JPH06328214A - Method for preventing season cracking of ferritic stainless steel - Google Patents

Method for preventing season cracking of ferritic stainless steel

Info

Publication number
JPH06328214A
JPH06328214A JP12138893A JP12138893A JPH06328214A JP H06328214 A JPH06328214 A JP H06328214A JP 12138893 A JP12138893 A JP 12138893A JP 12138893 A JP12138893 A JP 12138893A JP H06328214 A JPH06328214 A JP H06328214A
Authority
JP
Japan
Prior art keywords
slab
temperature
stainless steel
ferritic stainless
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12138893A
Other languages
Japanese (ja)
Inventor
Iemitsu Takigawa
家光 瀧川
Hitoshi Sakagami
仁志 坂上
Fujiya Nogami
不二哉 野上
Sumio Suzuki
澄雄 鈴木
Kazuhisa Tanaka
和久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12138893A priority Critical patent/JPH06328214A/en
Publication of JPH06328214A publication Critical patent/JPH06328214A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To provide a producing method, by which season cracking is not generated even if a high purity ferritic stainless steel cast slab cast with a continuous casting machine is cooled to the room temp. CONSTITUTION:In a stainless steel sheet production process of hot-rolling a slab after casting the high purity ferritic stainless steel with the continuous casting machine, the cast slab just after the completion of the solidification in the continuous casting machine is cooled so that the temp. difference between the surface temp. at the center part of the wide surface of the cast slab and the surface temp. at the center part of the narrow surface is controlled within 200 deg.C. Then, at the time of reheating the cast slab cooled to the room temp. once, by controlling the temp. difference between the surface temp. at the center part of the wide surface of the cast slab and the surface temp. at the center part of the narrow surface within 200 deg.C, the season cracking of the high purity ferritic stainless steel is prevented from generating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐食性に優れるフェライ
ト系ステンレス鋼板の製造プロセスに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for producing a ferritic stainless steel sheet having excellent corrosion resistance.

【0002】[0002]

【従来の技術】高CrでかつC,Nを低減したフェライ
ト系ステンレス鋼は、18Cr−8Ni鋼に特有の塩化
物応力腐食割れをおこさず安価な耐食性材料として重要
性を増し、かつ用途によってはMo,Ni,Cu等を選
択添加したり、不純物のSやOを極端に低減して耐食性
の向上、耐銹性の向上、耐酸化性の向上を図り多くの用
途に使用されはじめている。一方、これらの優れた特性
を有するフェライト系ステンレス鋼の欠点の1つに、特
開昭54−128464号公報、特開昭58−3973
2号公報、特開昭60−2628号公報、特開昭60−
2622号公報、等に開示されている通り、CC鋳片の
冷却中、あるいは冷却後の鋳片表面手入れ時、更には次
工程の熱間圧延工程の輸送中や加熱中に、スラブの断面
に貫通した割れ(置き割れと呼ぶ)が発生する問題があ
り、この置き割れが発生すると鋳片を圧延することがで
きず製造不可能となる。特に高Cr鋼でNb,Mo,A
lを多量に含有する場合は必ず置き割れが発生すると言
っても過言ではない。
2. Description of the Prior Art Ferritic stainless steels having high Cr and reduced C and N have become more important as inexpensive corrosion resistant materials that do not cause chloride stress corrosion cracking peculiar to 18Cr-8Ni steels, and depending on the application. Mo, Ni, Cu, etc. are selectively added, and impurities such as S and O are extremely reduced to improve corrosion resistance, rust resistance, and oxidation resistance, and they are beginning to be used in many applications. On the other hand, one of the drawbacks of the ferritic stainless steels having these excellent characteristics is disclosed in JP-A-54-128464 and JP-A-58-3973.
No. 2, JP-A-60-2628, JP-A-60-
As disclosed in Japanese Patent No. 2622, etc., a slab has a cross section during cooling of a CC slab, during maintenance of the slab surface after cooling, and during transportation or heating of the hot rolling process of the next process. There is a problem that a piercing crack (called a set crack) occurs, and when this set crack occurs, the cast piece cannot be rolled and cannot be manufactured. Especially for high Cr steel, Nb, Mo, A
It is no exaggeration to say that when a large amount of 1 is contained, cracks will always occur.

【0003】このような置き割れに対して従来以下に述
べるような対策が上記特許文献に示されている。まず特
開昭54−128464号公報、特開昭58−3973
2号公報においては、鋳片を150℃以下に冷却しない
こと及び遷移温度以下(実施例では300℃)に冷却し
ないことを開示している。一方、特開昭60−2628
号公報、特開昭60−2622号公報では鋳片の冷却に
あたって極めて徐冷する方法、すなわち800〜130
0℃から300℃まで40℃/hr以下の冷却速度で徐
冷する方法(800℃から300℃まで12.5hr以
上)や、700℃から400℃まで18℃/hr以下の
冷却速度で徐冷(16.7hr以上)し、かつ200℃
未満に低下させない方法を開示している。このように従
来の知見では、鋳片を150℃以上の温度条件に保持す
るか、あるいは700℃から400℃近辺まで極めて徐
冷する方法の二つの考え方が知られている。
Conventionally, the above-mentioned measures have been disclosed in the above-mentioned patent documents for the above-mentioned cracks. First, JP-A-54-128464 and JP-A-58-3973.
Japanese Patent Publication No. 2 discloses that the slab is not cooled to 150 ° C. or lower and is not cooled to the transition temperature or lower (300 ° C. in the examples). On the other hand, JP-A-60-2628
In Japanese Patent Laid-Open No. 60-2622, a method of extremely slow cooling when cooling a cast piece, that is, 800 to 130
A method of gradually cooling from 0 ° C to 300 ° C at a cooling rate of 40 ° C / hr or less (800 ° C to 300 ° C for 12.5 hr or more), or a slow cooling rate of 700 ° C to 400 ° C at a cooling rate of 18 ° C / hr or less. (16.7 hours or more), and 200 ° C
It discloses a method of not lowering the value below. As described above, according to the conventional knowledge, two ideas are known, that is, a method of holding the slab at a temperature condition of 150 ° C. or higher or an extremely slow cooling from 700 ° C. to around 400 ° C.

【0004】[0004]

【発明が解決しようとする課題】フェライト系ステンレ
ス鋼の利点が明らかになるにつれて、これらの鋼種の生
産量が増すと共に、更に優れた特性を有する材質(例え
ば25Cr−4Mo系)にまで鋼種の拡大が進んでい
る。しかしながら、このフェライト系ステンレス鋼を製
造する工程において、置き割れを防止するための冷片
(鋳片表面温度で100℃以下)不可の条件や、高温域
の徐冷条件が、製造上の制約となり、コスト、納期、生
産性の点で大きな障害となりつつある。
As the advantages of ferritic stainless steel become clearer, the production amount of these steel types increases and the steel types expand to materials having even more excellent properties (for example, 25Cr-4Mo type). Is progressing. However, in the process of producing this ferritic stainless steel, the condition that cold pieces (100 ° C. or less at the surface temperature of the slab) cannot be used in order to prevent cracking in place and the gradual cooling conditions in the high temperature range are constraints on production. , Cost, delivery time, and productivity are becoming major obstacles.

【0005】例えば、鋳片を150℃以上の温度条件に
保持する方法では、温度確保のための保熱設備(バーナ
ー等を設置した鋳片昇熱機能を有する炉)および保熱搬
送台車が必要であり、ステンレス鋼の生産量の増加に伴
いこれらの設備の増設が必要となり、多大な設備投資を
要すことになる。更に、製鋼工場と熱延工場とが生産ス
ケジュール上マッチングがとれない場合には長時間の保
熱が必要となり、燃料費の増大を招くことになる。ま
た、700℃から400℃近辺まで極めて徐冷する方法
においても、鋳片徐冷設備(保温ピット)が必要になる
と共に、徐冷に長時間要するため生産性の低下を招く。
このように従来の置き割れを防止対策では、生産量の増
加に伴う設備投資、燃料コスト、生産性の面で問題があ
り、これらの課題を解決できる鋳片置き割れ防止方法
(冷片取り扱いが可能な鋳片の処理方法)が強く求めら
れるようになった。
For example, in the method of holding the slab at a temperature condition of 150 ° C. or higher, a heat-retaining facility (a furnace having a slab heat-up function equipped with a burner, etc.) for securing the temperature and a heat-retaining carrier are required. Therefore, it is necessary to add these facilities as the production amount of stainless steel increases, and a large amount of capital investment is required. Furthermore, when the steelmaking factory and the hot rolling factory cannot be matched in terms of production schedule, heat retention is required for a long time, which leads to an increase in fuel cost. Further, even in the method of extremely slow cooling from 700 ° C. to around 400 ° C., a slow cooling facility for casting slabs (heat-retaining pit) is required, and since slow cooling takes a long time, productivity is lowered.
As described above, the conventional measures to prevent the laying cracks have problems in terms of capital investment, fuel cost, and productivity associated with the increase in the production amount. There is a strong demand for a possible slab processing method.

【0006】[0006]

【課題を解決するための手段】本発明者等は、フェライ
ト系ステンレス鋼を、連続鋳造機で鋳造した後、熱間圧
延機で圧延するステンレス鋼板製造プロセスにおいて、
連続鋳造機での鋳片凝固完了直後の鋳片温度を鋳片広面
中央部表面温度と鋳片狭面中央部表面温度との温度偏差
が200℃以内となるように冷却を制御すると共に、一
旦該鋳片を空冷あるいは保温ピット内で常温まで冷却し
再び熱間圧延のための再加熱する際、鋳片中心部の温度
が200℃となるまでの鋳片温度を広面中央部表面温度
と狭面中央部表面温度との温度偏差が200℃以内とな
るよう制御することを特徴とするフェライト系ステンレ
ス鋼の置き割れ防止方法を発明した。更に本発明では鋳
片のTiSとTiCの総量を次式に示すように規制する
ことで、前記の温度の効果をより顕著に発揮できる。 [Ti]%×[S]%+[Ti]%×[C]%≦0.0
025
Means for Solving the Problems In the process for producing a stainless steel sheet in which a ferritic stainless steel is cast by a continuous casting machine and then rolled by a hot rolling machine,
The slab temperature immediately after the solidification of the slab in the continuous casting machine is controlled such that the temperature deviation between the surface temperature of the wide surface of the slab and the surface temperature of the narrow surface of the narrow surface of the slab is 200 ° C. or less. When the slab is cooled by air cooling or in a heat retaining pit to room temperature and then reheated for hot rolling again, the slab temperature until the temperature of the slab center reaches 200 ° C. The invention has invented a method for preventing misplacement cracking of ferritic stainless steel, which is characterized by controlling the temperature deviation from the surface temperature of the center of the surface to be within 200 ° C. Further, in the present invention, by controlling the total amount of TiS and TiC of the cast slab as shown in the following equation, the effect of the above temperature can be more remarkably exhibited. [Ti]% × [S]% + [Ti]% × [C]% ≦ 0.0
025

【0007】以下本発明について詳細に説明する。フェ
ライト系ステンレス鋼の鋳片置き割れは、連続鋳造機で
鋳造した鋳片を常温まで冷却する過程、および一旦空冷
あるいは保温ピット内で常温まで冷却し再び熱間圧延の
ための鋳片を再加熱する際に発生する割れで、図1に示
すように鋳片の幅方法の中央部に厚み方向に貫通した割
れが長手方向に数カ所に発生する現象のことを言う。こ
の置き割れは、フェライト系ステンレス鋼の材質的特性
である約200℃以下の低温での脆化現象に起因するも
のであり、従来はこの材質的特性改善、即ち結晶粒およ
び析出物等に着目した改善手段について種々の研究がな
されてきた。一方、本発明者等は、この置き割れの形
態、即ち幅方向の中央部に厚み方向に貫通した割れが長
手方向に数カ所に発生する現象に着目し、鋳片幅中央部
に発生する長手方向引っ張り応力に関する研究を行い、
置き割れを発生させない製造方法を見出した。
The present invention will be described in detail below. Cast slab cracking of ferritic stainless steel is caused by the process of cooling the cast slab cast by a continuous casting machine to room temperature, and by re-heating the slab for hot rolling once by cooling in air or in the heat retaining pit to room temperature. As shown in FIG. 1, a crack that occurs when the slab penetrates in the widthwise direction of the slab and penetrates in the thickness direction at several points in the longitudinal direction. This in-place crack is caused by the embrittlement phenomenon at a low temperature of about 200 ° C. or less, which is a material property of ferritic stainless steel, and conventionally, attention was paid to the improvement of the material property, that is, crystal grains and precipitates. Various studies have been made on the improved means. On the other hand, the inventors of the present invention focused on the form of this placement crack, that is, the phenomenon that cracks penetrating in the thickness direction at the central portion in the width direction occur at several places in the longitudinal direction, and Research on tensile stress,
We have found a manufacturing method that does not cause misplacement cracks.

【0008】その考え方を図面を用いて説明する。ま
ず、連続鋳造機で鋳造した鋳片を常温まで冷却する過程
で鋳片内部に発生する割れについては、図2に示すよう
に鋳片広面中央部表面温度TC1と鋳片狭面中央部表面温
度TC2の温度偏差(TC1−TC2)により常温まで冷却し
た後の鋳片状況が大きく異なることが判明した。即ち、
この鋳片幅方向の温度偏差が小さい場合には、内部に残
留する応力が小さいため鋳片内部には微細なクラックが
多数存在するものの、鋳片表層部にはこの割れが伝播し
ていない。ここで鋳片の狭面とは鋳造方向に平行な4面
のうち面積の小さい2面のことを言い、広面とは鋳造方
向に平行な4面のうち面積の大きい2面のことを言う。
The concept will be described with reference to the drawings. First, regarding cracks that occur inside the slab in the process of cooling the slab cast by the continuous casting machine to room temperature, as shown in FIG. 2, the slab wide surface central part surface temperature T C1 and the slab narrow surface central part surface slab situation after cooling to room temperature was found to vary greatly by temperature deviation in temperature T C2 (T C1 -T C2) . That is,
When the temperature deviation in the width direction of the slab is small, the stress remaining inside is small, so many fine cracks exist inside the slab, but these cracks do not propagate to the surface layer of the slab. Here, the narrow surface of the slab refers to two surfaces having a small area out of the four surfaces parallel to the casting direction, and the wide surface refers to two surfaces having a large area out of the four surfaces parallel to the casting direction.

【0009】しかしながら、この温度偏差が大きい場合
には、内部に残留する引っ張り応力が増大するため、鋳
片内部に生成したクラックは鋳片表層部に伝播し、鋳片
表面にまで貫通した割れを形成する。一旦この割れが鋳
片表面に達すると、割れを生じた破面は外気(空気)と
接するため破面上の空気酸化によるスケール層を形成
し、圧延時にこの割れを圧着することが不可能となる。
However, when this temperature deviation is large, the tensile stress remaining inside increases, so the cracks generated inside the slab propagate to the surface layer of the slab and cracks that penetrate to the surface of the slab. Form. Once this crack reaches the slab surface, the cracked fracture surface comes into contact with the outside air (air), so a scale layer is formed on the fracture surface by air oxidation, and it becomes impossible to crimp this crack during rolling. Become.

【0010】一方、常温まで冷却した鋳片を再加熱し熱
間圧延する過程での鋳片内部に発生する割れについて
も、図3に示すように再加熱時の鋳片広面中央部表面温
度TH1と鋳片狭面中央部表面温度TH2の温度偏差(TH1
−TH2)により、熱間圧延後の鋼片の状況が大きく異な
ることが判明した。常温まで冷却した段階で表面にまで
クラックが伝播していない鋳片を用い、再加熱・熱間圧
延を行ったが、再加熱時の鋳片幅方向の温度偏差(TH1
−TH2)が小さい場合には、加熱中鋳片内部に発生する
熱応力が小さいため、加熱前に生じていた微細なクラッ
クは若干亀裂が進展するものの、加熱中にはクラックが
鋳片表面に達することがなく、更にこの鋳片を熱間圧延
すると、この内部のクラックの表面は酸化されていない
ため、圧延時に圧着され欠陥として鋼片内に残留しな
い。
On the other hand, as shown in FIG. 3, with respect to cracks generated inside the slab in the process of reheating and hot rolling the slab cooled to room temperature, the surface temperature T of the wide surface center of the slab during reheating is shown in FIG. H1 and slab Semamen central surface producing temperature T H2, the temperature deviation (T H1
The -T H2), conditions of the steel strip after hot rolling is found to differ greatly. Reheating and hot rolling were performed using a slab in which cracks did not propagate to the surface when cooled to room temperature, but the temperature deviation in the slab width direction during reheating (T H1
When -T H2 ) is small, the thermal stress generated inside the slab during heating is small, so the microscopic cracks that had been generated before heating may develop slightly, but during heating, cracks may develop on the surface of the slab. When the slab is hot-rolled further, the surface of the crack inside the slab is not oxidized, so that the slab does not remain in the steel slab as a defect due to pressure bonding during rolling.

【0011】しかしながら、この再加熱時の鋳片幅方向
の温度偏差が大きい場合には、鋳片内部に長さ方向に生
ずる引っ張り応力が増大するため、鋳片内部のクラック
は鋳片表層部に伝播し、加熱中に鋳片表面にまで貫通し
た割れを形成する。一旦この割れが鋳片表面に達する
と、冷却時の割れと同様に割れ破面が外気(空気)と接
するため破面上の空気酸化によるスケール層を形成し、
圧延時にこの割れを圧着することができなくなる。
However, when the temperature deviation in the width direction of the slab during reheating is large, the tensile stress generated in the length direction inside the slab increases, so cracks inside the slab are generated in the surface layer of the slab. A crack that propagates and penetrates to the surface of the slab during heating is formed. Once this crack reaches the surface of the slab, the crack fracture surface comes into contact with the outside air (air) as in the case of cooling, so a scale layer is formed on the fracture surface by air oxidation,
It becomes impossible to crimp this crack during rolling.

【0012】即ち、高純フェライト系ステンレス鋼の鋳
片置き割れを防止するには、鋳片内部に生成する微細ク
ラックを熱間圧延するまでの過程で破面を酸化させず、
熱間圧延でクラックを圧着することで、可能となる。こ
の鋳片内部のクラック生成挙動に関しては、鋳片の広面
中央部表面温度と狭面中央部表面温度との温度偏差で推
定でき、連続鋳造機鋳片冷却時の鋳片凝固完了直後の広
面中央部表面温度と狭面中央部表面温度との温度偏差が
200℃以内となるよう冷却水量を制御し、また、一旦
該鋳片を空冷あるいは保温ピット内で常温まで冷却した
鋳片を再び熱間圧延のための再加熱する際の鋳片中心部
の温度が200℃となるまでの鋳片温度を広面中央部表
面温度と狭面中央部表面温度との温度偏差が200℃以
内となるよう制御すれば、置き割れが回避できる。
That is, in order to prevent slab-deposit cracking of high-purity ferritic stainless steel, the fracture surface is not oxidized in the process of hot rolling the fine cracks generated inside the slab,
It becomes possible by pressing the cracks by hot rolling. Regarding the crack generation behavior inside the slab, it can be estimated by the temperature deviation between the surface temperature of the wide surface center and the surface temperature of the narrow surface of the slab. The amount of cooling water is controlled so that the temperature deviation between the surface temperature of the part and the surface temperature of the central part of the narrow surface is within 200 ° C., and the slab, which has been once air-cooled or cooled to room temperature in the heat retention pit, is hot again. The temperature of the slab at the time of reheating for rolling to reach 200 ° C at the center of the slab is controlled so that the temperature difference between the surface temperature at the center of the wide surface and the surface temperature at the center of the narrow surface is within 200 ° C. By doing so, cracking can be avoided.

【0013】更に、鋳片内部に生成する微細クラックの
進展を抑制するためには、材質的特性改善が有効であ
り、本発明者らは析出物等に着目した改善手段を探索
し、鋳片内部に析出するTiSとTiCの総量、を以下
に示す式により規制することで前述の効果をより顕著に
発揮できることを発見した(図4)。 [Ti]%×[S]%+[Ti]%×[C]%≦0.0
025 このような成分系に調整し、前述した温度制御を実施す
れば、鋳片の置き割れはほぼ完全に防止できる。[T
i]%×[S]%が0.0025より高くなるとTiS
として結晶粒界への析出が発生し、粒界の強度低下によ
り置き割れが発生する。また[Ti]%×[C]%につ
いても同様に0.0025より高くなるとTiCとして
結晶粒界への析出が発生し、粒界の強度低下により置き
割れが発生する。このような理由により[Ti]%×
[S]%+[Ti]%×[C]%≦0.0025にする
ことで鋳片の置き割れが防止できるものである。
Further, in order to suppress the development of fine cracks generated inside the cast piece, it is effective to improve the material properties, and the inventors of the present invention searched for an improving means focusing on precipitates and the like, It was discovered that the above effect can be more remarkably exerted by controlling the total amount of TiS and TiC precipitated inside by the formula shown below (FIG. 4). [Ti]% × [S]% + [Ti]% × [C]% ≦ 0.0
By adjusting to such a component system and performing the above-mentioned temperature control, it is possible to almost completely prevent the slab from cracking. [T
When i]% × [S]% is higher than 0.0025, TiS
As a result, precipitation occurs at the crystal grain boundaries, and the strength of the grain boundaries is reduced, resulting in cracks. Similarly, when [Ti]% × [C]% is higher than 0.0025, TiC is precipitated at the crystal grain boundary and the strength of the grain boundary is reduced, resulting in cracking. For this reason, [Ti]% ×
By setting [S]% + [Ti]% × [C]% ≦ 0.0025, it is possible to prevent the slab from cracking.

【0014】[0014]

【実施例】通常のLD−VOD法により表1に示す成分
のフェライト系ステンレス鋼を溶製した。その後、連続
鋳造機で250mm厚みの鋳片を鋳造し、連続鋳造機二
次冷却の水量および鋳片エッジ部の冷却水密度を変更
し、凝固完了直後の鋳片広面中央部表面温度と狭面中央
部表面温度との温度偏差を制御した。CC出片後の鋳片
は半量は約800℃から保温ピット内で48時間徐冷し
た後冷片化し残りの鋳片は約800℃から大気放冷とし
て、溶鋼成分および連続鋳造機出片後の鋳片冷却条件、
および常温からの鋳片加熱条件を表2に示すように条件
を変更し、テストを実施した。その結果、本法の適用に
より置き割れ発生率は大幅に低減し、ほぼ完全に置き割
れを防止することができた。
[Examples] Ferrite-based stainless steel having the components shown in Table 1 was melted by the usual LD-VOD method. Then, cast a slab with a thickness of 250 mm in a continuous casting machine, change the amount of water for secondary cooling of the continuous casting machine and the cooling water density at the edge of the slab, and change the surface temperature and narrow surface of the wide surface of the slab immediately after solidification is completed. The temperature deviation from the central surface temperature was controlled. Half of the slabs after CC extruding are gradually cooled from about 800 ° C in the heat retention pit for 48 hours, then cooled into pieces, and the remaining slabs are allowed to cool to the atmosphere from about 800 ° C. Slab cooling conditions,
And, the test was carried out by changing the conditions for heating the slab from room temperature as shown in Table 2. As a result, by applying this method, the occurrence rate of misplaced cracks was significantly reduced, and it was possible to almost completely prevent misplaced cracks.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】低C,Nとした高Cr系のフェライト系
ステンレス鋼は耐食性および耐酸化性に優れ、多くの分
野で使用されているが、製造上の欠点である置き割れに
対して有効な対策が望まれていた。従来法は、冷却途中
で極端に徐冷する方法や150℃〜350℃以上に鋳片
を保温処理する方法が知られていた。これに対して本発
明は連続鋳造機の冷却パターン、加熱炉の加熱パター
ン、および析出物生成元素(Ti,C,S)をコントロ
ールするだけで、置き割れを生ずることなく鋳片を常温
まで冷却することができるプロセスであることから、コ
ストや生産性の点で本発明は著しい利点がある。
EFFECT OF THE INVENTION Ferrite stainless steel of low Cr and high Cr type, which is excellent in corrosion resistance and oxidation resistance, is used in many fields, but it is effective against a crack in production which is a manufacturing defect. It was hoped that some measures would be taken. As a conventional method, a method of gradually cooling gradually during cooling or a method of heat-retaining a slab at 150 ° C. to 350 ° C. or more has been known. On the other hand, the present invention controls the cooling pattern of the continuous casting machine, the heating pattern of the heating furnace, and the precipitate-forming elements (Ti, C, S) to cool the slab to room temperature without causing cracks. Since the process can be performed, the present invention has significant advantages in terms of cost and productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】置き割れ発生状況を示す図、FIG. 1 is a diagram showing a situation where a placement crack occurs,

【図2】CC凝固完了直後の鋳片幅方向温度偏差の冷却
後鋳片内部のクラック生成状況に及ぼす影響を示す図、
FIG. 2 is a diagram showing the influence of the temperature deviation in the slab width direction immediately after the completion of CC solidification on the crack generation state inside the slab after cooling,

【図3】常温まで冷却した鋳片を再加熱する際の、鋳片
幅方向温度偏差の加熱中および圧延後の鋳片内部クラッ
ク生成状況に及ぼす影響を示す図、
FIG. 3 is a diagram showing the influence of the temperature deviation of the slab width direction on the slab internal crack formation during heating and after rolling, when reheating the slab cooled to room temperature;

【図4】析出物生成元素(Ti,C,S)の置き割れに
与える影響を示す図である。
FIG. 4 is a diagram showing an influence of a precipitate-forming element (Ti, C, S) on a crack in place.

【符号の説明】[Explanation of symbols]

1 鋳片 2 置き割れ 3 微小クラック 1 Cast piece 2 Place crack 3 Micro crack

フロントページの続き (72)発明者 鈴木 澄雄 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 田中 和久 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内Front page continuation (72) Sumio Suzuki No. 1-1 Tobata-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture Inside the Yawata Works, Nippon Steel Corporation (72) No. 1 Kazuhisa Tanaka, Tobata-cho, Tobata-ku, Kitakyushu, Fukuoka No. 1 inside Nippon Steel Co., Ltd. Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 フェライト系ステンレス鋼を、連続鋳造
機で鋳造した後、熱間圧延機で圧延するステンレス鋼板
製造プロセスにおいて、連続鋳造機での鋳片凝固完了直
後の鋳片温度を鋳片広面中央部表面温度と鋳片狭面中央
部表面温度との温度偏差が200℃以内となるように冷
却を制御すると共に、一旦該鋳片を空冷あるいは保温ピ
ット内で常温まで冷却し再び熱間圧延のための再加熱す
る際、鋳片中心部の温度が200℃となるまでの鋳片温
度を広面中央部表面温度と狭面中央部表面温度との温度
偏差が200℃以内となるよう制御することを特徴とす
るフェライト系ステンレス鋼の置き割れ防止方法。
1. In a stainless steel plate manufacturing process in which ferritic stainless steel is cast by a continuous casting machine and then rolled by a hot rolling mill, the slab temperature immediately after completion of solidification of the slab in the continuous casting machine Cooling is controlled so that the temperature deviation between the surface temperature of the central part and the surface temperature of the narrow part of the slab is 200 ° C or less, and the slab is once air-cooled or cooled to room temperature in the heat retention pit and hot-rolled again. For reheating, the temperature of the slab until the temperature of the slab center reaches 200 ° C is controlled so that the temperature deviation between the surface temperature of the wide center and the surface temperature of the narrow center is within 200 ° C. A preventive method for preventing ferritic stainless steel from placing cracks.
【請求項2】 フェライト系ステンレス鋼において[T
i]%×[S]%+[Ti]%×[C]%≦0.002
5に成分を調整し、連続鋳造機での鋳片凝固完了直後の
鋳片温度を鋳片広面中央部表面温度と鋳片狭面中央部表
面温度との温度偏差が200℃以内となるように冷却を
制御すると共に、一旦該鋳片を空冷あるいは保温ピット
内で常温まで冷却し再び熱間圧延のための再加熱する
際、鋳片中心部の温度が200℃となるまでの鋳片温度
を広面中央部表面温度と狭面中央部表面温度との温度偏
差が200℃以内となるよう制御することを特徴とする
フェライト系ステンレス鋼の置き割れ防止方法。
2. In ferritic stainless steel, [T
i]% × [S]% + [Ti]% × [C]% ≦ 0.002
The components were adjusted to 5 so that the temperature of the slab immediately after the solidification of the slab in the continuous casting machine is 200 ° C or less between the surface temperature of the wide surface of the slab and the surface temperature of the narrow surface of the slab. While controlling the cooling, when the slab is once cooled to room temperature in the air-cooled or heat-retaining pit and then reheated for hot rolling, the slab temperature until the temperature of the slab center reaches 200 ° C. A method for preventing disposition cracking of ferritic stainless steel, which comprises controlling the temperature deviation between the surface temperature of the wide surface central part and the surface temperature of the narrow surface central part within 200 ° C.
JP12138893A 1993-05-24 1993-05-24 Method for preventing season cracking of ferritic stainless steel Withdrawn JPH06328214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12138893A JPH06328214A (en) 1993-05-24 1993-05-24 Method for preventing season cracking of ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12138893A JPH06328214A (en) 1993-05-24 1993-05-24 Method for preventing season cracking of ferritic stainless steel

Publications (1)

Publication Number Publication Date
JPH06328214A true JPH06328214A (en) 1994-11-29

Family

ID=14809966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12138893A Withdrawn JPH06328214A (en) 1993-05-24 1993-05-24 Method for preventing season cracking of ferritic stainless steel

Country Status (1)

Country Link
JP (1) JPH06328214A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065262A (en) * 2008-09-09 2010-03-25 Jfe Steel Corp Soaking annealing treatment method for high carbon steel
JP2014024087A (en) * 2012-07-26 2014-02-06 Nippon Steel & Sumitomo Metal Cooling method of cast piece
JP2020066007A (en) * 2018-10-22 2020-04-30 日本製鉄株式会社 Method for preventing delayed cracking of slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065262A (en) * 2008-09-09 2010-03-25 Jfe Steel Corp Soaking annealing treatment method for high carbon steel
JP2014024087A (en) * 2012-07-26 2014-02-06 Nippon Steel & Sumitomo Metal Cooling method of cast piece
JP2020066007A (en) * 2018-10-22 2020-04-30 日本製鉄株式会社 Method for preventing delayed cracking of slab

Similar Documents

Publication Publication Date Title
CA1072864A (en) Combined mechanical and thermal processing method for production of seamless steel pipe
KR20040073597A (en) Method and installation for producing a hot rolled strip from austenitic rust-resistant steels
US5009726A (en) Method of making non-oriented silicon steel sheets having excellent magnetic properties
KR101917466B1 (en) Thin and weather-resistable hot-rolled steel sheet having low deviation of mechanical property and excellent bendability, and method for manufacturing the same
EP0426869B1 (en) Process for manufacturing unidirectional silicon steel sheet excellent in magnetic properties
JPH06328214A (en) Method for preventing season cracking of ferritic stainless steel
WO1979000100A1 (en) A process for the production of sheet and strip from ferritic,stabilised,stainless chromium-molybdenum-nickel steels
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JP3126824B2 (en) Manufacturing method of stainless steel sheet
JP3917320B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JP3380472B2 (en) Manufacturing method of hot-rolled ferritic stainless steel strip
CN103237907B (en) Hot rolling method for silicon-ontaining steel slab
JP3026232B2 (en) Manufacturing method of thin stainless steel slab with excellent corrosion resistance and workability
JP2000080417A (en) Manufacture of hot rolled austenitic stainless steel strip
KR100934089B1 (en) Manufacturing method of composite tissue hot rolled steel
JPH0353025A (en) Manufacture of high heat-resistant and high-corrosion resistant ferritic stainless steel sheet
JP2002066601A (en) Method for preventing surface cracking of continuous cast slab under large reduction of hot rolled width
JP4151443B2 (en) Thin steel plate with excellent flatness after punching and method for producing the same
KR20020040438A (en) Manufacturing of low nickel containing stainless steel 304L plate
JPH08311557A (en) Production of ferritic stainless steel sheet free from ridging
CN116274368A (en) Production method of medium-high chromium nickel-saving austenitic stainless steel strip
JPH07238322A (en) Method for preventing surface cracking in steel slab
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPH0217614B2 (en)
JPS602622A (en) Method for rolling continuously cast billet of ferritic stainless steel containing niobium and copper

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801