JP2019167560A - Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet - Google Patents

Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP2019167560A
JP2019167560A JP2018054188A JP2018054188A JP2019167560A JP 2019167560 A JP2019167560 A JP 2019167560A JP 2018054188 A JP2018054188 A JP 2018054188A JP 2018054188 A JP2018054188 A JP 2018054188A JP 2019167560 A JP2019167560 A JP 2019167560A
Authority
JP
Japan
Prior art keywords
slab
strength
steel sheet
hot
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018054188A
Other languages
Japanese (ja)
Other versions
JP7047517B2 (en
Inventor
東 昌史
Masashi Azuma
昌史 東
政樹 長嶋
Masaki Nagashima
政樹 長嶋
大幹 内藤
Daiki Naito
大幹 内藤
加藤 敏
Satoshi Kato
敏 加藤
拓矢 山田
Takuya Yamada
拓矢 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018054188A priority Critical patent/JP7047517B2/en
Publication of JP2019167560A publication Critical patent/JP2019167560A/en
Application granted granted Critical
Publication of JP7047517B2 publication Critical patent/JP7047517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a method for cooling a slab for high-strength steel sheet in which, even for a slab containing Si, not only slab cracking during cooling of the slab, but also quality defect such as scab or the like during hot rolling do not occur.SOLUTION: Provided is a method for cooling a slab for high-strength steel sheet, in which, characterized, for a continuously cast slab of a high-tensile steel sheet in which the steel sheet contains, in mass%, C: 0.020 to 0.600%, Si: 0.5 to 3.00%, Mn: 1.00 to 3.00%, P: 0.100% or less, S: 0.0001 to 0.0100%, Al: 0.005 to 1.000%, N: 0.0100% or less, the average cooling rate for the slab at 500°C to 700°C is set at 20°C/hr or less.SELECTED DRAWING: None

Description

本発明は、高強度鋼板用スラブの冷却方法、高強度熱延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法及び高強度合金化溶融亜鉛めっき鋼板の製造方法に関する。     The present invention relates to a method for cooling a slab for high-strength steel sheets, a method for producing high-strength hot-rolled steel sheets, a method for producing high-strength hot-dip galvanized steel sheets, and a method for producing high-strength galvannealed steel sheets.

車体骨格に適用される冷延、めっき鋼板は、高い強度と延びの両立が要望されることから、残留オーステナイトを分散させたTRIP鋼の適用が進んでいる。Siの多量添加は、スラブを脆化させることが知られている。一般的に、スラブを冷却すると、スラブ表面と内部の温度差に起因して、応力が発生する。この応力が高いとスラブを室温まで冷却する際に亀裂が発生し、最悪は図1及び図2に示すように割れが発生する。あるいは、熱間圧延中に開口し、熱延時のコイルが破断する。あるいは亀裂で極微小なものは、熱延で再加熱する際にヘゲと呼ばれる品質欠陥となって現れる。スラブの微細な割れは、スラブをグラインダーで研削するなどにより除去可能なものの、大きな亀裂は除去できない、あるいは、見逃される場合があり、製品板の欠陥となる場合があることから、スラブ割れは抑制する必要がある。スラブ割れの発生頻度は、特に、Siを多く含む鋼で顕著になることから、Siを多量に添加する鋼にて問題になりやすい。なお、特許文献1に記載されているように、スラブが割れることについての対策については、従来も検討されている。   Since cold-rolled and plated steel sheets applied to the body frame are required to have both high strength and elongation, application of TRIP steel in which retained austenite is dispersed has been advanced. It is known that a large amount of Si causes embrittlement of the slab. Generally, when a slab is cooled, stress is generated due to a temperature difference between the slab surface and the inside. When this stress is high, cracks occur when the slab is cooled to room temperature, and worst, cracks occur as shown in FIGS. Or it opens during hot rolling and the coil at the time of hot rolling breaks. Or, a very small crack can appear as a quality defect called “hege” when reheated by hot rolling. Although fine slab cracks can be removed by grinding the slab with a grinder, etc., large cracks cannot be removed or may be missed, which may result in defects in the product plate. There is a need to. The frequency of occurrence of slab cracks is particularly noticeable in steels containing a large amount of Si, and thus tends to be a problem in steels containing a large amount of Si. In addition, as described in Patent Document 1, a countermeasure against cracking of the slab has been conventionally studied.

特開2007−832743号公報Japanese Patent Laid-Open No. 2007-837433

ところで、Siを含む成分のスラブの割れについての対策を検討する中で、特許文献1に記載の方法についての有効性の確認を試みたが、特許文献1に記載された範囲内で制御しても、鋼の割れが抑制されない場合があることが分かった。   By the way, while examining countermeasures for cracking of the slab of the component containing Si, an attempt was made to confirm the effectiveness of the method described in Patent Document 1, but control was performed within the range described in Patent Document 1. It has also been found that cracking of the steel may not be suppressed.

本発明は、このような背景でなされた発明であり、本発明の課題は、Siを含む成分のスラブであっても、当該スラブの冷却中のスラブ割れのみならず、熱延時のヘゲ等の品質欠陥が発生しない高強度鋼板用スラブの冷却方法を提供することである。また、当該冷却方法を利用した高強度熱延鋼板、高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板の製造方法を提供することである。   The present invention is an invention made in such a background, and the object of the present invention is not only slab cracking during cooling of the slab, but also slabs during hot rolling, even if the slab contains Si. It is providing the cooling method of the slab for high-strength steel plates which the quality defect does not generate | occur | produce. Another object of the present invention is to provide a method for producing a high-strength hot-rolled steel sheet, a high-strength hot-dip galvanized steel sheet, and a high-strength galvannealed steel sheet using the cooling method.

上記課題を解決するため、鋼板が質量%で、C:0.020〜0.600%、Si:0.5〜3.00%、Mn:1.00〜3.00%、P:0.100%以下、S:0.0001〜0.0100%、Al:0.005〜1.000%、N:0.0100%以下を含有する高張力鋼板の連続鋳造したスラブについて、500℃以上700℃以下におけるスラブの平均冷却速度を20℃/hr以下とすることを特徴とする高強度鋼板用スラブの冷却方法とする。   In order to solve the above problems, the steel sheet is in mass%, C: 0.020 to 0.600%, Si: 0.5 to 3.00%, Mn: 1.00 to 3.00%, P: 0.00. 100% or less, S: 0.0001 to 0.0100%, Al: 0.005 to 1.000%, N: 0.0100% or less For a continuously cast slab of a high-tensile steel plate, 500 ° C to 700 ° C The cooling method of the slab for high-strength steel sheets is characterized in that the average cooling rate of the slab at 20 ° C or less is 20 ° C / hr or less.

また、前記スラブが、さらに質量%で、Ni:0.01〜2.00%、Cu:0.01〜2.00%、Cr:0.01〜2.00%、Mo:0.01〜2.00%、Nb:0.005〜0.100%、V:0.005〜0.100%、W:0.005〜0.100%、B:0.0005〜0.0100%、REM:0.0003〜0.0300%、Ca:0.0003〜0.0300%、Ce:0.0003〜0.0300%、Mg:0.0003〜0.0300%、の1種又は2種以上を含有すること構成とすることが好ましい。   Further, the slab is further in mass%, Ni: 0.01 to 2.00%, Cu: 0.01 to 2.00%, Cr: 0.01 to 2.00%, Mo: 0.01 to 2.00%, Nb: 0.005-0.100%, V: 0.005-0.100%, W: 0.005-0.100%, B: 0.0005-0.0100%, REM : 0.0003 to 0.0300%, Ca: 0.0003 to 0.0300%, Ce: 0.0003 to 0.0300%, Mg: 0.0003 to 0.0300%, one or more It is preferable to make it the structure which contains.

また、前記成分のスラブを、鋳造完了から少なくとも10hr以上は、スラブ温度を700℃超に確保し、かつ、その後500℃以上700℃以下におけるスラブの平均冷却速度を20℃/hr以下とすることが好ましい。   In addition, when the slab of the above component is at least 10 hr or more after the completion of casting, the slab temperature is ensured to be over 700 ° C., and the average cooling rate of the slab at 500 ° C. to 700 ° C. is then set to 20 ° C./hr or less. Is preferred.

また、前記スラブの冷却速度は、前記スラブを他の複数のスラブにより挟むことにより制御することが好ましい。   The cooling rate of the slab is preferably controlled by sandwiching the slab with a plurality of other slabs.

また、前記他の複数のスラブにより、前記スラブを複数同時に挟む構成とすることが好ましい。   Further, it is preferable that a plurality of the slabs are sandwiched simultaneously by the other plurality of slabs.

また、スラブを冷却するにあたり、カバーをかけることが好ましい。   Further, it is preferable to cover the slab for cooling.

また、前記冷却方法にて冷却したスラブを用い、スラブ加熱温度を1100〜1300℃の範囲で加熱し、粗圧延後に仕上げ圧延出側板温を800〜1100℃にて仕上げ圧延を行い、室温から700℃の温度域で捲き取りを行って高強度熱延鋼板を製造することが好ましい。   Further, using the slab cooled by the cooling method, the slab heating temperature is heated in the range of 1100 to 1300 ° C., and after the rough rolling, the finish rolling is performed at a finish rolling outlet plate temperature of 800 to 1100 ° C. It is preferable to produce a high-strength hot-rolled steel sheet by scraping in a temperature range of ° C.

また、前記製造方法で製造された高強度熱延鋼板を用い、これを酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30〜80%の冷間圧延を行った後、700〜900℃の温度範囲に再加熱し、焼鈍を行った後、0.2〜2.0%の圧下率での調質圧延を施して高強度冷延鋼板を製造することが好ましい。   In addition, after using the high-strength hot-rolled steel sheet manufactured by the above-described manufacturing method and pickling it, and further reducing the sheet thickness, the steel sheet is subjected to cold rolling with a reduction rate of 30 to 80% after pickling, and then 700 After reheating to a temperature range of ˜900 ° C. and annealing, temper rolling at a rolling reduction of 0.2 to 2.0% is preferably performed to produce a high-strength cold-rolled steel sheet.

また、前記製造方法で製造された高強度熱延鋼板を用い、これを酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30〜80%の冷間圧延を行った後、700〜900℃の温度範囲に再加熱し、溶融亜鉛めっきを行った後、0.2〜2.0%の圧下率での調質圧延を施して高強度溶融亜鉛めっき鋼板を製造することが好ましい。   In addition, after using the high-strength hot-rolled steel sheet manufactured by the above-described manufacturing method and pickling it, and further reducing the sheet thickness, the steel sheet is subjected to cold rolling with a reduction rate of 30 to 80% after pickling, and then 700 It is preferable to produce a high-strength hot-dip galvanized steel sheet by performing re-heating to a temperature range of ˜900 ° C. and hot-dip galvanizing, and then performing temper rolling at a rolling reduction of 0.2 to 2.0%. .

また、前記溶融亜鉛めっきから調質圧延の間で、470℃以上600℃以下に加熱して溶融亜鉛めっきを合金化させて高強度合金化溶融亜鉛めっき鋼板を製造することが好ましい。   Moreover, it is preferable to produce a high-strength galvannealed steel sheet by alloying the hot dip galvanizing by heating to 470 ° C. or higher and 600 ° C. or lower between the galvanizing and temper rolling.

本発明を用いると、Siを含む成分のスラブであっても、当該スラブの冷却中のスラブ割れのみならず、熱延時のヘゲ等の品質欠陥が発生しない高強度鋼板用スラブの冷却方法を提供することができる。また、当該冷却方法を利用した高強度熱延鋼板、高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板の製造方法を提供することができる。   By using the present invention, there is provided a method for cooling a slab for high-strength steel sheets that does not cause quality defects such as slab cracking during hot rolling as well as slab cracking during cooling of the slab even if the slab contains Si. Can be provided. Moreover, the manufacturing method of the high intensity | strength hot-rolled steel plate using the said cooling method, a high-strength hot-dip galvanized steel plate, and a high-strength galvannealed steel plate can be provided.

スラブの割れを表した図である。It is a figure showing the crack of a slab. 図1のII領域で表した割れに相当する割れが生じたスラブの写真である。It is the photograph of the slab in which the crack corresponding to the crack represented by the II area | region of FIG. 1 produced. スラブの温度測定位置を表す図である。It is a figure showing the temperature measurement position of a slab. スラブの冷却態様を表す図である。但し、通常冷却、冷却対象となるスラブを2枚の他の成分のスラブにより挟んだ冷却、冷却対象となるスラブをカバーで覆った状態での冷却の3種類について表している。It is a figure showing the cooling aspect of a slab. However, three types are shown: normal cooling, cooling in which a slab to be cooled is sandwiched between two other slabs, and cooling in a state where the slab to be cooled is covered with a cover. 経過時間とスラブ表面温度に係る冷却履歴を示す図である。ただし、条件C−1、C−4、条件C−5、C−8に関するものである。It is a figure which shows the cooling history which concerns on elapsed time and slab surface temperature. However, it relates to the conditions C-1, C-4, the conditions C-5, and C-8.

以下に発明を実施するための形態を示す。本実施形態の高強度鋼板用スラブ1の冷却方法は、鋼板が質量%で、C:0.020〜0.600%、Si:0.5〜3.00%、Mn:1.00〜3.00%、P:0.100%以下、S:0.0001〜0.0100%、Al:0.005〜1.000%、N:0.0100%以下を含有する高張力鋼板の連続鋳造したスラブ1に関するものであり、500℃以上700℃以下におけるスラブ1の平均冷却速度を20℃/hr以下とするものである。これにより、Siを含む成分のスラブ1であっても、当該スラブ1の冷却中のスラブ割れのみならず、熱延時のヘゲ等の品質欠陥が発生しない高強度鋼板用スラブ1の冷却方法とすることができる。   The form for implementing this invention is shown below. The cooling method of the slab 1 for high-strength steel sheets of this embodiment is that the steel sheet is mass%, C: 0.020 to 0.600%, Si: 0.5 to 3.00%, Mn: 1.00 to 3 Continuous casting of high-strength steel sheet containing 0.000%, P: 0.100% or less, S: 0.0001 to 0.0100%, Al: 0.005 to 1.000%, N: 0.0100% or less The average cooling rate of the slab 1 at 500 ° C. or more and 700 ° C. or less is 20 ° C./hr or less. Thereby, even if it is the slab 1 of the component containing Si, not only the slab cracking during the cooling of the said slab 1 but the cooling method of the slab 1 for high-strength steel plates which does not generate | occur | produce quality defects, such as a baldness at the time of hot rolling, can do.

ここで、本発明に至った流れを説明する。本発明者らは、鋼板が質量%で、C:0.020〜0.600%、Si:0.5〜3.00%、Mn:1.00〜3.00%、P:0.100%以下、S:0.0001〜0.0100%、Al:0.005〜1.000%、N:0.0100%以下を含有する高張力鋼板の連続鋳造したスラブ1の割れを検討する中で、スラブ割れの原因が、鋼中へのSi添加とスラブ1内の温度ムラに起因して発生する熱応力にあることを知見した。当該鋼は、Si添加を利用し、高強度化や延性向上を行っていることから、Si添加が不可欠である。つまり、Si添加は必要であることから、スラブ1の温度ムラ(特に、表面と内部での温度差)に起因した熱応力の低減に着目することで、スラブ1の割れを抑制できないかと考えた。   Here, the flow that led to the present invention will be described. In the present inventors, the steel sheet is mass%, C: 0.020 to 0.600%, Si: 0.5 to 3.00%, Mn: 1.00 to 3.00%, P: 0.100. %, S: 0.0001 to 0.0100%, Al: 0.005 to 1.000%, N: 0.0100% or less Thus, it has been found that the cause of the slab cracking is the thermal stress generated due to the addition of Si into the steel and the temperature unevenness in the slab 1. Since the steel uses Si addition to increase strength and improve ductility, Si addition is indispensable. That is, since addition of Si is necessary, we considered whether cracking of the slab 1 could be suppressed by paying attention to the reduction of thermal stress due to temperature unevenness of the slab 1 (particularly, the temperature difference between the surface and the inside). .

そこで、図3に示すように、スラブ1の広い面の上面中央部に熱電対を設置し、各種冷却条件とスラブ割れや、その後のスラブ冷却時や熱延での割れやヘゲと呼ばれる表面欠陥の有無を調査した。この位置での温度をスラブ温度とする。熱延での割れは、スラブ冷却時に形成した亀裂が熱延の加熱、あるいは、圧延により開口し、割れに至るものと考えられる。一方、割れに至らずとも、開口した亀裂は、ヘゲといった欠陥として検出される場合もあるので、こちらに関しても評価を実施した。一部のスラブ1に関しては、異なる成分のスラブ2で挟み込み冷却するか、あるいは、スラブ1をカバー3で覆うかして、冷却速度を制御した(図4参照)。なお、これら方法にて、スラブ温度を測定し、冷却速度並びに冷却開始温度を種々変化させた。   Therefore, as shown in FIG. 3, a thermocouple is installed in the center of the upper surface of the wide surface of the slab 1, various cooling conditions and slab cracks, and the surface called cracks and scabs during subsequent slab cooling and hot rolling. The presence or absence of defects was investigated. The temperature at this position is the slab temperature. It is considered that cracks caused by hot rolling are cracks formed during slab cooling, which are opened by hot rolling heating or rolling, resulting in cracks. On the other hand, an open crack may be detected as a defect such as a shave even if it does not lead to cracking, so this was also evaluated. With respect to some slabs 1, the cooling rate was controlled by sandwiching and cooling with slabs 2 of different components or covering the slab 1 with a cover 3 (see FIG. 4). In addition, the slab temperature was measured by these methods, and the cooling rate and the cooling start temperature were variously changed.

検討に用いた鋼の化学組成を表1に示し、表2にスラブ冷却条件とスラブ割れ、熱延ヘゲの有無を示す。また各条件の経過時間とスラブ表面温度に係る冷却履歴を図5に示す。なお、経過時間0hrが鋳造終了時点である。   The chemical composition of the steel used for the study is shown in Table 1, and Table 2 shows the slab cooling conditions, slab cracking, and presence or absence of hot-rolled baldness. Moreover, the cooling history which concerns on the elapsed time of each condition and slab surface temperature is shown in FIG. The elapsed time 0 hr is the end of casting.

条件C−1は、鋳造終了から7hrで、前述のようにスラブ1に熱電対を取り付け、カバー3を設置し、冷却を開始した。500℃以上700℃以下での平均冷却速度は20℃/hr以下(図示範囲で10℃/hr以下、9.0℃/hr以下)であるとともに、700℃超での保持時間は10hr以上確保(11hr)されており、室温まで割れなく冷却できた。その後、熱間圧延および捲き取りを行い、室温まで冷却した。その後、酸洗、冷延を行った後、焼鈍温度790℃にて連続焼鈍設備を通板し、冷延鋼板を製造した。製造した冷延鋼板から引張試験片を採取し、引張試験を実施したところ980MPa以上の引張強度を確保していた。   Condition C-1 was 7 hours from the end of casting. A thermocouple was attached to the slab 1 as described above, the cover 3 was installed, and cooling was started. The average cooling rate at 500 ° C. or more and 700 ° C. or less is 20 ° C./hr or less (10 ° C./hr or less, 9.0 ° C./hr or less in the illustrated range), and the holding time at over 700 ° C. is secured for 10 hours or more. (11 hr) and could be cooled to room temperature without cracking. Then, it hot-rolled and scraped off and cooled to room temperature. Then, after pickling and cold rolling, continuous annealing equipment was passed at an annealing temperature of 790 ° C. to produce a cold rolled steel sheet. A tensile test piece was collected from the manufactured cold-rolled steel sheet and subjected to a tensile test, which ensured a tensile strength of 980 MPa or more.

条件C−4は、鋳造終了から6hr以内に、異なる鋼板スラブ2を最下段に敷いた後、鋼板成分Cのスラブ1を3本重ねた後、前述のように熱電対を取り付け、更に鋼板成分Cのスラブ1を2本重ねた後、最上段に異なる鋼板スラブ2を重ね冷却を開始した。700℃超の保持時間は10hr以上確保されていない(8hr)が、700〜500℃間での平均冷却速度が20℃/hr以下(図示範囲で10℃/hr以下、8.3℃/hr)を確保することが出来た。室温まで冷却したスラブ1は割れなかったものの、熱間圧延後のコイルの端部に小さなヘゲは認められた。ただし、少量であり、ヘゲが発生した不良部を切断除去可能であったことから、不適合品の発生とはしなかった。その後、酸洗-冷間圧延を実施し、連続焼鈍設備にて800℃で焼鈍を行った後、溶融亜鉛めっき浴に浸漬し、更にその後、470℃で合金化処理を行い高強度合金化溶融亜鉛めっき鋼板を製造した。製造した合金化溶融亜鉛めっき鋼板から引張試験片を採取し、引張試験を実施したところ980MPa以上の引張強度を確保していた。   Condition C-4 is that, within 6 hours from the end of casting, after placing different steel plate slabs 2 at the bottom, three slabs 1 of steel plate components C are stacked, thermocouples are attached as described above, and further steel plate components After two C slabs 1 were stacked, different steel plate slabs 2 were stacked on the top and cooling was started. The holding time exceeding 700 ° C. is not secured for 10 hours or more (8 hours), but the average cooling rate between 700 and 500 ° C. is 20 ° C./hr or less (10 ° C./hr or less in the illustrated range, 8.3 ° C./hr ) Was secured. Although the slab 1 cooled to room temperature did not crack, a small baldness was observed at the end of the coil after hot rolling. However, since it was a small amount and it was possible to cut and remove the defective portion where the baldness occurred, no nonconforming product was generated. Then, pickling-cold rolling was performed, and after annealing at 800 ° C. in a continuous annealing facility, it was immersed in a hot dip galvanizing bath, and then alloyed at 470 ° C. to perform high-strength alloying and melting. A galvanized steel sheet was produced. A tensile test piece was taken from the manufactured galvannealed steel sheet and subjected to a tensile test. As a result, a tensile strength of 980 MPa or more was secured.

条件C−5は、鋳造開始から5hr以内に、異なる鋼板スラブ2を4本重ねた後、鋼板成分Cのスラブ1を最上段に重ね、その後、前述のように熱電対を取り付け、その上に別のスラブを重ねることなく冷却を開始した。700℃超の温度域での保持時間は10hr以上(12hr)を確保できたものの、700℃から500℃での平均冷却速度が20℃/hr超の22.2℃/hrとなった。その後、熱間圧延を実施したところ、スラブ加熱後に亀裂が見つかった。また、亀裂も複数個所見つかったことから、熱間圧延をすることが出来なかった。   Condition C-5 is that, within 5 hours from the start of casting, after four different steel plate slabs 2 are stacked, the slab 1 of steel plate component C is stacked on the top, and then a thermocouple is attached as described above, Cooling started without additional slabs. Although the holding time in the temperature range exceeding 700 ° C. could be secured for 10 hours or more (12 hours), the average cooling rate from 700 ° C. to 500 ° C. was 22.2 ° C./hr, exceeding 20 ° C./hr. Then, when hot rolling was implemented, the crack was found after the slab heating. In addition, since a plurality of cracks were found, hot rolling could not be performed.

条件C−8は、鋳造開始後に鋼板成分Cのスラブ1を最下段に置いた後、前述のように熱電対を設置し、その後、鋼板成分Cのスラブ1を5本重ね冷却を行った。スラブ1を最下段に置いたことで、700℃超で10hr以上の確保が出来なかった(6hr)とともに、700℃〜500℃間での平均冷却速度が20℃/hr超の33.3℃/hrとなった。この結果、室温まで冷却したスラブ1に割れが発生した。また、亀裂も複数個所見つかったことから、熱間圧延をすることが出来なかった。   Condition C-8 was that after the slab 1 of the steel plate component C was placed at the bottom after the start of casting, a thermocouple was installed as described above, and then five slabs 1 of the steel plate component C were stacked and cooled. By placing the slab 1 at the lowest stage, it was not possible to secure 10 hours or more above 700 ° C. (6 hours), and the average cooling rate between 700 ° C. and 500 ° C. was 33.3 ° C. exceeding 20 ° C./hr. / Hr. As a result, cracks occurred in the slab 1 cooled to room temperature. In addition, since a plurality of cracks were found, hot rolling could not be performed.

尚、本発明に係るスラブ1は諸条件により積替えが発生する。積替えが発生した場合、スラブ1の冷却速度は一時的に20℃/hr超、例えば120〜170℃/hrになることがある。しかしながら、スラブ1は少なくとも10数トン以上あり、その熱慣性は大きく、積替え程度のハンドリング時間(長くて1〜2hr)であれば、そのヒートショックは吸収出来るようで、置き割れやヘゲの発生に至らない。図5では図示していないが、本発明ではこれを考慮し、500℃以上700℃以下の全てを通じて冷却速度が20℃/hr以下、ではなく、その温度範囲において平均冷却速度として20℃/hr以下であれば置き割れやヘゲの発生に至らないことを見出した。   Note that the slab 1 according to the present invention undergoes transshipment depending on various conditions. When transshipment occurs, the cooling rate of the slab 1 may temporarily exceed 20 ° C./hr, for example, 120 to 170 ° C./hr. However, the slab 1 has at least 10 tons or more, its thermal inertia is large, and if the handling time is as long as transshipment (longer, 1 to 2 hours), it seems that the heat shock can be absorbed, and the occurrence of cracks and lashes Not reached. Although not shown in FIG. 5, in the present invention, in consideration of this, the cooling rate is not 20 ° C./hr or less through all of 500 ° C. or more and 700 ° C. or less, but is 20 ° C./hr as an average cooling rate in that temperature range. It has been found that cracks and baldness do not occur if the following is true.

より詳しくは、スラブ温度(スラブ1の広い面の上面中央部の表面温度((T:℃))が500℃〜700℃間のスラブ1の平均冷却速度(V:℃/時間)を20℃/hr以下で冷却することでスラブ割れが抑制可能なことを見出した。更に、鋳造完了から少なくとも10hr以上は、スラブ温度を700℃以上に確保することでスラブ1の微小な割れに起因したヘゲも抑制可能なことを見出した。   More specifically, the average cooling rate (V: ° C./hour) of the slab 1 between the slab temperature (surface temperature (T: ° C.) at the center of the upper surface of the wide surface of the slab 1 ((T: ° C.)) of 500 ° C. to 700 ° C. is 20 ° C. It has been found that slab cracking can be suppressed by cooling at / hr or less, and at least 10 hours or more after the completion of casting, the slab temperature is kept at 700 ° C. or more to ensure that the slab 1 is cracked. I found out that it can also be suppressed.

次に、本発明の前提となる高強度熱延鋼板の化学成分の限定理由を説明する。なお、含有量の%は質量%である。   Next, the reasons for limiting the chemical components of the high-strength hot-rolled steel sheet that is the premise of the present invention will be described. In addition,% of content is the mass%.

Cを0.020〜0.600%とする理由は以下の通りである。Cは、鋼板の強度を高めるために添加する元素である。具体的には高強度化と伸び向上に寄与する残留オーステナイトを確保するために添加する元素である。Cが0.020%未満であると、必要な強度を得ることが出来ないことから、下限の添加量は0.020%である。一方、0.600%を超えると、溶接性や加工性が不充分となる。したがって、0.020〜0.600%とする。   The reason why C is set to 0.020 to 0.600% is as follows. C is an element added to increase the strength of the steel sheet. Specifically, it is an element added to ensure retained austenite that contributes to increasing strength and improving elongation. When C is less than 0.020%, the required strength cannot be obtained, so the lower limit addition amount is 0.020%. On the other hand, when it exceeds 0.600%, weldability and workability become insufficient. Therefore, it is set to 0.020 to 0.600%.

Siを0.50〜3.00%とする理由は以下の通りである。Siは、焼鈍工程で残留オーステナイトを確保するために添加する必要がある。加えて、固溶強化により高強度化にも寄与するため必須の添加元素である。このことから、0.50%以上添加する必要がある。この効果は、0.70%以上で特に顕著になることから、0.70%以上の添加することが好ましい。一方、3.00%超の添加は効果が飽和するだけでなく、熱延板に強固なスケールが発生する。このことから、外観や酸洗性を劣化させることから、上限は3.00%以下である。したがって、0.50〜3.00%とする。   The reason for making Si 0.50 to 3.00% is as follows. Si needs to be added in order to secure retained austenite in the annealing process. In addition, it is an indispensable additive element because it contributes to high strength by solid solution strengthening. For this reason, it is necessary to add 0.50% or more. Since this effect becomes particularly remarkable at 0.70% or more, it is preferable to add 0.70% or more. On the other hand, the addition of more than 3.00% not only saturates the effect but also produces a strong scale on the hot rolled sheet. Therefore, the upper limit is 3.00% or less because the appearance and pickling properties are deteriorated. Therefore, it is set to 0.50 to 3.00%.

Mnを1.00%〜3.00%とする理由は以下の通りである。Mnは、鋼板の強度を高めるために添加する元素である。具体的には、熱延での変態制御を通じて鋼板強度を制御するために添加する元素である。1.00%未満では、十分な強化が出来ないことから1.00%以上添加する必要がある。一方、3.00%超の添加は、その効果が飽和するとともに、経済性が悪いことから望ましくない。したがって、1.00%〜3.00%とする。   The reason why Mn is set to 1.00% to 3.00% is as follows. Mn is an element added to increase the strength of the steel sheet. Specifically, it is an element added to control the steel sheet strength through transformation control in hot rolling. If it is less than 1.00%, sufficient strengthening cannot be performed, so it is necessary to add 1.00% or more. On the other hand, addition over 3.00% is not desirable because the effect is saturated and the economy is poor. Therefore, it is set to 1.00% to 3.00%.

Pを0.100%以下とする理由は以下の通りである。Pは、鋼板の板厚中央部に偏析する元素であり、また、溶接部を脆化させる元素でもある。低い方が好ましいが、脱Pの生産性、コストかかる影響から、上限を0.100%とすることが好ましい。より好ましい上限は0.050%である。下限は特に定めることなく本発明の効果が発揮されるが、Pを0.001%未満に低減することは、さらに経済的に不利であるので、下限を0.001%とする。   The reason why P is 0.100% or less is as follows. P is an element that segregates in the central part of the thickness of the steel sheet, and is also an element that embrittles the weld. Although the lower one is preferable, the upper limit is preferably made 0.100% in view of productivity of de-P and cost. A more preferred upper limit is 0.050%. Although the lower limit is not particularly defined, the effect of the present invention is exhibited. However, since it is further economically disadvantageous to reduce P to less than 0.001%, the lower limit is set to 0.001%.

Sを0.0001〜0.0100%とする理由は以下の通りである。Sは、硫化物として存在することで、スラブ脆化をもたらしたり、製品板の成形性を劣化させたりすることから、鋼板中の含有量を制限することが好ましい元素である。このことから、上限を0.0100%とすることが好ましい。Sを0.0001%未満に低減することは、脱Sの生産性やコストの面から、不利であるので、下限を0.0001%とすることが好ましい。   The reason why S is 0.0001 to 0.0100% is as follows. S is an element that preferably limits the content in the steel sheet because it exists as a sulfide and causes slab embrittlement or deteriorates the formability of the product plate. For this reason, the upper limit is preferably set to 0.0100%. Reducing S to less than 0.0001% is disadvantageous from the standpoint of de-S productivity and cost, so the lower limit is preferably made 0.0001%.

Alを0.005〜1.000%とする理由は以下の通りである。Alは、熱延での組織制御や脱酸のため、0.005%以上添加する。0.005%未満では十分な脱酸効果を得ることが出来ず、鋼板中に多量の介在物(酸化物)が存在することとなる。一方、1.000%を超える添加は、スラブ脆化をもたらすことから好ましくない。このことから、添加量は、0.005〜1.000%とする必要がある。   The reason why Al is 0.005 to 1.000% is as follows. Al is added in an amount of 0.005% or more for microstructure control and deoxidation in hot rolling. If it is less than 0.005%, a sufficient deoxidation effect cannot be obtained, and a large amount of inclusions (oxides) are present in the steel sheet. On the other hand, addition exceeding 1.000% is not preferable because it causes slab embrittlement. For this reason, the addition amount needs to be 0.005 to 1.000%.

Nを0.0100%以下とする理由は以下の通りである。Nは、粗大な窒化物を形成し、曲げ性や穴拡げ性を劣化させる元素である。Nが0.0100%を超えると、曲げ性や穴拡げ性が顕著に劣化するので、上限を0.0100%とした。なお、Nは、溶接時のブローホールの発生原因になるので、少ない方が好ましい。Nの下限は、特に定める必要はないが、0.0001%未満に低減すると、製造コストが大幅に増加するので、0.0001%が実質的な下限である。Nは、製造コストの観点から、0.0005%以上が好ましい。   The reason why N is set to 0.0100% or less is as follows. N is an element that forms coarse nitrides and degrades bendability and hole expandability. If N exceeds 0.0100%, the bendability and hole expansibility deteriorate significantly, so the upper limit was made 0.0100%. Note that N is preferable because it causes blowholes during welding. The lower limit of N is not particularly required, but if it is reduced to less than 0.0001%, the manufacturing cost is greatly increased, so 0.0001% is a substantial lower limit. N is preferably 0.0005% or more from the viewpoint of manufacturing cost.

尚、その他不可避的元素を微量含有することがある。例えばOは、酸化物を形成し、介在物として存在する。   In addition, it may contain a trace amount of other inevitable elements. For example, O forms an oxide and exists as an inclusion.

本発明鋼板においては、さらに、必要に応じて、以下の元素の1種若しくは2種以上を以下の割合で含有する。Ni:0.01〜2.00%、Cu:0.01〜2.00%、Cr:0.01〜2.00%、Mo:0.01〜2.00%。   The steel sheet of the present invention further contains one or more of the following elements in the following ratio as necessary. Ni: 0.01-2.00%, Cu: 0.01-2.00%, Cr: 0.01-2.00%, Mo: 0.01-2.00%.

Ni、Cu、Cr、Moは、鋼板の強度に影響する元素である。これら元素は、熱延での組織制御を通じた高強度化をもたらす。この効果は、Ni、Cu、Cr、Moの1種又は2種以上を、それぞれ、0.01%以上添加することで顕著になることから、0.01%以上添加する必要がある。各元素の量が、各元素の上限を超えると、溶接性、熱間加工性などが劣化することから、Ni、Cu、Cr、Moの上限は2.00%とする。   Ni, Cu, Cr, and Mo are elements that affect the strength of the steel sheet. These elements bring about high strength through structure control in hot rolling. This effect becomes remarkable when one or more of Ni, Cu, Cr, and Mo are added by 0.01% or more, respectively. Therefore, it is necessary to add 0.01% or more. If the amount of each element exceeds the upper limit of each element, weldability, hot workability, and the like deteriorate, so the upper limit of Ni, Cu, Cr, and Mo is 2.00%.

本発明鋼板においては、さらに、必要に応じて、以下の元素の1種若しくは2種以上を以下の割合で含有する。Nb:0.005〜0.100%、V:0.005〜0.100%、W:0.005〜0.100%。   The steel sheet of the present invention further contains one or more of the following elements in the following ratio as necessary. Nb: 0.005 to 0.100%, V: 0.005 to 0.100%, W: 0.005 to 0.100%.

Nb、V、Wは、析出強化を通じて鋼板の強度に影響することから添加しても良い。この効果は、0.005%以上の添加で顕著となることから、0.005%以上添加することが望ましい。一方、0.100%超の添加は、その効果が飽和するとともに、熱延板段階でNb、V、Wの炭化物が析出することから、これら元素が残留オーステナイトの元であるCを消費してしまい残留オーステナイト量が減じてしまうことから、0.100%以下にする必要がある。なお、好ましくは、0.005〜0.090%の範囲である。   Nb, V, and W may be added because they affect the strength of the steel sheet through precipitation strengthening. Since this effect becomes significant when 0.005% or more is added, it is desirable to add 0.005% or more. On the other hand, addition of over 0.100% saturates the effect and precipitates Nb, V, and W carbides in the hot-rolled sheet stage, so these elements consume C, which is the source of retained austenite. As a result, the amount of retained austenite is reduced, so it is necessary to make it 0.100% or less. In addition, Preferably, it is 0.005 to 0.090% of range.

本発明鋼板においては、さらに、必要に応じて、Bを0.0005〜0.0100%の割合で含有する。Bは、熱延での変態を制御するため、組織強化を通じて強度に影響を与えることから添加しても良い。この効果は、0.0005%以上で顕著となるため、0.0005%以上添加する必要がある。一方、0.0100%超の添加は、その効果が飽和するばかりでなく、鉄系の硼化物の析出を招き、Bの焼き入れ性の効果を失うことから好ましくない。望ましい範囲は、0.0005〜0.0080%であり、更に望ましい範囲は、0.0005〜0.0050%である。   In the steel plate of the present invention, B is further contained in a proportion of 0.0005 to 0.0100% as necessary. B may be added because it affects the strength through strengthening the structure in order to control transformation in hot rolling. Since this effect becomes remarkable at 0.0005% or more, it is necessary to add 0.0005% or more. On the other hand, addition over 0.0100% is not preferable because not only the effect is saturated but also the precipitation of iron-based borides is caused, and the effect of B hardenability is lost. A desirable range is 0.0005 to 0.0080%, and a more desirable range is 0.0005 to 0.0050%.

本発明鋼板においては、さらに、必要に応じて、以下の元素の1種若しくは2種以上を以下の割合で含有する。REM:0.0003〜0.0300%、Ca:0.0003〜0.0300%、Ce:0.0003〜0.0300%、Mg:0.0003〜0.0300%。   The steel sheet of the present invention further contains one or more of the following elements in the following ratio as necessary. REM: 0.0003-0.0300%, Ca: 0.0003-0.0300%, Ce: 0.0003-0.0300%, Mg: 0.0003-0.0300%.

REM、Ca、Ce、Mgは、強度に影響を与え、材質の改善に寄与する元素である。REM、Ca、Ce、Mgの1種又は2種以上の合計が0.0003%未満であると、充分な添加効果が得られないので、合計の下限を0.0003%とする。REM、Ca、Ce、Mgの1種又は2種以上の合計が0.0300%を超えると、鋳造性や熱間での加工性を劣化させるので、上限を0.0300%とする。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をさす。本発明においては、REMは、ミッシュメタルにて添加することが多く、また、Ceの他に、ランタノイド系列の元素を複合で含有する場合がある。本発明鋼板が、不可避不純物として、Laや、Ce以外のランタノイド系列の元素を含んでいても、本発明の効果は発現するし、また、金属を添加しても、本発明の効果は発現する。   REM, Ca, Ce, and Mg are elements that influence the strength and contribute to the improvement of the material. If the total of one or more of REM, Ca, Ce, and Mg is less than 0.0003%, a sufficient addition effect cannot be obtained, so the lower limit of the total is set to 0.0003%. If the total of one or more of REM, Ca, Ce, and Mg exceeds 0.0300%, the castability and hot workability deteriorate, so the upper limit is made 0.0300%. Note that REM is an abbreviation for Rare Earth Metal and refers to an element belonging to the lanthanoid series. In the present invention, REM is often added by misch metal, and may contain a lanthanoid series element in combination with Ce in addition to Ce. Even if the steel sheet of the present invention contains La or a lanthanoid series element other than Ce as an inevitable impurity, the effect of the present invention is exhibited, and even if a metal is added, the effect of the present invention is exhibited. .

製品板のミクロ組織は、特に限定することなく本発明の効果は発揮するものの、例えば、引張強度が590MPa以上980MPa未満の鋼板であればミクロ組織はフェライト、ベイナイト、残留オーステナイトよりなる組織とすることが望ましい。980MPa以上1180MPa未満であれば、フェライト、ベイナイト、残留オーステナイト、マルテンサイトよりなる組織とすることが望ましい。1180MPa以上であれば、フェライト、ベイナイト、残留オーステナイト、マルテンサイトよりなる組織とすることが望ましい。更には、マルテンサイトは、内部に炭化物を含む焼き戻しマルテンサイトであることが望ましい。   The microstructure of the product plate is not particularly limited, and the effect of the present invention is exhibited. However, if the tensile strength is a steel plate having a tensile strength of 590 MPa or more and less than 980 MPa, the microstructure is composed of ferrite, bainite, and retained austenite. Is desirable. If it is 980 MPa or more and less than 1180 MPa, it is desirable to make it the structure | tissue which consists of a ferrite, a bainite, a retained austenite, and a martensite. If it is 1180 MPa or more, it is desirable to have a structure composed of ferrite, bainite, retained austenite, and martensite. Furthermore, the martensite is preferably tempered martensite containing carbide inside.

なお、製品板の引張強度は590MPa以上とすることが望ましい。Siは、固溶強化元素であり、スラブ割れを引き起こす懸念のあるSiを添加すると、590MPa以上になる。このように、本技術は、引張強度590MPa以上の鋼板の素材となるスラブ1に適用することで、この効果は発揮される。上限は特に定めることなく本発明の効果は発揮されるが、製品板強度が高い鋼板ほど、Si添加量が多くなる傾向にあり、スラブ割れが顕在化しやすい。このことから、高強度鋼板ほど本技術を適用する効果が大きい。また、より効果が顕著に表れるのは780MPa以上、さらには980MPa以上である。   The product sheet preferably has a tensile strength of 590 MPa or more. Si is a solid solution strengthening element, and when adding Si that may cause slab cracking, it becomes 590 MPa or more. Thus, this effect is exhibited by applying the present technology to the slab 1 that is a material of a steel plate having a tensile strength of 590 MPa or more. Although the upper limit is not particularly defined, the effect of the present invention is exhibited. However, the higher the product plate strength is, the more the Si addition amount tends to increase, and the slab cracking tends to become obvious. For this reason, the higher the strength of the steel plate, the greater the effect of applying this technology. Further, the effect is more remarkable at 780 MPa or more, and further 980 MPa or more.

本発明による冷却方法に従ったスラブ1であれば、鋳造後のスラブ割れや熱延時のヘゲ発生のない高強度熱延鋼板、冷延鋼板、並びに高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板の製造が可能となる。これらの製造方法は以下のとおりである。   If it is the slab 1 according to the cooling method by this invention, the slab crack after casting and the high-strength hot-rolled steel sheet, cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength alloying will not occur at the time of hot rolling. Hot-dip galvanized steel sheet can be manufactured. These manufacturing methods are as follows.

まず本発明の冷却方法によるスラブ1を用いる。以下は通常の高強度鋼板の製造条件と同じである。熱延においては、スラブ加熱温度を1100℃〜1300℃の範囲で加熱し、粗圧延後に仕上げ圧延出側板温を800℃〜1100℃にて仕上げ圧延を行い、室温から700℃の温度域で捲き取りを行う。仕上げ圧延出側から捲き取りまでの間で急速冷却や板温の保持・保温、空冷を行っても構わない。この様にして高強度熱延鋼板を製造する。   First, the slab 1 according to the cooling method of the present invention is used. The following is the same as the manufacturing conditions for a normal high-strength steel sheet. In hot rolling, the slab heating temperature is heated in the range of 1100 ° C to 1300 ° C, and after the rough rolling, finish rolling is performed at a finish rolling outlet plate temperature of 800 ° C to 1100 ° C, and rolling is performed in a temperature range from room temperature to 700 ° C. Take. Rapid cooling, holding / holding the plate temperature, and air cooling may be performed from the finish rolling to the scraping. In this way, a high strength hot rolled steel sheet is produced.

高強度冷延鋼板の場合は、前記高強度熱延鋼板を酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30%〜80%の冷間圧延を行った後、750℃〜900℃の温度範囲に再加熱し、0.2〜2.0%の圧下率での調質圧延を施して冷延鋼板とする。めっきを付与する場合は、上記熱処理後に溶融亜鉛めっき浴に浸漬し、溶融亜鉛めっきを施し、0.2%〜2.0%の圧下率での調質圧延を施して高強度冷延溶融亜鉛めっき鋼板とする。
高強度熱延溶融亜鉛めっき鋼板の場合は、前記高強度熱延鋼板を酸洗後、750℃〜900℃の温度範囲に再加熱し、溶融亜鉛めっき浴に浸漬し、溶融亜鉛めっきを施し、0.2%〜2.0%の圧下率での調質圧延を施して高強度溶融亜鉛めっき鋼板とする。
In the case of a high-strength cold-rolled steel sheet, after pickling the high-strength hot-rolled steel sheet and further reducing the sheet thickness, the steel sheet is subjected to cold rolling at a reduction rate of 30% to 80% after pickling, and then from 750 ° C to It is reheated to a temperature range of 900 ° C. and subjected to temper rolling at a rolling reduction of 0.2 to 2.0% to obtain a cold rolled steel sheet. When plating is applied, it is immersed in a hot dip galvanizing bath after the above heat treatment, hot dip galvanized, subjected to temper rolling at a rolling reduction of 0.2% to 2.0%, and high strength cold rolled hot dip zinc. A plated steel sheet is used.
In the case of a high-strength hot-rolled hot-dip galvanized steel sheet, the high-strength hot-rolled steel sheet is pickled, reheated to a temperature range of 750 ° C. to 900 ° C., immersed in a hot-dip galvanizing bath, and hot-dip galvanized. Temper rolling at a rolling reduction of 0.2% to 2.0% is performed to obtain a high-strength hot-dip galvanized steel sheet.

高強度合金化溶融亜鉛めっき鋼板とする場合には、前記高強度溶融亜鉛めっき鋼板製造の溶融亜鉛めっきから調質圧延の間で470℃〜600℃に加熱して溶融亜鉛めっきを合金化させることで高強度合金化溶融亜鉛めっき鋼板とする。   When a high strength alloyed hot dip galvanized steel sheet is used, the hot dip galvanized steel sheet is heated to 470 ° C. to 600 ° C. between the hot dip galvanizing process and the temper rolling process to produce the hot galvanized steel sheet. The high-strength galvannealed steel sheet is used.

本発明を用いれば、Siを多く含む割れのないスラブ1が割れなく製造でき、歩留り向上に寄与できる。また、Siを多量添加できることから、より高強度な自動車用高強度鋼板(例えば、GA980/1180MPa級TRIP鋼)の製造が可能となる。   If this invention is used, the slab 1 without a crack containing many Si can be manufactured without a crack, and it can contribute to a yield improvement. In addition, since a large amount of Si can be added, it is possible to manufacture a higher-strength automotive high-strength steel sheet (for example, GA980 / 1180 MPa grade TRIP steel).

以上、実施形態を中心として本発明を説明してきたが、本発明は上記実施形態に限定されることはなく、各種の態様とすることが可能である。   As mentioned above, although this invention was demonstrated centering on embodiment, this invention is not limited to the said embodiment, It can be set as various aspects.

1 スラブ(冷却対称)
2 スラブ(冷却制御用)
3 カバー
1 Slab (cooling symmetry)
2 Slab (for cooling control)
3 Cover

Claims (11)

鋼板が質量%で、
C:0.020〜0.600%、
Si:0.5〜3.00%、
Mn:1.00〜3.00%、
P:0.100%以下、
S:0.0001〜0.0100%、
Al:0.005〜1.000%、
N:0.0100%以下を含有する高張力鋼板の連続鋳造したスラブについて、
500℃以上700℃以下におけるスラブの平均冷却速度を20℃/hr以下とすることを特徴とする高強度鋼板用スラブの冷却方法。
The steel plate is mass%,
C: 0.020 to 0.600%,
Si: 0.5 to 3.00%,
Mn: 1.00 to 3.00%,
P: 0.100% or less,
S: 0.0001 to 0.0100%,
Al: 0.005 to 1.000%
N: For a continuously cast slab of a high-tensile steel plate containing 0.0100% or less,
A method for cooling a slab for high-strength steel sheets, wherein an average cooling rate of the slab at 500 ° C. or more and 700 ° C. or less is 20 ° C./hr or less.
前記スラブが、さらに質量%で、
Ni:0.01〜2.00%、
Cu:0.01〜2.00%、
Cr:0.01〜2.00%、
Mo:0.01〜2.00%、
Nb:0.005〜0.100%、
V:0.005〜0.100%、
W:0.005〜0.100%、
B:0.0005〜0.0100%、
REM:0.0003〜0.0300%、
Ca:0.0003〜0.0300%、
Ce:0.0003〜0.0300%、
Mg:0.0003〜0.0300%、
の1種又は2種以上を含有することを特徴とする請求項1に記載の高強度鋼板用スラブの冷却方法。
The slab is further mass%,
Ni: 0.01 to 2.00%,
Cu: 0.01-2.00%,
Cr: 0.01 to 2.00%
Mo: 0.01-2.00%,
Nb: 0.005 to 0.100%,
V: 0.005-0.100%,
W: 0.005 to 0.100%,
B: 0.0005 to 0.0100%,
REM: 0.0003 to 0.0300%,
Ca: 0.0003 to 0.0300%,
Ce: 0.0003 to 0.0300%,
Mg: 0.0003 to 0.0300%,
1 or 2 types or more of these are contained, The cooling method of the slab for high-strength steel plates of Claim 1 characterized by the above-mentioned.
請求項1又は2に記載の成分のスラブを、鋳造完了から少なくとも10hr以上は、スラブ温度を700℃超に確保し、かつ、その後500℃以上700℃以下におけるスラブの平均冷却速度を20℃/hr以下とすることを特徴とする請求項1または2に記載の高強度鋼板用スラブの冷却方法。   The slab of the component according to claim 1 or 2 is secured at a slab temperature of more than 700 ° C for at least 10 hours or more after completion of casting, and thereafter an average cooling rate of the slab at 500 ° C or more and 700 ° C or less is 20 ° C / The method for cooling a slab for high-strength steel sheets according to claim 1 or 2, characterized in that it is not more than hr. 前記スラブの冷却速度は、前記スラブを他の複数のスラブにより挟むことにより制御することを特徴とする請求項1乃至3のいずれか1項に記載の高強度鋼板用スラブの冷却方法。   The method for cooling a slab for high-strength steel sheets according to any one of claims 1 to 3, wherein the cooling rate of the slab is controlled by sandwiching the slab with a plurality of other slabs. 前記他の複数のスラブにより、前記スラブを複数同時に挟むことを特徴とする請求項4に記載の高強度鋼板用スラブの冷却方法。   The method for cooling a slab for high-strength steel sheets according to claim 4, wherein a plurality of the slabs are sandwiched simultaneously by the other plurality of slabs. スラブを冷却するにあたり、カバーをかけることを特徴とする請求項1乃至5のいずれか1項に記載の高強度鋼板用スラブの冷却方法。   The method for cooling a slab for high-strength steel sheets according to any one of claims 1 to 5, wherein a cover is applied to cool the slab. 請求項1から6のいずれか1項の冷却方法にて冷却したスラブを用い、スラブ加熱温度を1100〜1300℃の範囲で加熱し、粗圧延後に仕上げ圧延出側板温を800〜1100℃にて仕上げ圧延を行い、室温から700℃の温度域で捲き取りを行うことを特徴とする高強度熱延鋼板の製造方法。   Using the slab cooled by the cooling method according to any one of claims 1 to 6, the slab heating temperature is heated in a range of 1100 to 1300 ° C, and after rough rolling, the finish rolling exit sheet temperature is 800 to 1100 ° C. A method for producing a high-strength hot-rolled steel sheet, comprising performing finish rolling and scraping in a temperature range from room temperature to 700 ° C. 請求項7に記載の製造方法で製造された高強度熱延鋼板を用い、これを酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30〜80%の冷間圧延を行った後、700〜900℃の温度範囲に再加熱し、焼鈍を行った後、0.2〜2.0%の圧下率での調質圧延を施すことを特徴とする高強度冷延鋼板の製造方法。   The high-strength hot-rolled steel sheet manufactured by the manufacturing method according to claim 7 is used, and after this pickling, when further reducing the sheet thickness, cold rolling is performed at a reduction rate of 30 to 80% after pickling. Then, after reheating to a temperature range of 700 to 900 ° C. and annealing, temper rolling at a reduction rate of 0.2 to 2.0% is performed, and a high strength cold-rolled steel sheet is manufactured. Method. 請求項7に記載の製造方法で製造された高強度熱延鋼板を用い、これを酸洗後、700〜900℃の温度範囲に再加熱し、溶融亜鉛めっきを行った後、0.2〜2.0%の圧下率での調質圧延を施すことを特徴とする高強度熱延溶融亜鉛めっき鋼鈑の製造方法。   A high-strength hot-rolled steel sheet manufactured by the manufacturing method according to claim 7 is used, and after pickling, the steel sheet is reheated to a temperature range of 700 to 900 ° C. and hot dip galvanized, and then 0.2 to A method for producing a high-strength hot-rolled galvanized steel sheet characterized by subjecting temper rolling at a reduction rate of 2.0%. 請求項7に記載の製造方法で製造された高強度熱延鋼板を用い、これを酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30〜80%の冷間圧延を行った後、700〜900℃の温度範囲に再加熱し、溶融亜鉛めっきを行った後、0.2〜2.0%の圧下率での調質圧延を施すことを特徴とする高強度冷延溶融亜鉛めっき鋼鈑の製造方法。   The high-strength hot-rolled steel sheet manufactured by the manufacturing method according to claim 7 is used, and after this pickling, when further reducing the sheet thickness, cold rolling is performed at a reduction rate of 30 to 80% after pickling. Then, after reheating to a temperature range of 700 to 900 ° C. and performing hot dip galvanization, temper rolling is performed at a reduction rate of 0.2 to 2.0%, and high strength cold rolling and melting is characterized. Manufacturing method of galvanized steel sheet. 請求項9叉は10の溶融亜鉛めっきから調質圧延の間で、470℃以上600℃以下に加熱して溶融亜鉛めっきを合金化させることを特徴とする高強度合金化溶融亜鉛めっき鋼板の製造方法。   A high-strength galvannealed steel sheet is produced by heating the galvanized steel to 470 ° C or higher and 600 ° C or lower between hot dip galvanizing and temper rolling of claim 9 or 10. Method.
JP2018054188A 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets. Active JP7047517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054188A JP7047517B2 (en) 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054188A JP7047517B2 (en) 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.

Publications (2)

Publication Number Publication Date
JP2019167560A true JP2019167560A (en) 2019-10-03
JP7047517B2 JP7047517B2 (en) 2022-04-05

Family

ID=68106334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054188A Active JP7047517B2 (en) 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.

Country Status (1)

Country Link
JP (1) JP7047517B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139210A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Cooling method of slab of high tensile steel
WO2023218784A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Continuous cast slab
WO2023218787A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Continuous casting slab and method for manufacturing same
WO2023218786A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Continuous casting slab and method for manufacturing same
WO2023218785A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Slab for high-strength steel sheet and cooling method thereof, method for producing high-strength hot-rolled steel sheet, method for producing high-strength cold-rolled steel sheet, and method for producing high-strength plated steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024087A (en) * 2012-07-26 2014-02-06 Nippon Steel & Sumitomo Metal Cooling method of cast piece
JP2015224359A (en) * 2014-05-27 2015-12-14 Jfeスチール株式会社 Method of producing high strength steel sheet
JP2016141858A (en) * 2015-02-03 2016-08-08 Jfeスチール株式会社 High-strength steel sheet, high-strength plated steel sheet, high-strength molten zinc plated steel sheet, high-strength alloyed molten zinc plated steel sheet, and method of producing the same
WO2017131054A1 (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 High strength zinc plated steel sheet, high strength member, and production method for high strength zinc plated steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024087A (en) * 2012-07-26 2014-02-06 Nippon Steel & Sumitomo Metal Cooling method of cast piece
JP2015224359A (en) * 2014-05-27 2015-12-14 Jfeスチール株式会社 Method of producing high strength steel sheet
JP2016141858A (en) * 2015-02-03 2016-08-08 Jfeスチール株式会社 High-strength steel sheet, high-strength plated steel sheet, high-strength molten zinc plated steel sheet, high-strength alloyed molten zinc plated steel sheet, and method of producing the same
WO2017131054A1 (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 High strength zinc plated steel sheet, high strength member, and production method for high strength zinc plated steel sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139210A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Cooling method of slab of high tensile steel
JP7260336B2 (en) 2019-02-28 2023-04-18 株式会社神戸製鋼所 Cooling method for slabs of high-strength steel
WO2023218784A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Continuous cast slab
WO2023218787A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Continuous casting slab and method for manufacturing same
WO2023218786A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Continuous casting slab and method for manufacturing same
WO2023218785A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Slab for high-strength steel sheet and cooling method thereof, method for producing high-strength hot-rolled steel sheet, method for producing high-strength cold-rolled steel sheet, and method for producing high-strength plated steel sheet
JP7396544B1 (en) 2022-05-09 2023-12-12 Jfeスチール株式会社 Slabs for high-strength steel plates and their cooling methods, methods for producing high-strength hot-rolled steel plates, methods for producing high-strength cold-rolled steel plates, and methods for producing high-strength plated steel plates.
JP7477052B2 (en) 2022-05-09 2024-05-01 Jfeスチール株式会社 Continuously cast slab and its manufacturing method
JP7477051B2 (en) 2022-05-09 2024-05-01 Jfeスチール株式会社 Continuously cast slab and its manufacturing method

Also Published As

Publication number Publication date
JP7047517B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
JP5578289B2 (en) Cold-rolled steel sheet, method for producing the same, and hot stamping molded body
JP6443592B1 (en) High strength steel sheet
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
TWI515310B (en) Hot stamp molded article, cold-rolled steel, and method for producing thereof
JP6048580B2 (en) Hot rolled steel sheet and manufacturing method thereof
JP6112211B2 (en) Hot stamp molded body and manufacturing method thereof
CN103703156B (en) The high tensile steel plate had excellent moldability, high strength galvanized steel plate and their manufacture method
US20190368002A1 (en) Steel sheet and process for producing same
JP6303782B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP7047517B2 (en) Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.
JP4790639B2 (en) High-strength cold-rolled steel sheet excellent in stretch flange formability and impact absorption energy characteristics, and its manufacturing method
JP2018090894A (en) Process for manufacturing hot-rolled steel plate and process for manufacturing cold-rolled full hard steel plate
JP6123957B1 (en) High strength steel plate and manufacturing method thereof
JP5659929B2 (en) Cold-rolled steel sheet and manufacturing method thereof
JP2007070659A (en) Hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet having excellent corrosion resistance, elongation and hole expandability, and method for producing them
JP5967318B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
CN114207169B (en) Steel sheet and method for producing same
JP5391801B2 (en) Hot-rolled hot-rolled steel sheet and manufacturing method thereof
JP6202234B1 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP7047516B2 (en) Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.
JP5867278B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability in normal and medium temperature ranges and its manufacturing method
JPWO2016152135A1 (en) High strength steel plate and manufacturing method thereof
JP2019044269A (en) High intensity cold rolled thin steel sheet
CN110199045B (en) High-strength steel sheet and method for producing same
TWI396754B (en) Method for manufacturing high strength galvannealed steel sheet with excellent appearance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R151 Written notification of patent or utility model registration

Ref document number: 7047517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151