessary to prevent abnormally high temperature heating on the slab surface. Especially when the center temperature exceeds 1300 ° C, the temperature difference between the surface temperature Ts and the center temperature Tc is -40 ° C.
Setting ≤Ts-Tc≤20 ° C is important for stabilizing the magnetic properties of the final product.

一般に誘導加熱炉によるスラブ加熱においては内部発熱
があるとはいえ、スラブ表層の方が早く加熱され易いの
で周波数の選び方あるいは投入電力パターンの制御が重
要になる。すなわち、中心部温度が1300℃に達する前又
は後、段階的に投入パワーを落とし、熱放散による表面
の温度降下と内部発熱量をバランスさせることによって
スラブの表層と中心の温度差をこの発明の条件に入るよ
うにすることができる。
Generally, in the slab heating by the induction heating furnace, although internal heat is generated, the slab surface layer is more likely to be heated faster, so it is important to select the frequency or control the input power pattern. That is, before or after the central portion temperature reaches 1300 ° C., the input power is gradually reduced to balance the temperature drop of the surface due to heat dissipation and the internal heat generation amount, and thereby the temperature difference between the surface layer of the slab and the center of the present invention. You can make it enter the condition.

ここで、スラブの中心温度は、インヒビターの必要量固
溶のために下限温度が少なくとも1250℃であり、一方13
80℃よりも高温になると、スラブの結晶粒の粗大化によ
る磁性への悪影響が現れる。珪素鋼は高温において多量
のノロを発生し易いことを初めに述べたが、そのために
はファイヤライトの流動性が高まる1250℃以上において
雰囲気中のO2含有量が1%以下の非酸化性ガス雰囲気に
することがよりのぞましいのは、いうまでもない。
Here, the core temperature of the slab has a lower limit temperature of at least 1250 ° C. due to the required amount of solid solution of the inhibitor, while 13
At temperatures higher than 80 ° C, magnetism is adversely affected by the coarsening of slab crystal grains. At the beginning, it was stated that silicon steel tends to generate a large amount of slag at high temperatures. For that reason, the fluidity of firelite increases, and at temperatures above 1250 ° C, the O 2 content in the atmosphere is less than 1% of non-oxidizing gas. It goes without saying that it is more desirable to have an atmosphere.

第1図はスラブを誘導加熱炉で加熱する際の均熱すなわ
ち調温保持中のスラブの中心温度Tcと、表面−中心の温
度差とが、最終磁気特性におよぼす影響についての調査
結果をまとめて示したものである。
Figure 1 summarizes the results of an investigation of the effects of the slab center temperature Tc and the surface-center temperature difference during soaking during heating of the slab in an induction heating furnace, that is, while maintaining temperature control, on the final magnetic properties. Is shown.

この実験ではSi 3.05%,Mn 0.078%,Se 0.023%,Sb
0.030%を含有する200mm厚の珪素鋼スラブを予めガス加
熱炉で中心部温度が1150℃に達するまで加熱したのち、
誘導加熱炉に移して中心温度が1220℃〜1400℃の範囲の
種々の温度で加熱した。
In this experiment, Si 3.05%, Mn 0.078%, Se 0.023%, Sb
A 200 mm thick silicon steel slab containing 0.030% was preheated in a gas heating furnace until the center temperature reached 1150 ° C.
It was transferred to an induction heating furnace and heated at various temperatures with the central temperature ranging from 1220 ℃ to 1400 ℃.

このときスラブの中心温度Tcが所定の温度に達してから
15分間加熱をつづけたときの表面温度Ts(なおTsは時間
とともに変化したが、その間の平均温度)との温度差Ts
−Tcを縦軸に、中心温度を横軸にとって、公知の冷延2
回法によって0.30mm厚に仕上げた最終製品の磁束密度B
10の値で整理した。
At this time, after the center temperature Tc of the slab reaches the specified temperature
Temperature difference Ts between the surface temperature Ts when heating is continued for 15 minutes (note that Ts changed with time, but the average temperature during that time)
-Tc is the vertical axis and the center temperature is the horizontal axis.
Magnetic flux density B of the final product finished to 0.30 mm thickness by the spinning method
I arranged it with 10 values.

実験例では、この発明の条件として規制される中心温度
1300℃〜1380℃において−40℃≦Ts−Tc≦20℃で1.91T
より高い磁束密度B10が得られ、特に中心温度が1320℃
〜1380℃で−30℃≦Ts−Tc≦5℃では1.93T以上のB10
得られている。
In the experimental example, the central temperature regulated as a condition of the present invention
1.91T at -40 ℃ ≦ Ts−Tc ≦ 20 ℃ at 1300 ℃ to 1380 ℃
Higher magnetic flux density B 10 is obtained, especially the core temperature is 1320 ℃
At −1380 ° C., −10 ° C. ≦ Ts−Tc ≦ 5 ° C., B 10 of 1.93 T or more is obtained.

ここでスラブの中心温度Tcというのは、加熱中温度の最
も上りにくいスラブ中心部の温度のことで、スラブ中心
温度Tcは直接熱電対を挿入することによって測定した。
Here, the slab center temperature Tc is the temperature of the slab center part where the temperature during heating hardly rises, and the slab center temperature Tc was measured by directly inserting a thermocouple.

第2図は誘導加熱炉による加熱中のスラブ温度変化の測
温例として、スラブの中心温度Tcが1300℃に昇温する直
前に電源パワーを低減して表面温度が1380℃を超えるの
を抑制しつつ表層と中心との間の熱伝導により両温度差
が縮まってからパワーを切ることにより、その後表面温
度Tsの方が下まわり、中心温度Tcがほぼ1340℃にて、こ
れに比し表面温度Tsが約20℃低いところで、15分間保持
したときのスラブ表面及び中心温度の変化の様子を示し
ている。スラブの中心温度1300℃以上にてこの発明の条
件が満たされていることが判かる。
Fig. 2 shows an example of measuring the temperature change of the slab during heating by the induction heating furnace. The power supply power is reduced immediately before the center temperature Tc of the slab rises to 1300 ° C to suppress the surface temperature from exceeding 1380 ° C. While turning off the power after the temperature difference between the surface layer and the center is reduced due to heat conduction between the surface layer and the center, the surface temperature Ts becomes lower and the center temperature Tc is approximately 1340 ° C. The figure shows how the slab surface and center temperature change when held for 15 minutes at a temperature Ts lower by about 20 ° C. It can be seen that the conditions of the present invention are satisfied at a slab center temperature of 1300 ° C or higher.

この発明の条件で加熱されたスラブに対する熱延以降の
工程は特に通常と変わるところはなく、インヒビターの
量や種類に応じ中間焼鈍を含む1回ないし2回の冷延と
脱炭焼鈍及びこれに続く高温箱焼鈍で0.15〜0.50mm厚の
一方向性珪素鋼板を製造することができる。
The steps after hot rolling for the slab heated under the conditions of the present invention are not particularly different from usual ones, and one or two cold rolling including intermediate annealing and decarburization annealing depending on the amount and kind of the inhibitor and Subsequent high temperature box annealing can produce a unidirectional silicon steel sheet having a thickness of 0.15 to 0.50 mm.

(実施例) 連続鋳造によって溶製したC 0.040%、Si 3.30%、Mn
0.065%、S 0.025%、Sb 0.030%、B 0.0015%を
含有する250mm厚の珪素鋼スラブを熱間圧延するに際
し、まずガス燃焼式加熱炉にてスラブ中心部温度が1150
℃に達するまで加熱した後、直ちに誘導加熱炉に装入
し、スラブの中心部温度Tc(1320℃)と表面温度Ts(13
50℃)との差が+30℃に達したところで、電源パワーを
切り、表層と中心との熱伝導により上記温度差が逆転し
表面温度が1340℃、中心部温度が1350℃となる温度推移
の下に20分間調温保持して抽出し、熱間圧延により3.0m
m厚の熱延板を得た。次いで0.70mmまで冷延し、950℃、
3minの水素窒素混合ガス中で中間焼鈍を行った後二次
冷延により0.23mm厚に仕上げた。この後800℃、3minの
湿水素中で脱炭し、MgOを塗布したのち1200℃、10Hrの
水素中で箱焼鈍を行った。
(Example) C 0.040%, Si 3.30%, Mn melted by continuous casting
When hot rolling a 250 mm thick silicon steel slab containing 0.065%, S 0.025%, Sb 0.030%, B 0.0015%, the temperature of the slab center was 1150 in a gas combustion type heating furnace.
After heating until it reaches ℃, it is immediately charged into the induction heating furnace, and the center temperature Tc of the slab (1320 ℃) and the surface temperature Ts (13
50 ° C), the power supply is turned off when the temperature difference reaches + 30 ° C, and the above temperature difference is reversed due to heat conduction between the surface layer and the center, and the surface temperature is 1340 ° C and the central temperature is 1350 ° C. The temperature is maintained for 20 minutes at the bottom for extraction and 3.0m by hot rolling.
A hot rolled sheet with a thickness of m was obtained. Then cold rolled to 0.70 mm, 950 ℃,
After performing intermediate annealing in a hydrogen-nitrogen mixed gas for 3 minutes, 0.23 mm thickness was finished by secondary cold rolling. After that, decarburization was performed in wet hydrogen at 800 ° C. for 3 minutes, MgO was applied, and then box annealing was performed in hydrogen at 1200 ° C. and 10 hr.

このようにして得られた最終製品の電磁特性は以下のと
おりで鉄損の良好な高磁束密度方向性珪素鋼板が得られ
た。
The electromagnetic characteristics of the final product thus obtained were as follows, and a high magnetic flux density grain-oriented silicon steel sheet with good iron loss was obtained.

W17/50:0.85W/kg,B10:1.92T (発明の効果) この発明に従い珪素鋼スラブの熱間圧延のための加熱
中、表面温度の局部的な異常上昇が有効に抑制されてし
かもインヒビタとして役立つ析出物を一たん固溶させる
のに必要な降温加熱がはじめて可能となって製品鋼帯の
磁気特性を有効に改善することができる。
W 17/50 : 0.85 W / kg, B 10 : 1.92T (Effect of the invention) According to the present invention, the local abnormal rise of the surface temperature is effectively suppressed during the heating for the hot rolling of the silicon steel slab. Moreover, the temperature lowering and heating required for solid solution of the precipitate that serves as an inhibitor is only possible, and the magnetic properties of the product steel strip can be effectively improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は誘導加熱炉にて一方向性珪素鋼用スラブを加熱
して抽出したスラブ中心温度Tcとこのときの表面温度Ts
との温度差Ts-Tc(℃)が最終製品の磁束密度B10(T)
におよぼす影響を示すグラフ、 第2図は誘導加熱炉でスラブを加熱した際のスラブ表面
−中心各温度の推移を示すグラフである。
Figure 1 shows the slab center temperature Tc extracted by heating the unidirectional slab for silicon steel in an induction heating furnace and the surface temperature Ts at this time.
The temperature difference Ts-Tc (° C) with the magnetic flux density B 10 (T) of the final product
FIG. 2 is a graph showing changes in slab surface-center temperature when the slab is heated in an induction heating furnace.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】C:0.025〜0.080重量% Si:2.0〜4.5重量% Mn:0.02〜0.10重量% のほか、インヒビター成分としてS,Se,Al及びBのう
ちから選ばれる少なくとも1種を合計0.005〜0.10重量
%にて含有する組成の珪素鋼スラブを素材とし、熱間圧
延と引続く冷間圧延とを含む工程によって、0.15〜0.5m
m厚の一方向性珪素鋼板を製造するに当たり; 熱間圧延に先立つスラブ加熱の際に、誘導加熱炉での昇
温とこの昇温を経て該炉内における少なくとも10分間に
わたる調温保持とによりスラブの中心温度(Tc)が1300
〜1380℃の範囲内の温度域でスラブ表層との間の熱伝導
のもと、上記中心温度(Tc)と比べて40℃より大きくは
下まわらず、しかも20℃を超えて上まわらぬ温度較差と
なるスラブの表面温度(Ts)の調整を行い、 しかるのち熱間圧延を開始する ことを特徴とする、方向性珪素鋼スラブの加熱方法。
1. C: 0.025 to 0.080% by weight Si: 2.0 to 4.5% by weight Mn: 0.02 to 0.10% by weight, and 0.005% of at least one selected from S, Se, Al and B as an inhibitor component. 0.15 to 0.5 m by a process including a raw material of a silicon steel slab having a composition of about 0.10 wt% and hot rolling and subsequent cold rolling.
In producing an m-thickness unidirectional silicon steel sheet; by heating the slab prior to hot rolling and by raising the temperature in an induction heating furnace and then maintaining the temperature for at least 10 minutes in the furnace after this heating. Center temperature (Tc) of slab is 1300
Under the heat conduction with the slab surface layer in the temperature range of 〜 1380 ℃, the temperature is not lower than 40 ℃ compared to the above core temperature (Tc), and still higher than 20 ℃. A method for heating a grain-oriented silicon steel slab, which comprises adjusting the surface temperature (Ts) of the slab, which is a difference, and then starting hot rolling.
【請求項2】スラブの表面温度(Ts)の調整を、1320℃
以上におけるスラブの中心温度(Tc)に対し、これを5
〜30℃の範囲内で下まわる温度較差で行う特許請求の範
囲1記載の方法。
2. The surface temperature (Ts) of the slab is adjusted to 1320 ° C.
This is 5 for the center temperature (Tc) of the slab above.
The method according to claim 1, wherein the temperature difference is within the range of -30 ° C.
【請求項3】誘導加熱炉が実質的に非酸化性雰囲気であ
る、特許請求の範囲1又は2記載の方法。
3. The method according to claim 1, wherein the induction heating furnace has a substantially non-oxidizing atmosphere.
JP60148179A 1985-07-08 1985-07-08 Method of heating grain-oriented silicon steel slab Expired - Lifetime JPH0657854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60148179A JPH0657854B2 (en) 1985-07-08 1985-07-08 Method of heating grain-oriented silicon steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60148179A JPH0657854B2 (en) 1985-07-08 1985-07-08 Method of heating grain-oriented silicon steel slab

Publications (2)

Publication Number Publication Date
JPS6210214A JPS6210214A (en) 1987-01-19
JPH0657854B2 true JPH0657854B2 (en) 1994-08-03

Family

ID=15447015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60148179A Expired - Lifetime JPH0657854B2 (en) 1985-07-08 1985-07-08 Method of heating grain-oriented silicon steel slab

Country Status (1)

Country Link
JP (1) JPH0657854B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726156B2 (en) * 1988-11-16 1995-03-22 川崎製鉄株式会社 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface properties
JP4894146B2 (en) * 2005-01-31 2012-03-14 Jfeスチール株式会社 Heating method for grain-oriented electrical steel slab

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920732B2 (en) * 1980-04-30 1984-05-15 新日本製鐵株式会社 Method for heating slabs for producing unidirectional electrical steel sheets
JPS5858228A (en) * 1981-09-30 1983-04-06 Nippon Steel Corp Heating method for electrical steel slab

Also Published As

Publication number Publication date
JPS6210214A (en) 1987-01-19

Similar Documents

Publication Publication Date Title
EP0420238B1 (en) Process for preparing unidirectional silicon steel sheet having high magnetic flux density
JPS6245285B2 (en)
US4994120A (en) Process for production of grain oriented electrical steel sheet having high flux density
EP0326912B1 (en) Process for production of grain oriented electrical steel sheet having high flux density
JPS60145318A (en) Heating method of grain-oriented silicon steel slab
JPH0686630B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPS6160895B2 (en)
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JPS631371B2 (en)
JPS602624A (en) Manufacture of grain-oriented silicon steel sheet having superior surface property and magnetic characteristic
JP4894146B2 (en) Heating method for grain-oriented electrical steel slab
JPH0657854B2 (en) Method of heating grain-oriented silicon steel slab
JP3369443B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH10110218A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP4283533B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH0699751B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JP4267320B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4473357B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JPH0699750B2 (en) Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics
JPS63109115A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JPH06104867B2 (en) Method of heating grain-oriented silicon steel slabs
JPH0689406B2 (en) Method for producing grain-oriented silicon steel sheet having good magnetic properties

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term