JP2014024087A - Cooling method of cast piece - Google Patents

Cooling method of cast piece Download PDF

Info

Publication number
JP2014024087A
JP2014024087A JP2012165623A JP2012165623A JP2014024087A JP 2014024087 A JP2014024087 A JP 2014024087A JP 2012165623 A JP2012165623 A JP 2012165623A JP 2012165623 A JP2012165623 A JP 2012165623A JP 2014024087 A JP2014024087 A JP 2014024087A
Authority
JP
Japan
Prior art keywords
slab
cooling
cast pieces
content
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012165623A
Other languages
Japanese (ja)
Other versions
JP5846066B2 (en
Inventor
Yasuhiro Mizuno
泰宏 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012165623A priority Critical patent/JP5846066B2/en
Publication of JP2014024087A publication Critical patent/JP2014024087A/en
Application granted granted Critical
Publication of JP5846066B2 publication Critical patent/JP5846066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling method of cast pieces, by which the cast pieces obtained after continuous casting can be cooled to a normal temperature without occurrence of a surface crack due to thermal stress.SOLUTION: In the cooling method of cast pieces, the cast pieces are made of steel having 1 mass% or more of Si percentage content and are cut after continuous casting, and when a plurality of the cast pieces are stacked, the Si percentage content of the cast pieces and the length of the cast pieces satisfy: [Si]×L<A, wherein [Si] is the Si percentage content (mass%) of the cast pieces, L is the length (m) of the cast pieces, and A is a value (mass%×m) which is preliminarily obtained by an examination and at which the surface crack of the cast pieces according to a cooling rate of the surface of a width direction center of the cast piece positioned on the uppermost position of the cast pieces does not occur.

Description

本発明は、鋳片の冷却方法に関し、特に、Si含有率の高い鋼からなる鋳片であっても熱応力割れを防止することが可能な鋳片の冷却方法に関する。   The present invention relates to a slab cooling method, and more particularly, to a slab cooling method capable of preventing thermal stress cracking even for a slab made of steel having a high Si content.

Si含有率が高い鋼(例えばSi含有率が1.0質量%以上の鋼。以下「高Si鋼」ともいう。)からなる鋳片は、熱割れ感受性が高いため、表面に割れが発生しやすい。   A slab made of steel having a high Si content (for example, a steel having a Si content of 1.0% by mass or more, hereinafter also referred to as “high Si steel”) has high thermal cracking susceptibility, and thus cracks are generated on the surface. Cheap.

このような鋳片の表面割れを防止する方法が、特許文献1および2で提案されている。   Patent Documents 1 and 2 have proposed methods for preventing such surface cracks of a slab.

特許文献1では、Si含有率が1.50〜6.50wt%の鋳片を対象とし、Si含有率によって特定された、延性低下を示す上限温度より冷却することなく加熱炉に鋳片を加熱炉に装入し、均熱処理を行った後、熱間圧延を行うことが記載されている。   In Patent Document 1, a slab having a Si content of 1.50 to 6.50 wt% is targeted, and the slab is heated in a heating furnace without cooling from an upper limit temperature specified by the Si content and indicating a decrease in ductility. It is described that hot rolling is performed after charging in a furnace and soaking.

しかし、特許文献1に記載の方法では、上記のSi含有率によって特定された温度より冷却することなく加熱炉に装入しなければならないため、鋳造設備から加熱炉までの距離が短いこと、または鋳片の温度低下を防ぎつつ運搬することが可能な専用の台車を用意することが必要である。   However, in the method described in Patent Document 1, since the furnace must be charged without cooling from the temperature specified by the Si content, the distance from the casting equipment to the furnace is short, or It is necessary to prepare a dedicated cart that can be transported while preventing the temperature drop of the slab.

これと同様の問題は、高Si鋼からなる鋳片の表面割れを防止する方法として従来から用いられている、鋳片を高温の状態で連続鋳造機から搬出し、圧延のため改めて加熱する前に、鋳片端部を圧下する方法でも生じる。   A problem similar to this is that the slab, which has been conventionally used as a method for preventing surface cracking of a slab made of high-Si steel, is taken out of a continuous casting machine at a high temperature and before being heated again for rolling. In addition, a method of rolling down the end portion of the slab also occurs.

さらに、鋳造中に異常が生じた場合や、加熱炉への装入のタイミングを逸した場合等、加熱炉への鋳片の装入を適切な時期に行えなかった場合には、通常の冷却(例えば後述する徐冷または放冷)となり、表面割れの発生が余儀なくされる。   In addition, if an abnormality occurs during casting or the timing of charging the heating furnace is missed, the slab cannot be charged into the heating furnace at an appropriate time. (For example, slow cooling or natural cooling described later), and surface cracks are inevitably generated.

特許文献2では、高炭素マルテンサイト系ステンレス鋼の鋳片表面の熱割れを防止する方法として、鋳片の外部を保温カバーで囲覆して、冷却速度が10℃/h未満の超徐冷をする方法が記載されている。   In Patent Document 2, as a method of preventing thermal cracking on the surface of a slab of high carbon martensitic stainless steel, the outside of the slab is surrounded by a heat insulating cover, and ultra-slow cooling with a cooling rate of less than 10 ° C./h is performed. How to do is described.

しかし、特許文献2に記載の方法を高Si鋼からなる鋳片に適用した場合、Si含有率が比較的高い場合、または鋳片が長い場合には、鋳片の表面割れが発生することがあった。   However, when the method described in Patent Document 2 is applied to a slab made of high-Si steel, if the Si content is relatively high, or if the slab is long, surface cracks of the slab may occur. there were.

特開平2−38526号公報Japanese Patent Laid-Open No. 2-38526 特開昭60−9569号公報Japanese Unexamined Patent Publication No. 60-9568

上述のように、高Si鋼からなる鋳片の表面割れが発生するのを抑制すること、特に、高Si鋼からなる連続鋳造鋳片を鋳造後の高温から常温まで、表面割れの発生を抑制しつつ冷却することは困難であった。以下の説明では、「連続鋳造後、常温まで温度が低下する前の状態の鋳片」を「熱片」、「連続鋳造後、温度が低下して常温となった鋳片」を「冷片」ともいう。   As mentioned above, suppressing the occurrence of surface cracks in slabs made of high-Si steel, especially suppressing the occurrence of surface cracks from continuously cast slabs made of high-Si steel to high temperatures after casting. However, it was difficult to cool down. In the following description, “slab in the state after the continuous casting and before the temperature drops to room temperature” is referred to as “hot slab”, and “slab after the continuous casting the temperature is reduced to room temperature” as “cold slab” "

この表面割れの発生は、熱片は幅方向および長手方向に温度分布を有するため、そのまま放冷または水冷した場合には、温度が低い部位はより温度が低下して、局所的な熱応力が発生する。これに起因して、鋳片に表面割れが発生する。表面割れが大きい場合には、割れが鋳片の内部まで伝播し、鋳片を完全に分割することもある。   The occurrence of this surface crack is because the heat piece has a temperature distribution in the width direction and the longitudinal direction, and when it is left to cool or water-cooled as it is, the temperature is lowered at the lower temperature part, and local thermal stress is generated. Occur. Due to this, surface cracks occur in the slab. When the surface crack is large, the crack propagates to the inside of the slab, and the slab may be completely divided.

本発明は、この問題に鑑みてなされたものであり、鋳片を連続鋳造した後、所定の長さの熱片に切断し、冷却して冷片とするにあたり、熱応力による表面割れの発生を防止することが可能な鋳片の冷却方法を提供することを目的とする。   The present invention has been made in view of this problem. After continuously casting a slab, it is cut into hot pieces of a predetermined length, and when cooled to cold pieces, surface cracks are generated due to thermal stress. It aims at providing the cooling method of the slab which can prevent.

本発明者は、鋳片(熱片)の表面の冷却速度とSi含有率と鋳片の長さとの関係に着目し、鋳片における局所的な熱応力の緩和について検討した。その結果、鋳片表面の冷却速度に応じて、Si含有率と鋳片の長さの積が所定の値未満であれば、熱応力が緩和され、鋳片の表面割れを抑制できることを知見した。この検討内容については後述する。   The present inventor paid attention to the relationship between the cooling rate of the surface of the slab (hot piece), the Si content, and the length of the slab, and studied the relaxation of local thermal stress in the slab. As a result, according to the cooling rate of the slab surface, it was found that if the product of the Si content and the length of the slab is less than a predetermined value, the thermal stress is relaxed and surface cracks of the slab can be suppressed. . Details of this examination will be described later.

本発明は、この知見に基づいてなされたものであり、その要旨は、下記(1)〜(4)の鋳片の連続鋳造方法にある。   This invention is made | formed based on this knowledge, The summary exists in the continuous casting method of the slab of following (1)-(4).

(1)Si含有率が1質量%以上の鋼からなり、連続鋳造後に切断された鋳片の冷却方法であって、前記鋳片を複数本積み重ねた状態とし、前記鋳片のSi含有率と前記鋳片の長さが下記(1)式を満足することを特徴とする鋳片の冷却方法。
[Si]×L<A …(1)
ここで、[Si]:前記鋳片のSi含有率(質量%)、L:前記鋳片の長さ(m)、A:あらかじめ試験により求めた、前記鋳片のうち最も上に位置するものの幅方向中央の表面の冷却速度に応じた鋳片の表面割れが発生しない値(質量%×m)である。
(1) A cooling method for a slab made of steel having a Si content of 1% by mass or more and cut after continuous casting, wherein a plurality of the slabs are stacked, and the Si content of the slab The method for cooling a slab, wherein the length of the slab satisfies the following formula (1):
[Si] × L <A (1)
Here, [Si]: Si content (% by mass) of the slab, L: length (m) of the slab, A: the top of the slab obtained in advance by testing. It is a value (mass% x m) at which the surface crack of the slab does not occur according to the cooling rate of the surface in the center in the width direction.

(2)前記鋳片のうち最も上に位置するものの幅方向中央の表面の冷却速度を10℃/h以下とし、A=25とすることを特徴とする前記(1)に記載の鋳片の冷却方法。 (2) The cooling rate of the surface in the center in the width direction of the uppermost one of the slabs is set to 10 ° C./h or less, and A = 25. Cooling method.

(3)前記鋳片のうち最も上に位置するものの幅方向中央の表面の冷却速度を10℃/hを超える速度とし、A=10とすることを特徴とする前記(1)に記載の鋳片の冷却方法。 (3) The casting according to (1), wherein the cooling rate of the surface in the center in the width direction of the slab positioned at the top is a rate exceeding 10 ° C./h, and A = 10. How to cool a piece.

(4)L≦10であることを特徴とする前記(1)〜(3)のいずれかに記載の鋳片の冷却方法。 (4) The slab cooling method according to any one of (1) to (3), wherein L ≦ 10.

以下の説明では、鋳片を積み重ねることを「パイリング」ともいう。   In the following description, stacking slabs is also referred to as “piling”.

本発明の鋳片の冷却方法によれば、連続鋳造後の鋳片(熱片)を、表面割れを発生させることなく常温まで冷却し、冷片とすることができる。そのため、熱間圧延スケジュールに合わせて表面割れのない冷片を製造し、この冷片を素材としてコイルを製造することが可能となることから、不要な作り置きによるコイルの在庫の増加を防止することができる。また、小ロット材のオーダーに応じた圧延の実施が可能となる。   According to the method for cooling a slab of the present invention, a slab (hot piece) after continuous casting can be cooled to room temperature without causing surface cracks to form a cold piece. Therefore, it is possible to manufacture a cold piece without surface cracks in accordance with the hot rolling schedule, and to manufacture a coil using this cold piece as a raw material, thereby preventing an increase in coil inventory due to unnecessary preparation. be able to. In addition, it is possible to perform rolling according to the order of small lot materials.

また、従来、鋳片を手入れするために冷却すると、表面割れが発生していた鋼種では、鋳造後の鋳片を冷却することなく圧延し、コイルとした後で不良部をトリミング除去していたため歩留まりが低くなっていた。しかし、本発明の鋳片の冷却方法によれば、表面割れのない冷片を得ることができるため、鋳片段階での手入れが可能となり、鋳片を圧延してコイルとした後では不良部のトリミング除去が不要であり、歩留まりの低下を抑制できる。   Also, conventionally, in steel grades that had surface cracks when cooled to care for the slab, the cast slab was rolled without cooling and the defective part was trimmed away after forming the coil. The yield was low. However, according to the method for cooling a slab of the present invention, it is possible to obtain a cold slab having no surface cracks, so that it is possible to care at the slab stage, and after the slab is rolled into a coil, a defective part is obtained. Therefore, it is not necessary to remove the trimming, and a decrease in yield can be suppressed.

徐冷カバーを使用した鋳片の冷却方法の状態を説明する概略図である。It is the schematic explaining the state of the cooling method of the slab which uses a slow cooling cover. 徐冷カバーを設けてからの経過時間と、鋳片の表面温度との関係を示す図であり、同図(a)は鋳片を8本パイリングした場合、同図(b)は12本パイリングした場合の図である。It is a figure which shows the relationship between the elapsed time after providing a slow cooling cover, and the surface temperature of a slab, The figure (a) shows the case where eight slabs are piled, The figure (b) shows 12 pilings. FIG. 最上段の鋳片の表面冷却速度と鋳片のパイリング数との関係を示す図である。It is a figure which shows the relationship between the surface cooling rate of the uppermost stage slab, and the number of piles of a slab. 徐冷カバーを使用した鋳片の別の冷却方法の概略図である。It is the schematic of another cooling method of the slab using a slow cooling cover.

以下、本発明を完成させるための検討の内容および本発明を実施するための形態について説明する。   Hereinafter, the contents of the study for completing the present invention and the mode for carrying out the present invention will be described.

1.検討の内容
鋳片の冷却速度、Si含有率および長さと、表面割れの発生との関係に着目し、以下の3つの試験を行った。
1. Contents of examination Paying attention to the relationship between the cooling rate of the slab, the Si content and length, and the occurrence of surface cracks, the following three tests were conducted.

1−1.第1の試験(パイリング本数と鋳片の冷却速度との関係)
図1は、徐冷カバーを使用した鋳片の冷却方法の状態を説明する概略図である。同図に示すように、連続鋳造後、トーチで所定の長さに切断された鋳片(熱片)1を地面2の上にパイリングし、パイリングした鋳片1全体を覆うように徐冷カバー3を設けた。
1-1. First test (relationship between the number of piles and the cooling rate of the slab)
FIG. 1 is a schematic diagram illustrating a state of a slab cooling method using a slow cooling cover. As shown in the figure, after continuous casting, a slab (heated piece) 1 cut to a predetermined length with a torch is piled on the ground 2 and gradually cooled to cover the entire slab 1 that has been piling. 3 was provided.

鋳片は、幅1240mm、厚さ250mm、長さ10000mm(10m)のスラブとし、パイリングした鋳片を2組徐冷カバー内に配置した。徐冷カバーは、厚さ25mmの鋼板からなる天井面と4つの側壁面の外壁により構成された幅6.5m、高さ4m、奥行き10mの直方体形状とした。   The slab was a slab having a width of 1240 mm, a thickness of 250 mm, and a length of 10000 mm (10 m). The slow cooling cover was formed in a rectangular parallelepiped shape having a width of 6.5 m, a height of 4 m, and a depth of 10 m constituted by a ceiling surface made of a steel plate having a thickness of 25 mm and outer walls of four side wall surfaces.

図2は、徐冷カバーを設けてからの経過時間と、鋳片の表面温度との関係を示す図であり、同図(a)は鋳片を8本パイリングした場合、同図(b)は12本パイリングした場合の図である。いずれの場合も、鋳片の幅方向中央の表面温度を接触式熱電対で測定した。その結果、徐冷カバーを開始してからの鋳片の表面温度の推移に差異は認められなかった。また、いずれの場合も鋳片の表面割れは発生しなかった。   FIG. 2 is a diagram showing the relationship between the elapsed time since the provision of the slow cooling cover and the surface temperature of the slab, and FIG. 2A shows the case where eight slabs are piled. Is a figure when 12 pieces are piled. In either case, the surface temperature at the center in the width direction of the slab was measured with a contact-type thermocouple. As a result, no difference was observed in the transition of the surface temperature of the slab after the slow cooling cover was started. In any case, the surface crack of the slab did not occur.

図2に示す温度推移に基づいて、徐冷カバーを開始してから鋳片の表面温度が400℃に低下するまでの時間と、温度の低下幅から鋳片の冷却速度を算出したところ、5.3℃/hであった。また、8本パイリングした場合について、徐冷カバーを開始した直後の鋳片の冷却速度を同図(a)から求めたところ、10℃/hであった。   Based on the temperature transition shown in FIG. 2, when the cooling rate of the slab was calculated from the time until the surface temperature of the slab decreased to 400 ° C. after starting the slow cooling cover and the temperature decrease range, 5 3 ° C./h. In addition, in the case where eight pieces were piled, the cooling rate of the slab immediately after the start of the slow cooling cover was obtained from FIG.

1−2.第2の試験(鋳片の冷却速度と表面割れとの関係)
次に、鋳片(熱片)の冷却速度と表面割れとの関係について調査した。鋳片の冷却速度を変化させるため、鋳片のパイリング数を1本〜8本とし、徐冷カバーを設けた場合と設けなかった場合について試験を行った。鋳片および徐冷カバーは第1の試験と同じものを用いた。徐冷カバーを設けず、外気開放の常温雰囲気下に放置して行う鋳片の冷却を、以下「放冷」ともいう。
1-2. Second test (relationship between slab cooling rate and surface cracking)
Next, the relationship between the cooling rate of the slab (hot piece) and surface cracking was investigated. In order to change the cooling rate of the slab, the number of piles of the slab was 1 to 8, and a test was performed with and without the slow cooling cover. The slab and the slow cooling cover used the same thing as the 1st test. The cooling of the slab, which is performed without leaving the slow cooling cover and left in a room temperature atmosphere with open air, is also referred to as “cooling”.

図3は、最上段の鋳片の表面冷却速度と鋳片のパイリング数との関係を示す図である。鋳片を1本だけ放冷した場合は、鋳片表面の冷却速度は33℃/hと大きく、鋳片表面から深さ方向に10mm以上の大きな割れが発生していた。   FIG. 3 is a diagram showing the relationship between the surface cooling rate of the uppermost slab and the number of piles of the slab. When only one slab was allowed to cool, the cooling rate of the slab surface was as high as 33 ° C./h, and a large crack of 10 mm or more occurred in the depth direction from the slab surface.

一方、徐冷カバーを設けた場合には、鋳片表面の冷却速度は20℃/h、鋳片表面の割れは深さ方向に10mm未満であり、いずれも1本だけ放冷した場合と比較して割れは小さかった。   On the other hand, when a slow cooling cover is provided, the cooling rate of the slab surface is 20 ° C./h, the cracks on the slab surface are less than 10 mm in the depth direction, and both are compared with the case where only one is allowed to cool. And the crack was small.

以上のように、図3から、冷却速度が小さいほど表面割れの発生が少なく、冷却速度が10℃/h以下であれば表面割れの発生が皆無となることがわかった。   As described above, from FIG. 3, it was found that the smaller the cooling rate, the less the occurrence of surface cracks, and no surface cracks when the cooling rate is 10 ° C./h or less.

1−3.第3の試験(鋳片のSi含有率および鋳片の長さと表面割れとの関係)
さらに、本発明者が検討を進めたところ、徐冷カバーを設けた場合であっても鋳片のSi含有率または鋳片の長さによっては表面割れが発生することがあることを知見した。
1-3. Third test (Si content of slab and relationship between slab length and surface crack)
Furthermore, as a result of investigations by the present inventor, it was found that surface cracks may occur depending on the Si content of the slab or the length of the slab even when a slow cooling cover is provided.

熱応力により鋳片に表面割れが発生する大きな要因としては、以下の2つが考えられる。第1に鋳片の組成(特にSi含有率)が鋳片の熱割れ感受性に及ぼす影響が大きいこと、第2に鋳片長手方向の熱収縮による局所的な熱応力の大きさが鋳片の長さに依存することである。   The following two can be considered as major factors that cause surface cracks in the slab due to thermal stress. First, the composition of the slab (especially the Si content) has a large effect on the thermal cracking susceptibility of the slab, and second, the local thermal stress due to thermal contraction in the longitudinal direction of the slab It depends on the length.

本発明者は、この現象に着目し、鋳片のSi含有率と長さを変化させた試験を行った。パイリング本数は4本とし、鋳片(熱片)の冷却は、徐冷カバーを設けて徐冷した場合と、放冷した場合の両方行った。鋳片のSi含有率は0.4〜3.0質量%、鋳片の長さは4〜10mとした。鋳片のSi含有率および長さ以外の条件は第1の試験と同じとした。最上段の鋳片の幅方向中央の表面温度は、放冷した場合には16.4℃/hであり、徐冷した場合は5〜10℃/hであった。試験結果を表1および表2に示す。   The inventor paid attention to this phenomenon and conducted a test in which the Si content and length of the slab were changed. The number of pilings was four, and the slab (hot piece) was cooled both when it was slowly cooled by providing a slow cooling cover and when cooled. The Si content of the slab was 0.4 to 3.0% by mass, and the length of the slab was 4 to 10 m. Conditions other than the Si content and length of the slab were the same as in the first test. The surface temperature at the center in the width direction of the uppermost slab was 16.4 ° C./h when allowed to cool and 5 to 10 ° C./h when allowed to cool slowly. The test results are shown in Tables 1 and 2.

Figure 2014024087
Figure 2014024087

表1では、放冷で割れが発生しなかった場合を□、放冷で割れが発生したものの徐冷で割れが発生しなかった場合を○、放冷でも徐冷でも割れが発生した場合を▲で示した。ただし、▲の場合の割れの深さは10mm未満であり、手入れによって除去可能な程度であった。同表から、鋳片のSi含有率が低いほど、鋳片が長くても表面割れが発生しにくいことがわかる。また、鋳片の冷却速度が小さい方が、冷却速度が大きい場合と比較して表面割れが発生しにくいことがわかる。   In Table 1, □ indicates that cracking did not occur after cooling, ○ indicates that cracking occurred after cooling, but no cracking occurred when cooling slowly, and cracking occurred when cooling or cooling slowly. Indicated by ▲. However, the depth of the crack in the case of ▲ was less than 10 mm, and it was such that it could be removed by care. From the table, it can be seen that the lower the Si content of the slab, the less likely the surface cracks to occur even if the slab is longer. It can also be seen that surface cracks are less likely to occur when the cooling rate of the slab is lower than when the cooling rate is higher.

Figure 2014024087
Figure 2014024087

表2では、鋳片のSi含有率と鋳片の長さの積を指標として採用した。表2と前記表1を比較することにより、鋳片のSi含有率[Si](質量%)と鋳片の長さL(m)の積が鋳片の冷却速度に応じて決定される一定の値A(質量%×m)未満であれば、鋳片の表面割れが発生しないことがわかる。すなわち鋳片の表面割れを防止するには下記(1)式を満足すればよい。
[Si]×L<A …(1)
In Table 2, the product of the Si content of the slab and the length of the slab was used as an index. By comparing Table 2 and Table 1 above, the product of the Si content [Si] (mass%) of the slab and the length L (m) of the slab is determined according to the cooling rate of the slab. If it is less than the value A (mass% × m), it can be seen that the surface crack of the slab does not occur. That is, in order to prevent the surface crack of the slab, the following equation (1) may be satisfied.
[Si] × L <A (1)

具体的には、放冷の場合(冷却速度16.4℃/h)にはA=25であり、徐冷カバーを設けて徐冷した場合(冷却速度5〜10℃/h)にはA=10である。   Specifically, in the case of cooling (cooling rate 16.4 ° C./h), A = 25, and when the cooling cover is provided and cooled slowly (cooling rate 5 to 10 ° C./h), A = 10.

本発明者がさらに詳細に検討した結果、パイリングした鋳片のうち最も上に位置するものの幅方向中央の表面の冷却速度が10℃/h以下である場合にはA=25であり、10℃/hを超える速度である場合にはA=10であることが明らかとなった。   As a result of further examination by the inventor, when the cooling rate of the surface in the center in the width direction of the uppermost one of the cast slabs is 10 ° C./h or less, A = 25 and 10 ° C. It became clear that A = 10 when the speed was higher than / h.

2.鋳片の徐冷方法
以上の3つの試験の結果から、鋳片の冷却速度が小さいほど、鋳片の表面割れを防止可能なSi含有率の範囲または鋳片の長さの範囲が広いことがわかった。
2. Slow cooling method of slab From the results of the above three tests, the lower the cooling rate of the slab, the wider the range of Si content or the length of the slab that can prevent surface cracking of the slab. all right.

鋳片の冷却速度を小さくする方法としては、これまでに述べたように、前記図1に示した徐冷カバーを設ける方法がある。さらに冷却速度を小さくするため、徐冷カバー内の保温性を向上させる目的で、徐冷カバーの外壁を構成する鋼板の内面または外面に耐火物等の断熱材を設けてもよいし、鋼板を2重に設けてもよい。徐冷カバーは、パイリングした熱片を覆って徐冷のための空間を設けることができるものである限り、形状は直方体に限られない。   As described above, as a method for reducing the cooling rate of the slab, there is a method of providing the slow cooling cover shown in FIG. In order to further reduce the cooling rate, a heat insulating material such as a refractory may be provided on the inner surface or the outer surface of the steel plate constituting the outer wall of the slow cooling cover for the purpose of improving the heat retaining property in the slow cooling cover. You may provide in duplicate. The shape of the slow cooling cover is not limited to a rectangular parallelepiped as long as it can provide a space for slow cooling by covering the heat pieces that have been piped.

図4は、徐冷カバーを使用した鋳片の別の冷却方法の概略図である。同図は、熱割れ防止の対象とする鋳片の上下に熱片を保温材として配置したこと以外は前記図1と同様の構成であり、実質的に同一の部分には同一の符号を付している。同図に示すように、熱割れ防止の対象とする鋳片1の上下に、他の熱片を保温材4として配置することが好ましい。これにより、熱割れ防止の対象とする鋳片1の冷却速度をより小さくすることが可能である。保温材4としては、例えば普通鋼の熱片を使用することができる。   FIG. 4 is a schematic view of another cooling method for a slab using a slow cooling cover. This figure has the same configuration as that of FIG. 1 except that hot pieces are arranged as heat insulating materials above and below the slab to be prevented from thermal cracking, and substantially the same parts are denoted by the same reference numerals. doing. As shown in the figure, it is preferable to arrange other heat pieces as the heat insulating material 4 on the upper and lower sides of the slab 1 to be prevented from thermal cracking. Thereby, it is possible to make the cooling rate of the slab 1 made into the object of thermal crack prevention smaller. As the heat insulating material 4, for example, a hot piece of ordinary steel can be used.

本発明の鋳片の冷却方法によれば、連続鋳造後の鋳片(熱片)を、表面割れを発生させることなく常温まで冷却し、冷片とすることができる。そのため、熱間圧延スケジュールに合わせて表面割れのない冷片を製造し、この冷片を素材としてコイルを製造することが可能となることから、不要な作り置きによるコイルの在庫の増加を防止することができる。また、小ロット材のオーダーに応じた圧延の実施が可能となる。   According to the method for cooling a slab of the present invention, a slab (hot piece) after continuous casting can be cooled to room temperature without causing surface cracks to form a cold piece. Therefore, it is possible to manufacture a cold piece without surface cracks in accordance with the hot rolling schedule, and to manufacture a coil using this cold piece as a raw material, thereby preventing an increase in coil inventory due to unnecessary preparation. be able to. In addition, it is possible to perform rolling according to the order of small lot materials.

1:鋳片、 2:地面、 3:徐冷カバー、 4:保温材 1: slab, 2: ground, 3: slow cooling cover, 4: heat insulating material

Claims (4)

Si含有率が1質量%以上の鋼からなり、連続鋳造後に切断された鋳片の冷却方法であって、
前記鋳片を複数本積み重ねた状態とし、
前記鋳片のSi含有率と前記鋳片の長さが下記(1)式を満足することを特徴とする鋳片の冷却方法。
[Si]×L<A …(1)
ここで、[Si]:前記鋳片のSi含有率(質量%)、L:前記鋳片の長さ(m)、A:あらかじめ試験により求めた、前記鋳片のうち最も上に位置するものの幅方向中央の表面の冷却速度に応じた鋳片の表面割れが発生しない値(質量%×m)である。
A method for cooling a slab made of steel having a Si content of 1% by mass or more and cut after continuous casting,
A state where a plurality of the slabs are stacked,
The method for cooling a slab, wherein the Si content of the slab and the length of the slab satisfy the following formula (1):
[Si] × L <A (1)
Here, [Si]: Si content (% by mass) of the slab, L: length (m) of the slab, A: the top of the slab obtained in advance by testing. It is a value (mass% x m) at which the surface crack of the slab does not occur according to the cooling rate of the surface in the center in the width direction.
前記鋳片のうち最も上に位置するものの幅方向中央の表面の冷却速度を10℃/h以下とし、
A=25とすることを特徴とする請求項1に記載の鋳片の冷却方法。
The cooling rate of the surface in the center in the width direction of the uppermost one of the slabs is 10 ° C./h or less,
The slab cooling method according to claim 1, wherein A = 25.
前記鋳片のうち最も上に位置するものの幅方向中央の表面の冷却速度を10℃/hを超える速度とし、
A=10とすることを特徴とする請求項1に記載の鋳片の冷却方法。
The cooling rate of the surface in the center in the width direction of the uppermost one of the slabs is set to a rate exceeding 10 ° C./h,
The slab cooling method according to claim 1, wherein A = 10.
L≦10であることを特徴とする請求項1〜3のいずれかに記載の鋳片の冷却方法。   The slab cooling method according to claim 1, wherein L ≦ 10.
JP2012165623A 2012-07-26 2012-07-26 Slab cooling method Active JP5846066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165623A JP5846066B2 (en) 2012-07-26 2012-07-26 Slab cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165623A JP5846066B2 (en) 2012-07-26 2012-07-26 Slab cooling method

Publications (2)

Publication Number Publication Date
JP2014024087A true JP2014024087A (en) 2014-02-06
JP5846066B2 JP5846066B2 (en) 2016-01-20

Family

ID=50198257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165623A Active JP5846066B2 (en) 2012-07-26 2012-07-26 Slab cooling method

Country Status (1)

Country Link
JP (1) JP5846066B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167560A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2020500108A (en) * 2016-10-18 2020-01-09 江陰興澄特種鋼鉄有限公司Jiangyin Xing Cheng Special Steel Works Co.,Ltd Gear rack steel plate having a maximum thickness of 177.8 mm manufactured by continuous casting billet and method for manufacturing the same
JP2020139200A (en) * 2019-02-28 2020-09-03 Jfeスチール株式会社 Cooling cover and cooling method for slab
JP2020139209A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Cooling method of slab of high tensile steel
CN111673059A (en) * 2020-07-28 2020-09-18 攀钢集团西昌钢钒有限公司 Converter pretreatment and cold charging heating method for high-carbon high-alloy continuous casting billet
CN113758969A (en) * 2021-11-09 2021-12-07 山东国创风叶制造有限公司 Casting temperature curve measuring device
JP2022126743A (en) * 2019-02-28 2022-08-30 Jfeスチール株式会社 Cast slab cooling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238526A (en) * 1988-07-27 1990-02-07 Nkk Corp Method for directly rolling high-si steel
JPH06328214A (en) * 1993-05-24 1994-11-29 Nippon Steel Corp Method for preventing season cracking of ferritic stainless steel
JPH09164464A (en) * 1995-12-15 1997-06-24 Nkk Corp Method for preventing season cracking of continuously cast slab of ball bearing steel
JP2007083274A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd Method for preventing delayed failure in continuous cast slab of high tension steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238526A (en) * 1988-07-27 1990-02-07 Nkk Corp Method for directly rolling high-si steel
JPH06328214A (en) * 1993-05-24 1994-11-29 Nippon Steel Corp Method for preventing season cracking of ferritic stainless steel
JPH09164464A (en) * 1995-12-15 1997-06-24 Nkk Corp Method for preventing season cracking of continuously cast slab of ball bearing steel
JP2007083274A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd Method for preventing delayed failure in continuous cast slab of high tension steel

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500108A (en) * 2016-10-18 2020-01-09 江陰興澄特種鋼鉄有限公司Jiangyin Xing Cheng Special Steel Works Co.,Ltd Gear rack steel plate having a maximum thickness of 177.8 mm manufactured by continuous casting billet and method for manufacturing the same
JP2019167560A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP7047517B2 (en) 2018-03-22 2022-04-05 日本製鉄株式会社 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.
CN113518831A (en) * 2019-02-28 2021-10-19 杰富意钢铁株式会社 Slow cooling cover and cooling method for cast piece
JP2020139209A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Cooling method of slab of high tensile steel
WO2020175670A1 (en) * 2019-02-28 2020-09-03 Jfeスチール株式会社 Slow-cooling cover for slab and cooling method
JP2020139200A (en) * 2019-02-28 2020-09-03 Jfeスチール株式会社 Cooling cover and cooling method for slab
JP2022126743A (en) * 2019-02-28 2022-08-30 Jfeスチール株式会社 Cast slab cooling method
JP7188187B2 (en) 2019-02-28 2022-12-13 Jfeスチール株式会社 Cooling method of slab
CN113518831B (en) * 2019-02-28 2023-02-28 杰富意钢铁株式会社 Slow cooling cover and cooling method for cast piece
JP7260335B2 (en) 2019-02-28 2023-04-18 株式会社神戸製鋼所 Cooling method for slabs of high-strength steel
CN111673059A (en) * 2020-07-28 2020-09-18 攀钢集团西昌钢钒有限公司 Converter pretreatment and cold charging heating method for high-carbon high-alloy continuous casting billet
CN111673059B (en) * 2020-07-28 2022-05-03 攀钢集团西昌钢钒有限公司 Converter pretreatment and cold charging heating method for high-carbon high-alloy continuous casting billet
CN113758969A (en) * 2021-11-09 2021-12-07 山东国创风叶制造有限公司 Casting temperature curve measuring device
CN113758969B (en) * 2021-11-09 2022-04-08 山东润博机械装备有限公司 Casting temperature curve measuring device

Also Published As

Publication number Publication date
JP5846066B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5846066B2 (en) Slab cooling method
RU2534638C1 (en) Method for plate manufacture from non-textured electrical steel
RU2593243C1 (en) Method for making unoriented electromagnetic steel sheet
US11505845B2 (en) Soft high-silicon steel sheet and manufacturing method thereof
JP6123960B1 (en) High silicon steel sheet and manufacturing method thereof
JP5633594B2 (en) Cold-rolled steel sheet excellent in punchability and heat-strain resistance and method for producing the same
JP7231642B2 (en) Heat-resistant magnetic domain refining type grain-oriented electrical steel and its manufacturing method
WO2020175670A1 (en) Slow-cooling cover for slab and cooling method
JP5659462B2 (en) Refractory lining structure for steelmaking containers
JP7334829B2 (en) Cooling method of slab
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
CN202688372U (en) High-temperature heating furnace material pillow
JP2015193040A (en) COOLING METHOD OF CASTING PIECE OF HIGH Si SPRING STEEL
JP6292160B2 (en) Heat treatment method and bogie type heat treatment furnace
JP6003197B2 (en) Magnetic domain subdivision processing method
JP6951998B2 (en) Great barr for pallet trolleys for sintering machines
JP2017020088A (en) Manufacturing method of bar steel for high strength reinforcement bar
JPH04362127A (en) Production of ferritic stainless steel strip having high al content
Mola et al. Influence of texture on ridging and formability of 16% Cr ferritic stainless steel
JP5526648B2 (en) Metal slab heating method
JP7260335B2 (en) Cooling method for slabs of high-strength steel
JP5533419B2 (en) Dehydrogenation method for continuous cast slabs
JP2023001702A (en) Cooling method of slab
JP5842732B2 (en) Billet manufacturing method
JP6233374B2 (en) High silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R151 Written notification of patent or utility model registration

Ref document number: 5846066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350