JPS5920732B2 - Method for heating slabs for producing unidirectional electrical steel sheets - Google Patents

Method for heating slabs for producing unidirectional electrical steel sheets

Info

Publication number
JPS5920732B2
JPS5920732B2 JP55056191A JP5619180A JPS5920732B2 JP S5920732 B2 JPS5920732 B2 JP S5920732B2 JP 55056191 A JP55056191 A JP 55056191A JP 5619180 A JP5619180 A JP 5619180A JP S5920732 B2 JPS5920732 B2 JP S5920732B2
Authority
JP
Japan
Prior art keywords
temperature
slab
heating
furnace
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55056191A
Other languages
Japanese (ja)
Other versions
JPS56152926A (en
Inventor
典男 松原
高英 島津
光宣 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55056191A priority Critical patent/JPS5920732B2/en
Publication of JPS56152926A publication Critical patent/JPS56152926A/en
Publication of JPS5920732B2 publication Critical patent/JPS5920732B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は鋼板を構成する結晶粒がミラー指数で(110
)〔000として表わされる方位を有する一方向性電磁
鋼板製造用スラブの加熱方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that the crystal grains constituting the steel sheet have a Miller index of (110
) [Relates to a heating method for a slab for producing a grain-oriented electrical steel sheet having an orientation expressed as 000.

一方向性電磁鋼板に要求される磁気特性は高い磁束密度
と低い鉄損特性であるが、特に最近に至つて変圧機の小
型化、電力損失をなくするための高性能化への要求が高
く必然的に設計磁束密度を高くしなければならない。
The magnetic properties required for unidirectional electrical steel sheets are high magnetic flux density and low iron loss, but recently there has been a strong demand for smaller transformers and higher performance to eliminate power loss. Inevitably, the design magnetic flux density must be increased.

このためには磁化特性の良い、すなわちBlo(磁化力
10AT/cmにおける磁束密度)値の高い材料を必要
としてきた。
For this purpose, a material with good magnetization characteristics, that is, a high Blo (magnetic flux density at a magnetization force of 10 AT/cm) value, has been required.

本発明の方法は特に磁化特性のすぐれた高磁束密度電磁
鋼板の製造に有効なものであるが一般的な一方向性電磁
鋼板についても、経済的なスラブ加熱方法として適用で
きるものである。
The method of the present invention is particularly effective for producing high magnetic flux density electrical steel sheets with excellent magnetization properties, but it can also be applied to general grain-oriented electrical steel sheets as an economical slab heating method.

一般的に製鉄プロセスの中で製鋼段階ではインゴット法
から連続鋳造法(以下CC法という)にできるだけ転換
する努力がなされている。
Generally, efforts are being made to switch from the ingot method to the continuous casting method (hereinafter referred to as the CC method) as much as possible at the steel manufacturing stage of the iron manufacturing process.

その利点は歩留り向上、分塊圧延工程の省略、生産の連
続性等によるコストダウンである。しかし一方向性電磁
鋼板の製造にとつては、スラブを熱延前にMnS、At
N等の析出分散相を固溶させるために高温加熱するが、
その結果スラブの結晶粒が粗大化し過ぎ、これが熱延時
に1次再結晶されない延伸粒となわ、最終仕上焼鈍によ
り誘起される2次再結晶が不完全となる(以下不完全部
分が線状細粒を呈するために線混と呼ぶ)。
The advantages are improved yield, omission of the blooming process, and cost reduction due to production continuity. However, in the production of unidirectional electrical steel sheets, MnS and At
Although heating is carried out at high temperature in order to dissolve the precipitated dispersed phase such as N,
As a result, the crystal grains of the slab become too coarse, resulting in drawn grains that are not primary recrystallized during hot rolling, and the secondary recrystallization induced by final finish annealing is incomplete (hereinafter, incomplete portions are linear fine grains). (It is called a line mixture because it exhibits grains.)

従つて成品の磁性を失うという技術的欠点があることは
特公昭54−27820号公報、特公昭50−3700
9号公報に開示されている。又CC法に限定した問題で
はないが、スラブ加熱温度が低過ぎた場合、スラブの析
出分散相の固溶不足になり、2次再結晶が不完全(線混
)になる。従来からこの線混問題に対して種々の対策が
提起されている。
Therefore, it is disclosed in Japanese Patent Publication No. 54-27820 and Japanese Patent Publication No. 50-3700 that there is a technical drawback of losing the magnetism of the product.
It is disclosed in Publication No. 9. Furthermore, although this is not a problem limited to the CC method, if the slab heating temperature is too low, solid solution of the precipitated dispersed phase of the slab will be insufficient, resulting in incomplete secondary recrystallization (line mixing). Various countermeasures have been proposed to deal with this line mixing problem.

すなわち特公昭54−27820号公報記載の方法では
CCスラブをはじめに750〜1200℃の温度で5〜
50%の圧延率で分塊圧延し、次いで高温加熱、熱間圧
延する方法を示している。
That is, in the method described in Japanese Patent Publication No. 54-27820, a CC slab is first heated at a temperature of 750 to 1200°C.
A method is shown in which blooming is carried out at a rolling ratio of 50%, followed by heating at a high temperature and hot rolling.

又同様に特公昭50−37009号公報記載の方法でも
1250〜1300℃の温度で30〜70(:fl)の
圧下率で分塊圧延する方法を述べている(以下プレロー
ル法と呼ぶ)。これらはいずれも分塊圧延することによ
つて、高温加熱での結晶粒の粗大化を防止し線混対策を
行うものである。しかしこれらの方法はいわば分塊圧延
を含めて熱間圧延工程を2回行うものであシ、CC法の
省工程の利点をそこなうものである。この不合理性を補
う技術として特開昭54−120214号公報では高温
加熱時に粗大化した結晶粒を圧延温度1190〜960
℃で1次再結晶化圧延を行うことによつて延伸粒を破壊
し、微細に再結晶化しようとする方法を開示している。
Similarly, the method described in Japanese Patent Publication No. 50-37009 describes a method of blooming at a temperature of 1250 to 1300° C. and a rolling reduction of 30 to 70 (fl) (hereinafter referred to as the pre-roll method). All of these are used to prevent coarsening of crystal grains due to high-temperature heating and to take measures against wire mixing by blooming. However, in these methods, the hot rolling process including blooming is carried out twice, which detracts from the process-saving advantage of the CC method. As a technique to compensate for this irrationality, Japanese Patent Application Laid-Open No. 54-120214 discloses rolling crystal grains that have become coarse during high-temperature heating at a rolling temperature of 1190 to 960.
A method is disclosed in which the drawn grains are destroyed and finely recrystallized by performing primary recrystallization rolling at .degree.

次に特開昭52−60216号公報は熱延工程の次の冷
延工程で冷間圧延時の温度を上昇し、熱効果を与えるこ
とによつて粗粒部の冷延組織を変化させると共に次工程
の連続焼鈍における再結晶を促進することによつて最終
仕上焼鈍前の組織を均一にし2次再結晶粒の成長を安定
して行なわしめる方法を示している。これらは熱延条件
、冷延条件によつて線混対策を行なおうとする技術であ
り、熱延加熱炉での粗大粒成長を是認した対策といえ、
線混問題を誘起する加熱技術に言及していないが省エネ
ルギー、スケールロスからみて1次的に加熱条件を粗大
粒の少ないようにコントロールすることが好ましい。
Next, Japanese Patent Application Laid-Open No. 52-60216 discloses that in the cold rolling process following the hot rolling process, the temperature during cold rolling is increased to give a thermal effect, thereby changing the cold rolling structure of the coarse grain part. A method is shown in which the structure before final annealing is made uniform and secondary recrystallized grains are stably grown by promoting recrystallization in the next step of continuous annealing. These are technologies that attempt to prevent wire mixing by adjusting hot rolling conditions and cold rolling conditions, and can be said to be measures that approve of coarse grain growth in the hot rolling furnace.
Although no mention is made of the heating technology that induces the wire mixing problem, from the viewpoint of energy saving and scale loss, it is preferable to primarily control the heating conditions to reduce the number of coarse particles.

これに対して熱延スラブの最適な粒成長状態を磁性結果
と対応してスラプ断面方向において2次再結晶核発生に
望ましい表面組織として少なくとも粒成長部が30w1
n(全厚の15%)を有し、2次再結晶核に喰われやす
い未粒成長組織を少なくとも全厚の5%有する2層構造
が磁性的によいことが分つた。この内容は具体的なスラ
ブ加熱条件に言及するものではない。この粒成長状態は
スラブを熱延加熱後冷却し切断し研磨腐蝕という手順で
調査される(以下マクロエツチ組織と呼ぶ)。従つて調
査に数日を要し迅速に加熱操業にフイードバツクはでき
ない。磁性結果はこのマクロ組織を調査したスラブに近
接したスラブの最終工程を経た後での結果と対応づける
ものである。前記熱延条件及び冷延で熱効果を与える方
法は、熱延加熱条件として何の温度かの意味が不明で、
ただ高温加熱すればよいという安易な記述内容であるこ
とをいなめず、加熱操業を経済的に行なおうとする本発
明の主旨とは異なる。
On the other hand, the optimal grain growth state of the hot rolled slab is determined by the magnetic results, and the grain growth area is at least 30w1 as the surface structure desirable for secondary recrystallization nucleation in the slab cross-sectional direction.
It was found that a two-layer structure having a grain size n (15% of the total thickness) and having at least 5% of the total thickness an ungrained growth structure that is easily eaten by secondary recrystallization nuclei is good magnetically. This content does not refer to specific slab heating conditions. This grain growth state is investigated by hot-rolling the slab, cooling it, cutting it, and polishing it by etching it (hereinafter referred to as macroetch structure). Therefore, it takes several days to conduct the investigation and it is not possible to quickly provide feedback to the heating operation. The magnetic results are correlated with the results obtained after the final process of a slab adjacent to the slab whose macrostructure was investigated. Regarding the hot rolling conditions and the method of imparting a thermal effect during cold rolling, the meaning of the temperature as the hot rolling heating condition is unclear;
This is a simplistic description that simply requires high-temperature heating, which is different from the gist of the present invention, which is to carry out heating operations economically.

すなわち前記公報には一般的なスラブ加熱温度は示され
ているが粗大粒を抑制するかあるいは磁性を良好ならし
める様な、後に述べる加熱条件特有の制約に言及するも
のではない。又スラブのマクロエツチ組織を限定する方
法は実際的な加熱操業にとつてフイードバツク時間が長
く、ロッド管理チエツクとしては可能であるが指標とし
て不都合である。本発明はMnS,AtNの析出分散相
の固溶を満足し細粒を防止する下限と線混を防止する上
限の加熱条件の指標を提供し、その結果きめ細かな加熱
制御が可能にな)、加熱炉の省エネルギー、スケールロ
スの減少を、磁性安定を計シつつ行なうものである。一
方向性電磁鋼用スラブはMnS,AtNを固溶させるべ
く高温加熱するという特殊事情があるために、普通鋼ス
ラブ処理に比して加熱炉の燃料原単位は約2倍、スケー
ルロスは約4倍となつている。
That is, although the above-mentioned publication indicates a general slab heating temperature, it does not mention the restrictions specific to the heating conditions, which will be described later, such as suppressing coarse grains or improving magnetism. Furthermore, the method of limiting the macroetch structure of the slab requires a long feedback time for practical heating operations, and although it is possible as a rod management check, it is inconvenient as an indicator. The present invention provides an index of the lower limit of heating conditions that satisfies the solid solution of the precipitated dispersed phase of MnS and AtN and prevents fine grains, and the upper limit that prevents line mixing, and as a result, fine heating control is possible). This saves energy in the heating furnace and reduces scale loss while ensuring magnetic stability. Because slabs for unidirectional electrical steel are heated at high temperatures to form a solid solution of MnS and AtN, the fuel consumption of the heating furnace is approximately twice that of normal steel slab processing, and the scale loss is approximately It has increased four times.

炉内でのスケール生成量が多いことは炉内滞留限界から
くる加熱炉の生産能力及びその処理コスト、耐火物の修
理コスト、操業のむつかしさにも悪影響が生じてくる。
従つて加熱条件の上下限限界を見い出し必要以上にスラ
ブを過熱しないようにきめ細く制御することは磁性を良
好に安定せしめる事とは別に省資源の見知から特に重要
といわねばならない。本発明の特徴は在炉時間が数時間
であシ挿入長さが30mにも及ぶ実際加熱炉において、
スラブの挿入から抽出迄の連続測温が可能になりスラブ
の最適な加熱温度(温度勾配を含む)と加熱時間条件を
見出し、それを指標にしてきめ細かな加熱制御をしうる
ようにした点にある。
A large amount of scale generated in the furnace has an adverse effect on the production capacity of the heating furnace due to the retention limit in the furnace, its processing cost, the repair cost of refractories, and the difficulty of operation.
Therefore, finding the upper and lower limits of heating conditions and carefully controlling the slab so as not to overheat it more than necessary is particularly important from the perspective of saving resources, apart from stabilizing the magnetism well. The feature of the present invention is that in an actual heating furnace where the furnace time is several hours and the insertion length is as long as 30 m,
Continuous temperature measurement from the insertion of the slab to extraction is now possible, and the optimal heating temperature (including temperature gradient) and heating time conditions for the slab can be found, and this can be used as an index for fine-grained heating control. be.

従来一般的なスラブの加熱温度条件は、特公昭30−3
651号、特公昭54−27820号公報に述べられて
いるように1260〜1400℃である。
The heating temperature conditions for conventionally common slabs were
As stated in Japanese Patent Publication No. 651 and Japanese Patent Publication No. 54-27820, the temperature is 1260 to 1400°C.

この加熱温度は論理的根拠が不明で時間的条件について
は特に明示されておらず、スラブ加熱温度が1260℃
では実際の操業において加熱時間を長くしてもMnS,
AtNの固溶条件を満足せず粒成長も生じない。さらに
後で述べる実際加熱炉での実測温値でスラプ厚みの中心
温度(以下中心温度と呼ぶ)が例えば1280℃でかつ
表面より30mの温度(以下表面近傍温度と呼ぶ)が1
330℃になる温度勾配になつていても前記と同様の結
果となり製品に線混が生じ磁性は著しく低下する。
The rationale for this heating temperature is unknown, and the time conditions are not specified, and the slab heating temperature is 1260℃.
In actual operation, even if the heating time is increased, MnS,
It does not satisfy the solid solution conditions for AtN and grain growth does not occur. Furthermore, in the actual temperature values measured in the actual heating furnace described later, the center temperature of the slurp thickness (hereinafter referred to as the center temperature) is, for example, 1280°C, and the temperature 30 m from the surface (hereinafter referred to as the near-surface temperature) is 1.
Even if the temperature gradient reaches 330° C., the same results as above will occur, and wire mixing will occur in the product, resulting in a significant decrease in magnetism.

又前記の上限温度1400℃は炉温又はスラブ温度の何
れであるかは不明であるがもしスラブ温度とすればいた
ずらにスラブを過熱することになり、スラブ表面のスケ
ール化が温度、時間に比例して進むのでスケールロスが
増大し、加熱エネルギーも無駄となる。そして冶金的に
も加熱炉抽出後の圧延温度が高くなり、1次再結晶化し
にくくなり延伸粒が残り線混問題にもつながるし、Mn
Sの析出不足も生じ磁性を劣化させる結果になる。従つ
て従来提案されている1260〜1400℃のスラブ加
熱温度は時間の要因がないばかクでなく上下限スラブ加
熱温度としても不適当なものである。
Also, it is unclear whether the upper limit temperature of 1400°C is the furnace temperature or the slab temperature, but if it is the slab temperature, the slab will be unnecessarily overheated, and the scaling of the slab surface will be proportional to the temperature and time. This increases scale loss and wastes heating energy. From a metallurgical point of view, the rolling temperature after extraction in a heating furnace becomes high, making primary recrystallization difficult, leaving stretched grains and leading to wire mixing problems.
Insufficient precipitation of S also occurs, resulting in deterioration of magnetism. Therefore, the slab heating temperature of 1260 to 1400 DEG C. that has been proposed in the past is not only due to the time factor, but is also inappropriate as the upper and lower limits of the slab heating temperature.

次に特公昭50−37009号公報では1300℃以上
に加熱すると結晶粒が粗大化し過ぎ、最終仕上焼鈍によ
シ誘起される2次再結晶が不完全になるという記述の中
でプレロール法と1回熱延法との比較例で一部加熱温度
例が示されている。
Next, in Japanese Patent Publication No. 50-37009, it states that heating to 1,300°C or higher will cause crystal grains to become too coarse and the secondary recrystallization induced by final annealing will become incomplete. Some heating temperature examples are shown in a comparative example with the hot rolling method.

この加熱温度も何の温度をいうのか不明であるが、時間
条件は示されている。しかし1350℃は前記した様に
高い温度であり、実施例でもこの加熱条件ではプレロー
ル法は良好であるが熱延1回法のAスラプは線混が生じ
磁性が悪い結果として記述されている。又スラブ内のど
の点の温度をいうのかも不明で温度勾配に迄言及してい
るものではない。従つて本発明のCC一熱延1回法で良
好な磁性結果を得る加熱条件に比べて過熱ぎみであり技
術思想は異なるものである。次に特開昭54−1202
14号公報でもスラプ加熱温度は一般的に1300℃以
上の高温加熱と表現されているのみである。
Although it is unclear what this heating temperature refers to, the time conditions are indicated. However, 1350° C. is a high temperature as described above, and in the examples, the pre-rolling method is good under this heating condition, but the A-slap method of the one-time hot rolling method is described as a result of wire mixing and poor magnetism. Furthermore, it is unclear at what point within the slab the temperature is being referred to, and there is no mention of temperature gradients. Therefore, compared to the heating conditions under which good magnetic results are obtained by the one-step CC hot rolling method of the present invention, the heating conditions are too much and the technical idea is different. Next, JP-A-54-1202
Even in Publication No. 14, the slap heating temperature is only generally expressed as high temperature heating of 1300° C. or higher.

又この公報では下限値として1300℃以下ではMnS
,AtN析出分散の溶体化不足により細粒になるとして
いるが、実測値によれば1300℃以上あればよいとい
うわけでなく、例えば1310℃あつたらよいという結
果にはなつていない。すなわちスラブ表面近傍温度が1
350℃位になりかつ加熱時間のフアクタ一が必要であ
る。次に特開昭52−60216号公報での記述内容の
中で1360℃×40分加熱の記述があるが1360℃
はスラプのどの点かが不明でかつ過熱ぎみの温度である
Also, this publication states that MnS is
, it is said that the grains become fine due to insufficient solutionization of AtN precipitated dispersion, but according to actual measurements, a temperature of 1300°C or higher is not necessarily sufficient; for example, a temperature of 1310°C is not sufficient. In other words, the temperature near the slab surface is 1
The temperature is about 350°C and a longer heating time is required. Next, in the description in JP-A No. 52-60216, there is a description of heating at 1360°C for 40 minutes.
It is unclear which point on the slop is and the temperature is on the verge of overheating.

又CC一熱延1回法で冷延効果を与えない場合線混が発
生し磁性結果も劣化するとしている。むろんスラブ温度
分布に迄言及するものでなく、本発明とは異なるもので
ある。以上の如く従来の特許文献に開示されているスラ
ブ加熱条件は製品における線混の発生を防止するにはき
わめて不十分なものであつた。本発明はかかる現状に鑑
みて、線混の発生を十分に回避しうるスラブ加熱方法を
提供しようとするものである。
It is also said that if the cold rolling effect is not provided in the CC one-hot rolling method, wire mixing will occur and the magnetic results will also deteriorate. Of course, this does not refer to the slab temperature distribution and is different from the present invention. As described above, the slab heating conditions disclosed in the conventional patent documents are extremely insufficient to prevent the occurrence of line mixing in products. In view of the current situation, the present invention seeks to provide a slab heating method that can sufficiently avoid the occurrence of wire mixing.

以下本発明の加熱条件について説明する。The heating conditions of the present invention will be explained below.

本発明者は一方向性電磁鋼板用スラブの加熱に際して、
スラブ厚み方向の粒成長率が最低15(fl)、最高9
5(f)(未粒成長部分5%を残す)である結晶組織の
構造を有するように加熱することによつて製品における
線混の発生を十分に防止しうることを確めた。
When heating a slab for unidirectional electrical steel sheet, the present inventor
Grain growth rate in the slab thickness direction is minimum 15 (fl) and maximum 9
It was confirmed that the generation of line contamination in the product could be sufficiently prevented by heating the product to have a crystalline structure of 5(f) (5% of ungrown portion remained).

この理由として2次再結晶初期の核発生は鋼板表面近傍
で起り、発生した核の方位が正確に(110)〔000
方位にあるためには(高い磁束密度を得るためには)鋼
板表面近傍の析出分散相の状態を微細に且つ均一にして
おくことが必要である。
The reason for this is that nucleation at the initial stage of secondary recrystallization occurs near the surface of the steel sheet, and the orientation of the generated nuclei is precisely (110) [000
In order to maintain the orientation (in order to obtain a high magnetic flux density), it is necessary to make the state of the precipitated dispersed phase near the surface of the steel sheet fine and uniform.

これは析出分散相の析出粒子の大きさ、数が局所的に偏
在して不均一な場合には異なつた方位をもつたものも粒
成長して(110)〔000方位に収束する傾向が弱め
られるからである。したがつて粒成長率が最低15%必
要とするのは表面近傍の析出分散相(MnS,AtN)
の状態を微細に且つ均一にするように(固溶条件を整え
るように)温度条件も満足させるべく粒成長率を媒介と
して表現しているものである。又再結晶焼鈍に際して発
生した2次再結晶核が円滑に成長し鋼板全体に成長を完
了するためには2次再結晶核に喰われ易い結晶組織が鋼
板表面部の核発生領域に隣接して存在することが、すな
わち少なくとも5%の未粒成長部を有することがよいこ
とが分つた。なお粒成長を抑制することによつて熱間圧
延後の延伸粒を少なくかつ1次再結晶化しやすくし線混
を防止しうるのはいうまでも方い。この粒成長はスラブ
加熱の本来の目的でなく逆に悪作用をなすものであるの
でMnS,AtNの固溶状態を必要最低限に整えるよう
に配慮すればよい。
This is because when the size and number of precipitated particles in the precipitated dispersed phase are locally unevenly distributed and non-uniform, particles with different orientations also grow and the tendency to converge to the (110)[000 orientation is weakened. This is because it will be done. Therefore, it is the precipitated dispersed phase (MnS, AtN) near the surface that requires a grain growth rate of at least 15%.
It is expressed using the grain growth rate as a medium in order to satisfy the temperature conditions so that the state of the particles is fine and uniform (so that the solid solution conditions are adjusted). In addition, in order for the secondary recrystallization nuclei generated during recrystallization annealing to grow smoothly and complete growth over the entire steel sheet, the crystal structure that is easily eaten by secondary recrystallization nuclei must be located adjacent to the nucleation region on the surface of the steel sheet. It has been found that it is good to have a non-grain growth area of at least 5%. It goes without saying that by suppressing grain growth, the number of drawn grains after hot rolling can be reduced, primary recrystallization can be facilitated, and line mixing can be prevented. Since this grain growth is not the original purpose of heating the slab, but rather has a negative effect, care should be taken to adjust the solid solution state of MnS and AtN to the minimum necessary level.

この事は加熱エネルギー、スケールロスを少なくすると
いうことにつながる。MnS,AtNの固溶状態に比例
した指標として粒成長率は重要であり、この粒成長率を
媒介して固溶状態を満足しかつ粗大粒を抑制するスラブ
温度、時間条件を見出そうとするものである。この考え
方に基づいて本発明を詳細に説明する。
This leads to reducing heating energy and scale loss. Grain growth rate is important as an index proportional to the solid solution state of MnS and AtN, and we are trying to find slab temperature and time conditions that satisfy the solid solution state and suppress coarse grains by mediating this grain growth rate. It is something to do. The present invention will be explained in detail based on this idea.

従来一方向性電磁鋼スラプの加熱炉内での連続測温は高
温加熱でノロが多量に発生する中では熱電対の耐久性か
ら普通材のように挿入から抽出迄完遂することができな
かつた。ところで第1図に示すように熱電対をN2冷却
しながら熱電対の耐久性をもたせて連続測温が可能とな
つた。
Conventionally, continuous temperature measurement of unidirectional electromagnetic steel slurp in a heating furnace could not be completed from insertion to extraction as with ordinary materials due to the durability of thermocouples due to high temperature heating and the generation of large amounts of slag. . By the way, as shown in FIG. 1, continuous temperature measurement has become possible by cooling the thermocouple with N2 while increasing its durability.

図において1は加熱炉、2はスラブ、3は熱電対、4は
測定点、5はフレキシブルホースである。第2図はスラ
ブ厚み200mで加熱炉の予熱帯に挿入され加熱帯、均
熱帯を経て抽出される迄のスラブ昇温例である。
In the figure, 1 is a heating furnace, 2 is a slab, 3 is a thermocouple, 4 is a measurement point, and 5 is a flexible hose. Figure 2 shows an example of heating up a slab with a thickness of 200 m, which is inserted into the preheating zone of the heating furnace, passes through the heating zone, and the soaking zone before being extracted.

測温点はスラブ厚みの中心点で、同一スラプ内で昇熱温
度が異なるのは炉内位置のちがいによるものである。又
抽出温度はa点は1360℃、b点は1345℃であつ
た。そのスラブを抽出後冷却しマクロエツチ組織を調査
した結果が第3図である。この結果より加熱炉抽出温度
がa点とb点で15℃しかちがわないのにスラブの粒成
長状態がA部では厚み方向全面に粒成長し、B部は一部
分が粒成長し一部がCCの鋳造組織が残つた状態になつ
ている。
The temperature measurement point is the center point of the slab thickness, and the difference in heating temperature within the same slab is due to the difference in position within the furnace. The extraction temperature was 1360°C at point a and 1345°C at point b. After the slab was extracted and cooled, the macroetch structure was investigated and the results are shown in Figure 3. This result shows that although the heating furnace extraction temperature differs by only 15°C between points a and b, the grain growth state of the slab is that in part A, grains grow all over the thickness direction, and in part B, part of the grain grows and part of it is CC. The cast structure remains.

すなわち第4図で定義する粒成長率はA部は100%、
B部は72%である。もちろんA部の状態は未粒成長部
がなく粗大粒が成長しすぎで悪く、B部の状態は良好な
ことは前記した通りであり、このスラブと隣接したスラ
ブを、後工程を経て成品としたときの磁性結果をみると
、A部は線混の発生があり、B部は良好で規格内におさ
まつた。この事実より中心温度が1350℃を越えると
粗大粒成長が生成しすぎており1350℃以上は加熱す
る必要がないことがわかつた。
In other words, the grain growth rate defined in Figure 4 is 100% in part A;
Part B is 72%. Of course, as mentioned above, the condition of section A is poor with no ungrown grains and excessive growth of coarse grains, while the condition of section B is good, and this slab and adjacent slabs are processed into finished products through post-processing. Looking at the magnetic results, there was some wire mixing in part A, but in part B, it was good and within the specifications. From this fact, it was found that when the center temperature exceeds 1,350°C, too much coarse grain growth occurs, and that there is no need to heat above 1,350°C.

又スラプ加熱温度の差よりも昇温時間経緯の影響を受け
ることが重要な要因であることがわかつた。すなわち粒
成長開始温度以降の加熱時間が関係する。この粒成長開
始温度は成分等の影響を受ける。例えば下記の如き一方
向性電磁鋼板製造用スラブの粒成長開始温度はほぼ次に
示すような温度である。但しCC鋳造組織のチル晶は1
240℃位のごく低温でも生じるが極く薄いので考慮し
ない。厳密には粒成長開始温度を越える時間を問題にす
べきだが成分バラツキ等もあ拡その近傍温度を1300
℃として第2図に示すTimel,time2を加熱操
業の指標にし、また磁性特性、成分系のちがいをAグル
ープ、Bグループとして使いわけ、スラブ内の1点(た
とえば中心)の温度を代表する方が加熱制御上便利であ
る。参考までに第2図のスラブ測温例はAグループに属
し、抽出迄の1300℃以上の在炉時間はa点は111
分、b点は67分であつた。
It was also found that the influence of heating time and history is a more important factor than the difference in slap heating temperature. That is, the heating time after the grain growth start temperature is relevant. This temperature at which grain growth starts is influenced by components and the like. For example, the grain growth initiation temperature of a slab for producing unidirectional electrical steel sheets as shown below is approximately as shown below. However, the chill crystal of CC casting structure is 1
Although it occurs even at very low temperatures of about 240°C, it is so thin that it is not considered. Strictly speaking, the time required to exceed the grain growth start temperature should be considered, but due to component variations etc.
℃ shown in Figure 2 as an index of heating operation, and the difference in magnetic properties and component system is used as A group and B group, which represents the temperature at one point (for example, the center) in the slab. is convenient for heating control. For reference, the slab temperature measurement example in Figure 2 belongs to group A, and the time in the furnace at 1300℃ or higher until extraction is 111 at point a.
minute, point b was 67 minutes.

次にBグループに属するスラブ厚み方向に3点熱電対を
埋め込み測定した例を第5図に示す。
Next, FIG. 5 shows an example in which a three-point thermocouple was embedded in the thickness direction of a slab belonging to group B.

この結果抽出温度はスラブ中心部で1320℃、表面よ
り30Trm深さの点で1330℃、1335℃である
。又中心温度が1300℃を越える在炉時間は24分で
あり、第6図に示すスラブのマクロエツチの粒成長率は
厚み方向29(f)であつた。この3点のスラブ測温点
よりスラブ厚み方向の温度勾配を求め経時変化を示した
のが第7図である。この結果厚み方向での温度最低点は
特にみられず、中心温度も1320℃とBグループのス
ラブの粒成長開始温度を越えている。しかし第6図に見
るように未粒成長部分が残存している。この事はある微
少部分の温度が粒成長開始温度を越えたら瞬間的に生成
するというものでなく、ある時間が必要であることを示
している。又同時に表面近傍温度は1350℃以下であ
るが満足する粒成長率となつているので1350℃以上
は不要であることが分る。近接したスラブからの成品の
磁性も規格内に入つて}ね良好であつた。次に加熱条件
の下限を示す例として第8図にAグループのスラブの測
温例を示す。
As a result, the extraction temperature was 1320°C at the center of the slab, and 1330°C and 1335°C at a depth of 30 Trm from the surface. Further, the furnace time during which the center temperature exceeded 1300°C was 24 minutes, and the grain growth rate of the macroetch of the slab shown in FIG. 6 was 29(f) in the thickness direction. Figure 7 shows the temperature gradient in the thickness direction of the slab obtained from these three slab temperature measurement points and shows the change over time. As a result, there is no particular lowest temperature point in the thickness direction, and the center temperature is 1320° C., which exceeds the grain growth start temperature of group B slabs. However, as shown in FIG. 6, ungrown portions remain. This shows that the formation does not occur instantaneously when the temperature of a certain minute portion exceeds the grain growth starting temperature, but that a certain amount of time is required. At the same time, although the temperature near the surface is below 1350°C, a satisfactory grain growth rate is obtained, so it is understood that a temperature above 1350°C is unnecessary. The magnetic properties of products from adjacent slabs were also within the specifications. Next, as an example showing the lower limit of the heating conditions, FIG. 8 shows an example of temperature measurements of slabs of group A.

この結果は抽出温度が中心点1285℃、表面近傍点の
上部が1330℃、下部が1285℃であつた。このス
ラブのマクロエツチ組織を第9図に示すが粒成長率は、
極くわずかに表面のチル晶のみが粒成長し4%である。
また近接するスラブの成品磁性も、線混の発生のため不
良となつた。この事実より中心温度は1300℃以上を
越える必要がある事と、表面近傍温度が1330℃とな
つていても1300℃以上の時間が10分程度と短いた
めにスラブ全体の加熱不足となつて成品に線混が発生す
ることが分る。
The results showed that the extraction temperature was 1285°C at the center, 1330°C at the top near the surface, and 1285°C at the bottom. The macroetch structure of this slab is shown in Figure 9, and the grain growth rate is
Only a very small amount of chill crystals on the surface have grown, which is 4%.
Furthermore, the magnetic properties of the adjacent slabs were also poor due to the occurrence of wire mixing. From this fact, the center temperature needs to exceed 1,300℃, and even if the temperature near the surface is 1,330℃, the time at 1,300℃ or higher is only about 10 minutes, so the entire slab is not heated enough and the finished product is not finished. It can be seen that line confusion occurs.

以上のスラブ測温例−1,2,3より特公昭30−36
51号公報で示す下限温度1260℃は不足ぎみで上限
の1400℃は加熱し過ぎであることが判明した。
From the above slab temperature measurement examples-1, 2, and 3,
It was found that the lower limit temperature of 1260° C. shown in Publication No. 51 was insufficient, and the upper limit of 1400° C. was too much.

又最適な加熱条件として表面近傍温度は、1350℃以
下でよく(少なくとも中心温度は1350℃以下でよい
ことが分る)、中心温度が1300℃を越える加熱時間
を設定すれば粗大粒の成長し過ぎを抑制し、成品磁性を
良好な範囲に入れることが可能であることが判明した。
In addition, as an optimal heating condition, the temperature near the surface should be 1350°C or less (at least the center temperature can be 1350°C or less), and if the heating time is set so that the center temperature exceeds 1300°C, coarse grains will not grow. It has been found that it is possible to suppress the overflow and bring the magnetism of the finished product within a good range.

これらの生目細かな温度条件を見出すことの意義は前記
した通りである。又スラブを片面加熱する場合などは高
温側より1//3〜1イ厚の温度で代表すればよいこの
知見に基づいてAグループ、Bグループの各スラブにつ
いて実際加熱炉での実験データをとり、スラブ中心温度
が1300℃を越える時間と粒成長率との開係を示すの
が第11図である。
The significance of finding these precise temperature conditions is as described above. In addition, when heating a slab on one side, the temperature should be represented by a temperature 1/3 to 1 thick from the high temperature side.Based on this knowledge, we collected experimental data for each slab in Group A and Group B in an actual heating furnace. FIG. 11 shows the relationship between the time during which the slab center temperature exceeds 1300° C. and the grain growth rate.

第11図に示す結果より下限値として、粒成長率15%
の時MnS,AtN析出分散相の固溶条件を満足し成品
磁性も良好であつたことから、Aグループスラブはスラ
ブの中心温度1300℃以上の保持時間は15分となり
、Bグループのスラブでは10分となる。又上限値とし
て粗大粒を成長させないという観点から未粒成長部分を
50!)残す時の成品磁性が良好であつたことから、ス
ラブ中心温度1300℃以上の保持時間は、Aグループ
のスラブは70分、Bグループのスラブは50分となる
。Bグループのスラブは2回の焼鈍一冷間圧延工程であ
り、成品の要求磁性が低いことからAグループに対する
如く焼き過ぎの結果による線混発生の問題は少ないが、
必要以上に加熱することは省エネルギー、スケールロス
的に無駄なので、前記保持時間はAグループのスラブと
同様重要な指標となる。
From the results shown in Figure 11, the lower limit value is 15% grain growth rate.
At this time, the solid solution conditions for the precipitated dispersed phase of MnS and AtN were satisfied and the magnetic properties of the product were good, so the A group slabs had a temperature of 1300°C or higher for which the slab was maintained for 15 minutes, and the B group slabs had a temperature of 10 minutes. It will be a minute. Also, from the perspective of not allowing coarse grains to grow, the upper limit is set at 50! ) Since the magnetic properties of the finished product were good when left, the retention time for the slab center temperature of 1300° C. or higher was 70 minutes for the A group slabs and 50 minutes for the B group slabs. Group B slabs undergo two annealing and cold rolling processes, and the required magnetic properties of the finished product are low, so there is less of the problem of wire contamination due to overheating as with Group A.
Since heating more than necessary is wasteful in terms of energy saving and scale loss, the holding time is an important index like the A group slabs.

この温度時間指標はあえてスラブ温度分布を認めるもの
であるが、加熱炉の形式がウオーキングビーム炉でスキ
ツドマークも少なくかつ高温加熱の条件では圧延上形状
も問題にはならない。
This temperature-time index intentionally recognizes the slab temperature distribution, but the heating furnace type is a walking beam furnace, there are few skid marks, and the rolling shape is not a problem under high-temperature heating conditions.

スラブ表面近傍温度及び中心温度は炉温やスラブ在炉時
間、加熱方法によつて調整されうる。次に以上述べた加
熱条件を基に具体的な加熱炉の制御内容について説明す
る。加熱炉のスラプの温度制御法は種々開示されている
公知の制御法に、本発明の管理指標を織り込んで行えば
よいが、その概要について説明する。
The temperature near the surface of the slab and the center temperature can be adjusted by the furnace temperature, the time the slab is in the furnace, and the heating method. Next, specific details of controlling the heating furnace will be explained based on the heating conditions described above. The temperature control method of the slurp of the heating furnace can be carried out by incorporating the management index of the present invention into various disclosed known control methods, but an outline thereof will be explained below.

実際的には加熱炉は多帯炉であるが、ここでは1ゾーン
として第12図に示し基本的な考え方を述べる。今加熱
炉11に温度計12で初期温度を測定されたスラブ13
が炉内に挿入されると同時に今迄先端部にいたスラプ1
3′t)S抽出される。
In reality, the heating furnace is a multi-zone furnace, but here it is shown as one zone in FIG. 12 and the basic concept will be described. Slab 13 whose initial temperature is now measured with thermometer 12 in heating furnace 11
Slap 1, which had been at the tip until now, was inserted into the furnace.
3't) S is extracted.

又同時に挿入時刻の信号、スラブ条件(厚み、巾、成分
、スラブ熱伝導率、比熱等の物性値、1300℃以上の
加熱時間の目標値)等が計算機14に与えられ、又炉内
各スラブの炉内位置がスラブ寸法より割9出されて記憶
される。15は煙道である。
At the same time, the insertion time signal, slab conditions (thickness, width, composition, physical property values such as slab thermal conductivity, specific heat, target value of heating time of 1300°C or more), etc. are given to the computer 14, and each slab in the furnace is The in-furnace position is calculated from the slab dimensions and stored. 15 is a flue.

炉内に滞在するi−1+nスラプは任意時間毎に下記1
式で計算される。次にこの温度を初期条件として各スラ
ブの抽出される時の温度及び1300℃以上の在炉時間
が、抽出ピツチから求められる残り在炉時間より計算さ
れる。
The i-1+n slap that stays in the furnace is determined by the following 1 for each arbitrary time.
Calculated by the formula. Next, using this temperature as an initial condition, the temperature at which each slab is extracted and the time in the furnace above 1300°C are calculated from the remaining time in the furnace determined from the extraction pitch.

ここでi−1+nスラブの中で1300℃以上の在炉時
間基準からみて最も加熱されにくいスラブが基準スラブ
として選択される。
Here, among the i-1+n slabs, the slab that is least likely to be heated based on the furnace time of 1300° C. or higher is selected as the reference slab.

この基準スラブの1300℃以上の在炉時間が不足する
場合は、まづ炉温を上げ又時間がオーバーする場合は炉
温を下げる。この炉温範囲が設備操業制約上から不可能
な温度域となつた場合、あるいは(多帯炉の)炉全体の
熱効率を高めるようなヒートパターンを外れるような場
合は抽出ピツチを変更して在炉時間を調整する。第13
図にこの制御フローを示す。このようにして線混が発生
しないような下限の加熱時間が厳守され、必要以上に加
熱しないように制御され、その結果省エネルギー率10
(f)、スケールロス1%の減少が計られ、成品の磁性
も安定化することができる。本発明のスラブ加熱条件は
いかなる加熱制御方法にシいても一方向性電磁鋼板製造
用スラブの制御指標として適用できるものである。
If the time in the furnace at 1300°C or higher for this reference slab is insufficient, first increase the furnace temperature, and if the time exceeds the furnace temperature, lower the furnace temperature. If this furnace temperature range becomes impossible due to equipment operation constraints, or if it deviates from the heat pattern that increases the thermal efficiency of the entire furnace (for multi-zone furnaces), change the extraction pitch. Adjust furnace time. 13th
The figure shows this control flow. In this way, the lower limit heating time that does not cause wire mixing is strictly observed, and the heating is controlled so as not to exceed the necessary level, resulting in an energy saving rate of 10.
(f) The scale loss is reduced by 1%, and the magnetism of the finished product can be stabilized. The slab heating conditions of the present invention can be applied as a control index for slabs for producing unidirectional electrical steel sheets, regardless of any heating control method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスラブ測温法の説明図、第2図は加熱炉内にお
けるスラブ測温例1を示す図表、第3図はスラブ測温例
1におけるスラブマクロエツチ組織を示す金属断面写真
図、第4図は粒成長率の定義の説明図、第5図は加熱炉
内におけるスラブ測温例2を示す図表、第6図はスラプ
測温例2におけるスラプマクロエツチ組織を示す金属断
面写真図、第7図はスラブ測温例2における温度勾配の
経時変化を示す図表、第8図は加熱炉内におけるスラブ
測温例3を示す図表、第9図はスラブ測温例3における
スラブマクロエツチ組織を示す金属断面写真図、第10
図はスラブ測温例3に}ける温度勾配の経時変化を示す
図表、第11図は1300℃以上の在炉時間と粒成長率
との関係を示す図表、第12図は加熱炉制御概念図、第
13図はスラブ加熱制御フローを示す図である。
Fig. 1 is an explanatory diagram of the slab temperature measurement method, Fig. 2 is a chart showing slab temperature measurement example 1 in a heating furnace, Fig. 3 is a metal cross-sectional photograph showing the slab macroetch structure in slab temperature measurement example 1, Fig. 4 is an explanatory diagram of the definition of grain growth rate, Fig. 5 is a chart showing slab temperature measurement example 2 in a heating furnace, and Fig. 6 is a metal cross-sectional photograph showing the slap macroetch structure in slap temperature measurement example 2. , Fig. 7 is a chart showing the change in temperature gradient over time in slab temperature measurement example 2, Fig. 8 is a chart showing slab temperature measurement example 3 in a heating furnace, and Fig. 9 is a chart showing slab macro etching in slab temperature measurement example 3. Metal cross-sectional photograph showing the structure, No. 10
The figure is a chart showing the change in temperature gradient over time in Slab Temperature Measurement Example 3, Figure 11 is a chart showing the relationship between the time in the furnace above 1300°C and the grain growth rate, and Figure 12 is a conceptual diagram of heating furnace control. , FIG. 13 is a diagram showing the slab heating control flow.

Claims (1)

【特許請求の範囲】[Claims] 1 Si2.5〜4.0%を主成分として含む連鋳スラ
ブを1回の熱間圧延工程により熱延し、次いで冷延焼鈍
する一方向性電磁鋼板の製造方法において、熱延前のス
ラブ加熱条件としてスラブ中心温度を1350℃以下と
し、スラブ厚み中心温度が、1300℃以上の加熱時間
を下記に示す時間範囲に設定して制御することを特徴と
する一方向性電磁鋼板製造用スラブの加熱方法。
1. In a method for producing a grain-oriented electrical steel sheet in which a continuously cast slab containing 2.5 to 4.0% Si as a main component is hot-rolled in one hot rolling process and then cold-rolled and annealed, the slab before hot-rolling is A slab for producing unidirectional electrical steel sheets, characterized in that the heating conditions include a slab center temperature of 1350°C or lower, and a heating time for which the slab thickness center temperature is 1300°C or higher set within the time range shown below. Heating method.
JP55056191A 1980-04-30 1980-04-30 Method for heating slabs for producing unidirectional electrical steel sheets Expired JPS5920732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55056191A JPS5920732B2 (en) 1980-04-30 1980-04-30 Method for heating slabs for producing unidirectional electrical steel sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55056191A JPS5920732B2 (en) 1980-04-30 1980-04-30 Method for heating slabs for producing unidirectional electrical steel sheets

Publications (2)

Publication Number Publication Date
JPS56152926A JPS56152926A (en) 1981-11-26
JPS5920732B2 true JPS5920732B2 (en) 1984-05-15

Family

ID=13020209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55056191A Expired JPS5920732B2 (en) 1980-04-30 1980-04-30 Method for heating slabs for producing unidirectional electrical steel sheets

Country Status (1)

Country Link
JP (1) JPS5920732B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657854B2 (en) * 1985-07-08 1994-08-03 川崎製鉄株式会社 Method of heating grain-oriented silicon steel slab

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539229A (en) * 1976-07-13 1978-01-27 Nippon Steel Corp Method of making unidirectional electromagnetic steel plate by applying continuous casting process
JPS5319913A (en) * 1976-08-10 1978-02-23 Nippon Steel Corp Preparation of unidirectional silicon steel sheet superior in magnetism from continuous casting slab

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539229A (en) * 1976-07-13 1978-01-27 Nippon Steel Corp Method of making unidirectional electromagnetic steel plate by applying continuous casting process
JPS5319913A (en) * 1976-08-10 1978-02-23 Nippon Steel Corp Preparation of unidirectional silicon steel sheet superior in magnetism from continuous casting slab

Also Published As

Publication number Publication date
JPS56152926A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
US4623407A (en) Method for producing a grain-oriented electrical steel sheet having a high magnetic flux density
JP5712491B2 (en) Method for producing grain-oriented electrical steel sheet
US5116435A (en) Method for producing non-oriented steel sheets
JPS6037172B2 (en) Manufacturing method of unidirectional silicon steel sheet
JPS5933170B2 (en) Method for manufacturing aluminum-containing unidirectional silicon steel sheet with extremely high magnetic flux density
EP0019289A2 (en) Process for producing grain-oriented silicon steel strip
GB2079314A (en) Secondary recrystallisation of grainoriented electromagnetic steel sheet
KR930007312B1 (en) Method of producing cube-on-edge oriented sillicon steel from strand cast slab
JPS5948935B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
US5330586A (en) Method of producing grain oriented silicon steel sheet having very excellent magnetic properties
JPS5920732B2 (en) Method for heating slabs for producing unidirectional electrical steel sheets
JP2004506093A (en) Method of adjusting inhibitor dispersion in production of grain-oriented electrical steel strip
JP2006206997A (en) Method for heating grain-oriented electromagnetic steel slab
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPS5843446B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2536976B2 (en) Manufacturing method of non-oriented electrical steel sheet having excellent surface properties and magnetic properties
JPS6261646B2 (en)
JP7557123B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP3336172B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JPS62130217A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JPH06328214A (en) Method for preventing season cracking of ferritic stainless steel
JPS6210213A (en) Production of grain oriented silicon steel sheet having good electromagnetic characteristic
JP3474586B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH07238322A (en) Method for preventing surface cracking in steel slab