WO2023218787A1 - Continuous casting slab and method for manufacturing same - Google Patents

Continuous casting slab and method for manufacturing same Download PDF

Info

Publication number
WO2023218787A1
WO2023218787A1 PCT/JP2023/012746 JP2023012746W WO2023218787A1 WO 2023218787 A1 WO2023218787 A1 WO 2023218787A1 JP 2023012746 W JP2023012746 W JP 2023012746W WO 2023218787 A1 WO2023218787 A1 WO 2023218787A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
less
continuous casting
cooling
ferrite
Prior art date
Application number
PCT/JP2023/012746
Other languages
French (fr)
Japanese (ja)
Inventor
智也 小田垣
大輝 川▲崎▼
健二 鼓
高太郎 田中
真 村田
政志 船橋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023541329A priority Critical patent/JP7477052B2/en
Publication of WO2023218787A1 publication Critical patent/WO2023218787A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a continuously cast slab that prevents cracking during cooling and a method for manufacturing the same. More specifically, the present invention relates to a continuously cast slab for high-strength steel (high tensile strength steel) that is effective in preventing cracking and does not cause problems with holes during rolling, and a method for producing the same.
  • high-strength steel high tensile strength steel
  • cracking With the decline in slab toughness due to high alloying, cracking during slab cooling, so-called cracking, has become more frequent. If a crack occurs, the slab may break during slab transportation, and the slab may not be able to be subjected to hot rolling. Furthermore, even if the slab does not break, cracks may open during hot rolling of the slab and the hot rolled steel plate may break. Alternatively, if the cracks in the slab are small, they appear as surface defects such as sludge defects and sliver defects on the steel plate after hot rolling, cold rolling, annealing, or plating. Cracks on the slab surface are usually removed using a grinder.
  • the toughness of the slab decreases due to high alloying, and the cracks in the slab propagate due to the stress of the grinder, so that it may not be possible to completely remove the cracks in the slab.
  • small cracks in the slab may be overlooked and appear as surface defects on the steel plate after hot rolling, cold rolling, annealing, or plating. For these reasons, it is necessary to suppress cracking of the slab.
  • FIG. 1 is an enlarged photograph taken using a scanning electron microscope (SEM) of the fracture surface of a cracked part of a high-strength steel slab that was fractured due to a crack.
  • SEM scanning electron microscope
  • the fracture surface of the slab crack had the appearance of a grain boundary fracture surface along prior austenite grain boundaries.
  • Figure 2 shows a photograph of the cross section of the slab crack. The depth of the slab cracks was mainly about 20 mm from the slab surface layer. The slab crack propagated near the prior austenite grain boundaries, and grain boundary ferrite was present at the tip of the slab crack. In addition, pearlite or pearlite and bainite were observed within the prior austenite grains.
  • Grain boundary fracture occurs when the prior austenite grains are coarse and the grain boundaries become brittle. Precipitates and ferrite are more likely to form at grain boundaries than inside grains. Precipitates at grain boundaries reduce grain boundary strength and become a factor in reducing slab toughness. If the prior austenite grains are coarse, the proportion occupied by the grain boundaries will decrease, and the density of precipitates will increase, making the grain boundaries even more brittle. Furthermore, when grain boundary ferrite is formed, there is a difference in strength between pearlite and bainite within the grains, so stress concentration occurs in the grain boundary ferrite portion, which has low strength, and even a lower stress develops into cracks in the slab.
  • Patent Document 1 proposes a method of suppressing bainite/martensite transformation and reducing stress caused by the transformation expansion by slowly cooling the temperature range of 700 to 500°C, which is the temperature range where austenite transforms to ferrite. has been done. That is, Patent Document 1 discloses a method capable of suppressing the occurrence of cracks even in high-tensile steel, which is a type of steel where cracks are likely to occur. Specifically, the method for cooling a high-tensile steel slab disclosed in Patent Document 1 is based on the knowledge that the internal stress of high-tensile steel depends on its cooling rate. This method suppresses the occurrence of cracks by controlling the cooling rate of the slab.
  • Patent Document 2 discloses that slow cooling is started immediately after the slab is cast, and further slow cooling is carried out at a temperature of 700 to 500 °C for 10 hours or more at a temperature of 700 °C or higher, thereby reducing temperature differences and transformation. Methods have been proposed to reduce stress.
  • Patent Document 2 describes a method for cooling a slab for high-strength steel sheets that does not cause not only slab cracking during cooling but also quality defects such as baldness during hot rolling even if the slab has a component containing Si. A method is disclosed.
  • the method for cooling a high-strength steel plate slab disclosed in Patent Document 2 is to continuously cast a high-strength hot-rolled steel plate slab with a limited content of chemical components such as C, Si, and Mn at 500 to 700°C.
  • the average cooling rate is 20° C./hr or less.
  • the method of cooling a high-strength steel slab after casting described in Patent Document 1 focuses only on the temperature range from 700°C to 500°C when the slab is cooled after casting.
  • the internal stress generated in the slab is controlled to be small.
  • the toughness of slabs in recent high-alloyed high-strength steels is low, the state of prior austenite grain boundaries, where cracks propagate, is also extremely important. Since the method described in Patent Document 1 does not control the prior austenite grain size or grain boundary ferrite, the carbon content was increased using the method for cooling a slab of high-strength steel described in Patent Document 1. Even if the slab is manufactured, it is not possible to sufficiently suppress the occurrence of cracking in the slab.
  • the cooling method for high-strength steel plate slabs described in Patent Document 2 is based on the knowledge that the cause of slab cracking is the addition of Si to the steel and the thermal stress generated due to temperature unevenness within the slab. , focuses on reducing thermal stress to suppress cracking of slabs.
  • the method for cooling a high-strength steel plate slab described in Patent Document 2 there are no limitations on the microstructure of the slab. For this reason, even if a slab is manufactured using the cooling method for a high-strength steel plate slab described in Patent Document 2, it is not possible to sufficiently suppress the occurrence of cracking in the slab.
  • the present invention has been made in view of the above circumstances, and even in continuously cast slabs with low toughness, cracks do not occur during cooling of the slab, and holes are not formed during rolling.
  • the purpose of the present invention is to provide a continuous casting slab that does not cause trouble and a method for manufacturing the same.
  • the inventors have made extensive studies to achieve the above objective. As a result, we analyzed the fracture morphology of slab cracks, and found that the fracture surfaces include at least two of the following: intergranular fracture surfaces along prior austenite grain boundaries, and intragranular fracture surfaces (cleavage fracture surfaces) that cross prior austenite grain boundaries. It was discovered that one species exists. Furthermore, the inventors conducted detailed studies and found that cracking in slabs cannot be suppressed by stress reduction alone by controlling the cooling rate and reducing temperature unevenness, and that the morphology of the microstructure has a large effect. I made it.
  • the continuous casting slab according to the present invention which advantageously solves the above problems, is a continuous casting slab for high-strength steel, and the average prior austenite grain size at a position 10 mm from the surface layer of the continuous casting slab is 0.5 mm or more and 2.0 mm. and the microstructure is characterized in that the total area ratio of ferrite and pearlite is 90% or more, and the area ratio of ferrite is less than 5% or 10% or more. .
  • the continuous casting slab according to the present invention contains (a) in mass %, C: 0.10% or more and 1.00% or less, Si: 0.10% or more and 2.50% or less, Mn: 0.40% It is considered that containing 5.00% or less of the above amount may be a more preferable solution.
  • the method for producing a continuously cast slab according to the present invention is a method for producing a continuously cast slab for high-strength steel in which slab cracking caused by cooling is suppressed,
  • a continuous casting slab having the composition described in (a) Cooling conditions in which the cooling temperature of the continuous casting slab at the center in the width direction of the continuous casting slab and at a position 10 mm from the surface layer of the continuous casting slab is 1200°C or more and 1450°C or less, and the residence time of the continuous casting slab is 130 seconds or less.
  • a second cooling step in which the continuously cast slab is cooled under cooling conditions in which the surface temperature at the center in the width direction is 700° C. or more and 850° C.
  • the continuous casting slab is characterized by including a third cooling step of cooling under cooling conditions in which the surface temperature at the center in the width direction is from 500° C. to 700° C. and the average cooling rate is 10° C./hr or less.
  • SEM scanning electron microscope
  • the continuous casting slab according to the present embodiment is a continuous casting slab for high-strength steel, and (i) the average prior austenite grain size at a position 10 mm from the surface layer of the continuous casting slab is 0.5 mm or more and 2.0 mm or less, and ( ii) The microstructure is characterized in that the total area ratio of ferrite and pearlite is 90% or more, and (iii) the area ratio of ferrite is less than 5% or 10% or more. That is, according to the invention according to this embodiment, by providing at least the characteristics (i) to (iii) above, cooling is possible even in recent continuous casting slabs for high-strength steel, which have extremely low toughness. It is possible to provide a continuously cast slab for high-strength steel with a high yield, without causing cracks in the slab during the rolling process, and preventing problems with holes during rolling.
  • % indicating the composition ratio of the microstructure means “area %” unless otherwise specified. Furthermore, the microstructure of the continuously cast slab was observed at room temperature.
  • the continuous casting slab for high-strength steel is a continuous casting slab for high-strength steel in which cracking caused by cooling is suppressed, and includes (i) average prior austenite grains at a position of 10 mm from the surface layer of the continuous casting slab; It is characterized by having a diameter of 0.5 mm or more and 2.0 mm or less.
  • the average prior austenite grain size is a factor that determines the unit of fracture of the slab. Grain boundaries have the characteristic that precipitates tend to concentrate because solute components tend to concentrate.
  • the average prior austenite grain size refers to the average value of a plurality of prior austenite grain sizes calculated from prior austenite grain sizes measured in a plurality of visual fields.
  • the average prior austenite grain size is very large, several mm in size. For this reason, the toughness of the continuously cast slab is greatly reduced.
  • the average prior austenite grain size was not a problem because the original continuously cast slab had high toughness, but in high alloy high strength steels, the average prior austenite grain size became a very serious issue. It can be. Therefore, in the continuous casting slab according to the present embodiment, the average prior austenite grain size at a position 10 mm from the surface layer of the continuous casting slab was set to 2.0 mm or less.
  • the average prior austenite grain size is 2.0 mm or less because precipitates concentrated at prior austenite grain boundaries can be dispersed and the toughness of the continuously cast slab is not reduced.
  • the lower limit of the average prior austenite grain size is not strictly limited, in order to reduce the average prior austenite grain size to a fine size of less than 0.5 mm, it is necessary to perform strong cooling at the initial stage of solidification, for example. In that case, there is a risk of heterogeneous coagulation breakout occurring. Therefore, the lower limit of the average prior austenite grain size is preferably 0.5 mm or more. Note that the lower limit of the average prior austenite grain size is preferably 0.8 mm or more, more preferably 1.0 mm or more.
  • the average prior austenite grain size is defined as the grain size of crystal grains constituting the prior austenite structure at a position 10 mm from the surface layer of the continuous casting slab.
  • the reason why it was specified to be 10 mm from the surface layer of the continuous casting slab is that most of the cracks in slabs have progressed to about 20 mm below the surface layer of the slab. This is because a position 10 mm from the surface layer of the cast slab is considered to be a necessary position to suppress cracking of the slab.
  • a region less than 5 mm from the surface of the continuously cast slab is directly quenched by the mold or water spray directly under the mold.
  • the continuously cast slab has a microstructure with a fine ⁇ grain size, and the slab has high toughness, and it is difficult to imagine that the starting point of placement cracks occurs from this region. Therefore, the region less than 5 mm from the surface layer of the continuously cast slab can be excluded from the position where control of the slab structure is required. Therefore, the position where the continuous casting slab structure needs to be controlled is the position 10 mm from the depth in the slab thickness direction, for example, based on the position 10 mm from the surface layer of the continuous casting slab, It may be 5 to 20 mm.
  • the factor that determines the average prior austenite grain size is the temperature at which the continuous casting slab is cooled.
  • the temperature at which the continuously cast slab is cooled is particularly in the range of 1450° C. or lower and 1200° C. or higher, and is influenced by the residence time.
  • the longer the residence time of the continuously cast slab the coarser the average prior austenite grain size. That is, in order for the continuous casting slab according to this embodiment to satisfy the condition that (i) the average prior austenite grain size at a position 10 mm from the surface layer of the continuous casting slab is 0.5 mm or more and 2.0 mm or less, It is important to control the residence time of the continuously cast slab in the above process.
  • the residence time of the continuously cast slab at a temperature of 1450° C. or lower and 1200° C. or higher at a position 10 mm in the thickness direction from the surface layer of the slab is 130 seconds or less. If the residence time of the continuously cast slab at temperatures below 1450°C and above 1200°C is 130 seconds or less, the average prior austenite grain size can be reduced to 2.0 mm or less, and by controlling the average prior austenite grain size small, precipitates and This is preferable because grain boundary ferrite can be dispersed, the toughness of the slab can be improved, and cracks in the slab can be suppressed.
  • the residence time of the continuously cast slab is preferably 120 seconds or less, more preferably 110 seconds or less, and still more preferably 100 seconds or less.
  • the lower limit of the residence time of the continuous casting slab is not particularly limited, but if the residence time is too short, the risk of breakout during continuous casting due to uneven solidification increases, so it is set to 40 seconds or more. That is, if the residence time of the continuously cast slab at temperatures below 1450° C. and above 1200° C. is less than 40 seconds, there is a risk of cracking due to uneven solidification and breakout, so it is preferably set to 40 seconds or more. From this point of view, the residence time of the continuously cast slab at a temperature of 1450° C. or lower and 1200° C. or higher is more preferably 60 seconds or more, and even more preferably 70 seconds or more.
  • the residence time of continuously cast slabs can be controlled by adjusting the cooling conditions at the initial stage of slab casting.
  • molten steel whose composition has been adjusted is first injected into a water-cooled copper mold to form an initial solidified shell. After that, drawing begins, and after it comes out of the water-cooled copper mold, it is cooled by water spray.
  • the slab surface temperature in the above range is greatly influenced by the cooling inside the mold and directly below the mold, so for example, it is possible to improve the thermal conductivity of the mold powder to lubricate the inside of the mold, or to improve the thermal conductivity of the mold powder used to lubricate the inside of the mold. It can be controlled by increasing the flow rate.
  • the heat transfer analysis position can be set at the center of the width of the continuous casting slab.
  • the continuous casting slab according to the present embodiment has (ii) a microstructure in which the total area ratio of ferrite and pearlite is 90% or more, and (iii) the area ratio of ferrite is less than 5% or 10%. % or more.
  • the ratio of internal structures such as bainite and ferrite is also a factor that determines the unit of fracture, and it is necessary to It is known to improve the toughness of slabs.
  • the inventors controlled the cooling rate so that (ii) the microstructure had a total area ratio of ferrite and pearlite of 90% or more, and (iii) the area ratio of ferrite was less than 5%. It has also been found that when the content is 10% or more, the toughness of the slab is improved. Note that the area ratio of ferrite and the area ratio of pearlite can be calculated based on the observation results of the microstructure of the continuously cast slab using an observation means such as an optical microscope. Then, using an observation means such as an optical microscope, ferrite and pearlite contained in the microstructure of the continuously cast slab can be distinguished.
  • the area S total of the microstructure of the continuous casting slab and the total area S (ferrite+pearlite) of the area S ferrite and the area S pearlite are calculated. Then, the ratio of the area S (ferrite+pearlite), which is the sum of the ferrite area S ferrite and the pearlite area S pearlite to the area S total of the microstructure of the continuous casting slab, is defined as an area ratio (%) and calculated.
  • the continuous casting slab according to the present embodiment is characterized in that (ii) the microstructure has a total area ratio of ferrite and pearlite of 90% or more. That is, in the continuous casting slab according to the present embodiment, (ii) the ratio of the area S (ferrite+pearlite), which is the sum of the ferrite area S ferrite and the pearlite area S pearlite , to the area S total of the microstructure of the continuous casting slab. If the area ratio (%) is 90% or more, it is possible to reduce thermal stress and transformation stress due to bainite-martensitic transformation during slow cooling of the slab, and these stresses that occur are also sufficiently absorbed within the microstructure.
  • the continuous casting slab according to the present embodiment is characterized in that (iii) the area ratio of ferrite is less than 5% or 10% or more. That is, in the continuously cast slab according to the present embodiment, when the area ratio of ferrite is 5% or more and less than 10%, thin ferrite exists at the grain boundaries, stress concentrates on the soft ferrite part, and cracks develop. It is not desirable because If the area ratio of ferrite is less than 5%, it is preferable because even if a crack develops, it stops immediately, and when the area ratio of ferrite is 10% or more, it is preferable because stress is difficult to concentrate in the ferrite part and the crack does not develop.
  • grain boundary ferrite is a factor that determines grain boundary strength.
  • grain boundary ferrite occurs, it reduces the toughness of continuously cast slabs.
  • ferrite has lower strength than austenite, pearlite, and bainite, there is a problem in that when stress is applied, stress tends to concentrate on grain boundary ferrite.
  • the inventors of the present invention have repeatedly investigated and found that the microstructure types of the continuous casting slab according to the present embodiment can be continuously cast by suppressing the formation of grain boundary ferrite even in a pearlite-based structure. It was discovered that the toughness of cast slabs can be greatly improved.
  • ferrite contains iron containing up to 0.02% by mass of carbon, and has a structure close to that of pure iron.
  • Ferrite is a ferromagnetic material from room temperature to 780° C., and is the softest and most ductile of all steel structures.
  • Pearlite is a structure obtained when austenite is slowly cooled. Pearlite consists of ferrite layers and cementite layers, and is formed by arranging these layers alternately.
  • the precipitation of grain boundary ferrite is greatly influenced by the cooling rate in the ferrite transformation region. If the cooling rate is slower than the critical rate, ferrite precipitation will occur, so it is necessary to control the cooling rate to below 850°C and below 700°C. If the cooling rate in the ferrite transformation region is slower than the critical rate but sufficient precipitation time cannot be secured, ferrite will precipitate preferentially at grain boundaries where precipitation is likely to occur. For this reason, stress during pearlite and bainite-martensite transformation, which will be transformed later, will be concentrated in the soft ferrite portion, which will cause slab placement cracks, which is not suitable.
  • the microstructure of the continuously cast slab can be controlled by variously controlling the cooling rate in the pearlite transformation region (700° C. or lower and 500° C. or higher).
  • cooling after the continuous casting slab leaves the continuous casting machine depends on the temperature of the slab at the exit side of the continuous casting machine, the time it takes to stack multiple slabs, the number of slabs to be stacked, the presence or absence of a heat insulation cover, and water toughness treatment. It can be controlled by changing conditions such as. Measuring the cooling rate can be done with a thermocouple. For example, measurement can be performed by installing a thermocouple at the center of the top of the wide side (long side) of the slab after it comes out of the continuous casting machine.
  • a continuous casting slab according to a second embodiment will be described.
  • the continuous casting slab according to the present embodiment is different from the continuous casting slab according to the above embodiment in that the continuous casting slab has C: 0.10% or more and 1.00% or less and Si: 0.10% or more and 2.50% by mass. % or less, Mn: 1.50% or more and 5.00% or less.
  • “%" representing the content of component elements of steel means “mass %" unless otherwise specified.
  • C contained in continuous casting slabs for high-strength steel is an element necessary for increasing the strength of high-strength steel plates made from continuous casting slabs. If the C content is less than 0.10%, the strength required for a high-strength steel plate cannot be obtained, so the lower limit of the C content is 0.10%. On the other hand, if the C content exceeds 1.00%, it is not preferable because the weldability and workability of the high-strength steel sheet become insufficient.
  • the content of C contained in the continuous cast slab is 0.10% or more and 1.00% or less, and more preferably 0.12% or less. % or more and 0.40% or less, and particularly preferably 0.15% or more and 0.40% or less.
  • Si contained in the continuous casting slab for high-strength steel is set to 0.10% or more and 2.50% or less.
  • Si contained in the continuous casting slab is an element necessary for ensuring retained austenite in the steel plate in the annealing process of the high strength steel plate using the continuous casting slab as a raw material.
  • Si contained in the continuous casting slab is an essential additive element because it contributes to increasing the strength of high-strength steel sheets through solid solution strengthening. If the Si content is less than 0.10%, the strength required for a high-strength steel plate cannot be obtained, so the lower limit of the Si content is 0.10%.
  • the Si content exceeds 2.50%, the effect of obtaining the strength required for high-strength steel sheets is saturated, and strong scales are formed in hot-rolled sheets before being processed into high-strength steel sheets. Occur.
  • the upper limit of the Si content is 2.50% because it deteriorates the appearance and pickling properties of the high-strength steel sheet.
  • the Si content contained in the continuous casting slab is 0.10% or more and 2.50% or less, and further 0.50% or less. % or more and 2.00% or less, more preferably 1.00% or more and 1.80% or less.
  • Mn contained in the continuous casting slab is an element necessary to further increase the strength of the high-strength steel plate.
  • Mn is an element added to control the strength of a high-strength steel plate through transformation control during the hot rolling process of continuously cast slabs. If the Mn content is less than 0.40%, the high-strength steel plate cannot be sufficiently strengthened, so the lower limit of the Mn content is 0.40%. On the other hand, if the Mn content exceeds 5.00%, the degree of sufficient strengthening of the high-strength steel plate becomes saturated, and the manufacturing cost of the high-strength steel plate increases, which is not preferable from an economic standpoint.
  • the Mn content contained in the continuous casting slab is 0.40% or more and 5.00% or less, and 1.20% or less. It is more preferably 4.50% or less, and more preferably 1.40% or more and 4.00% or less.
  • the continuous casting slab according to the present embodiment has the above-mentioned component composition, with the remainder consisting of Fe and unavoidable impurities, and has an average prior austenite grain size and microstructure with an appropriate composition.
  • P is 0.100% or less
  • S is 0.0200% or less
  • N is 0.0100% or less
  • Al is 0.100% or less
  • O is 0.0100% or less.
  • unavoidable impurities include Zn, Pb, and As. The total content of these unavoidable impurities is allowed to be 0.100% or less.
  • the content of P is preferably 0.100% or less.
  • the lower limit of the P content is not particularly defined, it is preferably 0.001% or more since P is a solid solution strengthening element and can increase the strength of the steel sheet. Therefore, the content of P is preferably 0.100% or less. Preferably it is 0.001% or more. More preferably, it is 0.070% or less.
  • the S content is an element that exists as a sulfide and causes slab embrittlement. Therefore, the S content is preferably 0.0200% or less. Although the lower limit of the S content is not particularly specified, it is preferably 0.0001% or more due to production technology constraints. Therefore, the S content is preferably 0.0200% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
  • Al is an element that affects the fraction of retained austenite in the slab because it suppresses the generation of carbides during cooling of the slab and promotes the generation of retained austenite. Further, it is preferable to add 0.005% or more for deoxidation. If the Al content exceeds 0.100%, there is a risk of slab embrittlement. Therefore, the Al content is preferably 0.100% or less. More preferably, it is 0.010% or more. More preferably, it is 0.080% or less.
  • the N content is an element that exists as a nitride and causes slab embrittlement. Therefore, the N content is preferably 0.0100% or less. Although the lower limit of the N content is not particularly specified, it is preferable that the N content is 0.0001% or more due to constraints on production technology. Therefore, the N content is preferably 0.0100% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
  • O is an element that exists as an oxide and causes embrittlement of the slab. Therefore, the content of O is preferably 0.0100% or less. Although the lower limit of the O content is not particularly defined, it is preferable that the O content is 0.0001% or more due to production technology constraints. Therefore, the O content is preferably 0.0100% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
  • the continuous casting slab according to the present embodiment is suitable for use in high-strength steel plates, and in addition to the above-mentioned composition, it further contains Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, and Ta. : 0.10% or less, W: 0.10% or less, Cr: 2.00% or less, Mo: 2.00% or less, Ni: 2.00% or less, Cu: 2.00% or less, B: 0 At least one element selected from .0100% or less may be contained alone or in combination of two or more.
  • the contents of Ti, Nb, and V are each 0.200% or less.
  • the lower limits of the contents of Ti, Nb, and V are not particularly specified, the strength of the steel sheet can be improved by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing of continuously cast slabs. It is more preferable that the contents of Ti, Nb, and V are each 0.001% or more because the content of Ti, Nb, and V increases. Therefore, when Ti, Nb, and V are contained, their contents are each 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • the contents of Ta and W are each 0.10% or less.
  • the strength of the steel sheet can be increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing of continuously cast slabs. Therefore, it is more preferable that the contents of Ta and W are each 0.01% or more. Therefore, when Ta and W are contained, their contents are each 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
  • the continuous casting slab according to the present embodiment may contain at least one selected from Cr, Mo, Ni, and Cu, as necessary, within a range that does not impair the object of the present invention.
  • Cr, Mo, Ni, and Cu have the effect of increasing the strength of the steel plate through microstructural control during hot rolling of the continuous casting slab. This effect becomes remarkable by adding 0.01% or more of each of Cr, Mo, Ni, and Cu, so it is preferable to add 0.01% or more. If the amount of each element exceeds the upper limit of each element, the weldability, hot workability, etc. of the steel plate will deteriorate, so the upper limit of the amount of each element of Cr, Mo, Ni, and Cu is set at 1.00%. . Therefore, when the continuous casting slab contains Cr, Mo, Ni, and Cu, the content of each of them is 1.00% or less. Preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
  • B may be added to control the structural transformation during hot rolling and annealing of the continuously cast slab, since it affects the strength through structural strengthening. B does not affect the toughness of the slab if it is 0.0100% or less. Therefore, the content of B is preferably 0.0100% or less.
  • the lower limit of the B content is not particularly specified, but since it is an element that segregates at austenite grain boundaries during hot rolling and annealing of continuous casting slabs and improves hardenability, the B content should be 0. It is more preferable to set it to 0003% or more. Therefore, when B is contained, its content should be 0.0100% or less. More preferably, it is 0.0003% or more. More preferably, it is 0.0080% or less.
  • the Co content is preferably 1.00% or less.
  • the lower limit of the Co content is not particularly specified, since it is an element that improves hardenability, the Co content is more preferably 0.001% or more. Therefore, when Co is contained, the content should be 1.00% or less. More preferably, it is 0.001% or more. More preferably, it is 0.80% or less.
  • the Cu content is preferably 1.00% or less.
  • the lower limit of the Cu content is not particularly specified, since it is an element that improves hardenability, the Cu content is preferably 0.01% or more. Therefore, if Cu is contained, the content should be 1.00% or less. More preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
  • the content of Sn is preferably 0.200% or less.
  • the lower limit of the Sn content is not particularly defined, since Sn is an element that improves hardenability, the Sn content is more preferably 0.001% or more. Therefore, if Sn is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • the content of Sb is preferably 0.200% or less.
  • the lower limit of the Sb content is not particularly defined, it is more preferable that the Sb content is 0.001% or more, since it is an element that suppresses decarburization and enables the strength adjustment of steel sheets. . Therefore, if Sb is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • each content of Ca, Mg, and REM is preferably 0.0100% or less.
  • the lower limits of each content of Ca, Mg, and REM are not specified in particular, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the toughness of slabs, the contents of Ca, Mg, and REM are It is more preferable for each of these to be 0.0005% or more. Therefore, when Ca, Mg and REM are contained, their contents are each 0.0100% or less. More preferably, it is 0.0005% or more. More preferably, it is 0.0050% or less.
  • each content of Zr and Te is preferably 0.100% or less.
  • the lower limits of each content of Zr and Te are not particularly specified, but since Zr and Te are elements that make the shape of nitrides and sulfides spheroidal and improve the toughness of slabs, the content of Zr and Te is More preferably, each amount is 0.001% or more. Therefore, when Zr and Te are contained, their contents are each 0.100% or less. More preferably, it is 0.001% or more. More preferably, it is 0.080% or less.
  • the Hf content is preferably 0.10% or less. Note that there is no particular lower limit to the Hf content, but since it is an element that spheroidizes the shape of nitrides and sulfides and improves the ultimate deformability of steel sheets, the Hf content should be 0.01% or more. It is more preferable to do so. Therefore, if Hf is contained, the content should be 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
  • the Bi content is preferably 0.200% or less.
  • the lower limit of the Bi content is not particularly defined, since it is an element that reduces segregation, the Bi content is more preferably 0.001% or more. Therefore, when Bi is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • each content of Ti, Nb, V, Ta, W, B, Cr, Mo, Ni, Co, Cu, Sn, Sb, Ca, Mg, REM, Zr, Te, Hf and Bi is preferable. If it is less than the lower limit, the effect of the present invention will not be impaired, and therefore it is included as an unavoidable impurity.
  • a method for manufacturing a continuous casting slab according to a third embodiment will be described.
  • the method for manufacturing a continuous casting slab according to the present embodiment is a method for manufacturing a continuous casting slab for high-strength steel in which slab cracking caused by cooling is suppressed, and includes the components of the continuous casting slab described in the above embodiment.
  • a continuous casting slab having a composition is provided such that the cooling temperature of the continuous casting slab at the center in the width direction of the continuous casting slab and at a position 10 mm from the surface layer of the continuous casting slab is 1200°C or more and 1450°C or less, and the continuous casting slab is retained.
  • a first cooling step of cooling under cooling conditions for a time of 130 seconds or less A second cooling step in which the continuously cast slab is cooled under cooling conditions in which the surface temperature at the center in the width direction is 700° C. or more and 850° C. or less and the average cooling rate is 20° C./hr or less; A third cooling step of cooling the continuously cast slab under cooling conditions in which the surface temperature at the center in the width direction is from 500° C. to 700° C. and the average cooling rate is 10° C./hr or less.
  • the lower limit of the average cooling rate in the second cooling process and the third cooling process is not specified in particular, but when multiple slabs are stacked and a heat insulation cover is used, the lower limit is 700°C or more and 850°C or less, and 500°C or more and 700°C
  • the average cooling rate below .degree. C. is at least 2.degree. C./hr and 1.degree. C./hr, respectively.
  • cooling at an average cooling rate that is slower than these average cooling rates requires, for example, placing the slab in a heating furnace and applying heat, which requires equipment, so it is not recommended from an economic point of view. I also don't like it.
  • the lower limit of the average cooling rate from 700°C to 850°C is 2°C/hr
  • the lower limit to the average cooling rate from 500°C to 700°C is 1°C/hr. It is good to say.
  • transshipment may occur depending on the conditions of the manufacturing process.
  • the cooling rate of the slab may temporarily exceed the predetermined cooling rate.
  • the average cooling rate is defined instead of the maximum cooling rate.
  • the method for manufacturing a continuous casting slab according to the present embodiment is a method for manufacturing a continuous casting slab for high-strength steel in which slab cracking caused by cooling is suppressed, and includes the components of the continuous casting slab described in the above embodiment.
  • the first cooling step is a step for controlling the average prior austenite grain size contained in the continuous casting slab according to the above embodiment to 2.0 mm or less at a predetermined position.
  • the average prior austenite grain size is controlled to 2.0 mm or less, it is possible to reduce the density of precipitates that precipitate at prior austenite grain boundaries, suppress the precipitation of harmful grain boundary ferrite, and improve slab toughness.
  • the factor that determines the average prior austenite grain size is the temperature at which the slab is cooled.
  • the temperature at which the continuous casting slab is cooled is in the range of 1450°C or lower and 1200°C or higher.
  • the continuous casting slab manufacturing method focuses on the cooling temperature of the continuous casting slab in the range of 1450°C or lower and 1200°C or higher, which is a factor that determines the average prior austenite grain size. is under control.
  • the residence time of the continuous casting slab in the above temperature range for cooling the continuous casting slab is 130 seconds or less. It is preferable that the residence time of the continuously cast slab at the above temperature is 130 seconds or less, since the average prior austenite grain size can be made 2.0 mm or less, and cracking in the slab can be suppressed.
  • the continuously cast slab is cooled under cooling conditions in which the average cooling rate is 20°C/hr or less when the surface temperature at the widthwise center of the continuously cast slab is 700°C or more and 850°C or less.
  • the second cooling step is a step for suppressing the precipitation of grain boundary ferrite contained in the microstructure of the continuously cast slab according to the above embodiment, and making the area ratio of ferrite less than 5% or more than 10%.
  • the temperature at which the continuous casting slab is further cooled is 700°C or higher and 850°C or lower.
  • the method for manufacturing a continuously cast slab according to the present embodiment controls the temperature by focusing on the cooling rate in the temperature range in the ferrite transformation region where ferrite precipitation can be controlled.
  • the average cooling rate of the continuously cast slab is 20° C./hr or less in the above temperature range in which the continuously cast slab is cooled. If the average cooling rate exceeds 20° C./hr, thin ferrite precipitation occurs only at prior austenite grain boundaries, which embrittles the grain boundaries, which is not suitable. If the average cooling rate of the continuous casting slab is 20°C/hr or less, sufficient residence time of the continuous casting slab in the ferrite transformation temperature range can be ensured, allowing grain boundary ferrite to grow into polygonal ferrite and forming grain boundary ferrite. This is preferable because it can prevent stress concentration on.
  • the lower limit of the average cooling rate is not strictly limited, it is preferably 2° C./hr or more since a separate energy source is required to control the cooling rate. More preferably, the average cooling rate is 5° C./hr or more and 18° C./hr or less.
  • the continuously cast slab is cooled under cooling conditions in which the average cooling rate is 10°C/hr or less when the surface temperature at the center in the width direction is 500°C or more and 700°C or less.
  • the third cooling step is a step for changing the microstructure of the continuously cast slab according to the above embodiment to a pearlite-based structure and reducing internal stress.
  • the third cooling step calculates the area ratio (%), which is the ratio of the total area S (ferrite + pearlite) of the ferrite area S ferrite and pearlite area S pearlite to the microstructure area S total of the continuous casting slab. This is a process to make it 90% or more.
  • the temperature at which the continuous casting slab is further cooled is 500°C or more and 700°C or less.
  • the continuous casting slab manufacturing method according to the present embodiment controls the temperature by focusing on the cooling rate in the temperature range in the pearlite transformation region.
  • the average cooling rate of the continuously cast slab is 10° C./hr or less in the above temperature range in which the continuously cast slab is cooled. If the average cooling rate of the continuously cast slab exceeds 10° C./hr, bainite/martensite will precipitate from the pearlite-based microstructure, which will cause large stress, which is not suitable. Bainite/martensite has a lower transformation temperature than pearlite, and the transformation stress is applied to the pearlite part that has already undergone transformation, which is a factor that promotes cracking.
  • the average cooling rate of the continuously cast slab is 10° C./hr or less, since internal stress can be reduced by suppressing bainite transformation and creating a pearlite-based structure.
  • the lower limit of the average cooling rate is not strictly limited, but since a separate energy source is required to control the cooling rate, it is preferably 1°C/hr or more, more preferably 5°C/hr or more. .
  • the continuous casting slab manufacturing method employs a three-step cooling process to precisely control the average prior austenite grain size and the microstructure of the continuous casting slab.
  • a continuously cast slab for high-strength steel which suppresses slab cracks that occur due to cooling and prevents problems such as holes during rolling.
  • the cooling process is divided into three stages, and each cooling process is By precise control, it is possible to provide a continuously cast slab for high-strength steel that does not cause cracking during the cooling process and prevents problems such as holes during rolling.
  • the cooling conditions for the continuous casting slab are (I) residence time [s] of 1200°C or more and 1450°C or less, (II) average cooling rate [°C/hr] of 700°C or more and 850°C or less, and (III) A three-stage cooling process consisting of an average cooling rate [° C./hr] of 500° C. or more and 700° C. or less was employed, and cooling was performed by changing the conditions of each of these stages as appropriate.
  • Tables 2 to 4 show the continuous casting slab cooling conditions (I) to (III), the microstructure of the obtained continuous casting slab, and the evaluation of slab placement cracking.
  • the method for measuring the average prior austenite grain size is as follows. A sample was cut out from the width center position of the slab after cooling, so that the slab thickness cross section parallel to the slab width direction served as the observation surface. Next, the observation surface was mirror polished using diamond paste, then finished polished using colloidal silica, and further polished using 3vol. % nital to reveal the structure on the observation surface. Using an optical microscope, 5 fields of view are observed at a magnification of 10 times at a position 10 mm below the surface layer of the slab to obtain a microstructure image of the continuously cast slab. The prior austenite grain size obtained by observing the obtained microstructure image in 5 fields was determined by a cutting method based on JIS G 0551:2020, and the average value of these was calculated as the average prior austenite grain size.
  • ⁇ Measurement method of ferrite area ratio To measure the ferrite area ratio, prepare the observation surface of the slab in the same manner as the above-mentioned method for measuring the average prior austenite grain size. Next, the observation surface was mirror polished using diamond paste, then finished polished using colloidal silica, and further polished using 3vol. Etch with % nital to reveal the tissue. A microstructure image of the continuously cast slab obtained by observing 10 fields of view at a magnification of 50 times at a position 10 mm below the surface of the slab using an SEM (Scanning Electron Microscope) at an accelerating voltage of 15 kV.
  • SEM Sccanning Electron Microscope
  • the area ratio of ferrite was calculated for 10 fields of view using Adobe's PHOTOSHOP (registered trademark), and the values were averaged to determine the area ratio of ferrite.
  • ferrite has a larger grain size than other structures (pearlite, bainite, tempered martensite, hardened martensite, retained austenite), has a smooth surface, and has a dark contrast, so it can be easily seen at 50x magnification. I can tell the difference.
  • the method for measuring the area ratio of the pearlite structure involves making the structure appear on the observation surface of the slab, similar to the method for measuring ferrite described above. Under the condition of an accelerating voltage of 15 kV, using a SEM, 10 fields of view were observed at a magnification of 10,000 times with the ferrite removed from the field of view at a position 10 mm below the surface layer of the slab, and the obtained microstructure image of the continuously cast slab was obtained. Using Adobe's PHOTOSHOP (registered trademark), calculate the area ratio of pearlite and the area ratio of bainite for 10 fields, average these values, and calculate the total by combining them with the area ratio of ferrite measured using the method described above.
  • Adobe's PHOTOSHOP registered trademark
  • the microstructure of the continuously cast slab according to the present invention is mainly pearlite and has no grain boundary ferrite.
  • ⁇ Slab crack evaluation> The evaluation method for slab placement cracks was based on the penetrant test specified in JIS Z 2343:2017, and the presence or absence of cracks on the wide and narrow sides of the slab was evaluated. After applying the developer, the appearance of the penetrating solution was visually observed to visually check for cracks in the slab that had occurred on the surface. In addition, if there is a crack with a length of 50 mm or more, there is a high risk of the slab breaking during slab handling or in the heating furnace, and there is also a high possibility that it will lead to problems with holes during rolling. The criteria were as follows. ⁇ Slab cracks ⁇ ...No cracks of 50 mm or more in length on the slab surface ⁇ Slab cracks in place ⁇ ...Cracks of 50 mm or more in length on the slab surface
  • Condition A is the microstructure of the slab that is satisfied by the continuously cast slabs manufactured in A-1 to A-4.
  • Condition A is a condition for an example in which the average prior austenite grain size at a position 10 mm below the surface layer of the slab is larger than 2.0 mm. In these cases, the toughness of the prior austenite grain boundaries has decreased due to the increased precipitate density at the prior austenite grain boundaries, so even if the conditions for slow cooling of the slab after it exits the continuous slab casting machine are varied, Slab cracking could not be suppressed.
  • Condition B is the microstructure of the slab that is satisfied by the continuously cast slabs manufactured in B-1 to B-8.
  • Condition B is a condition in which the average prior austenite grain size at a position 10 mm below the surface layer of the slab is 2.0 mm or less, but grain boundary ferrite is precipitated at the prior austenite grain boundaries. In these cases, grain boundary ferrite reduces the toughness of prior austenite grain boundaries, so even if the subsequent cooling rate is varied and the microstructure composition is changed, it is difficult to suppress slab cracking. I could't.
  • Condition C is the microstructure of the slab that is satisfied by the continuously cast slabs manufactured in C-1 to C-3.
  • Condition C is a condition in which the average prior austenite grain size is 2.0 mm or less and the precipitation of grain boundary ferrite is suppressed, but as 10% or more of bainite precipitates, slab cracking cannot be suppressed. It is a condition. Since bainite transformation occurs at a lower temperature than pearlite transformation, there is a large density difference with austenite, and the transformation stress is also large, so it is thought that slab cracking could not be suppressed.
  • Condition D is the slab microstructure that is satisfied by the continuously cast slabs manufactured in D-1 to D-24.
  • Condition D is the condition of the present invention example, and the continuous casting slab manufactured in the present invention example has an average prior austenite grain size of 2.0 mm or less, and a microstructure with almost no grain boundary ferrite and bainite.
  • the average prior austenite grain size at a position 10 mm from the slab surface is 0.5 mm or more and 2.0 mm or less
  • the microstructure of the continuously cast slab is composed of ferrite and pearlite. It has been found that slab placement cracking during cooling of the slab can be suppressed by setting the total area ratio of (iii) to 90% or more and (iii) the area ratio of the ferrite to less than 5% or 10% or more.
  • the continuously cast slab of the present invention has an average prior austenite grain size of 0.5 mm or more and 2.0 mm or less at a position 10 mm from the slab surface layer, and a microstructure with a total area ratio of ferrite and pearlite of 90% or more. Since the area ratio of ferrite is less than 5% or more than 10%, it is possible to provide a slab for high-alloy high-strength steel without slab cracking after casting, and it is also possible to prevent problems such as holes during rolling. Become.
  • the average prior austenite grain size at a position 10 mm from the slab surface layer is 0.5 mm or more and 2.0 mm or less
  • the microstructure has a total area ratio of ferrite and pearlite of 90 mm. % or more, and (iii) it has been found that cracking during cooling of the slab can be suppressed by setting the area ratio of the ferrite to less than 5% or 10% or more.
  • FIG. 3 is an enlarged photograph observed with an optical microscope of the continuous casting slab manufactured in the invention example of the continuous casting slab (Test No. D-9). Based on the enlarged photograph of the continuously cast slab observed with an optical microscope shown in FIG .
  • the continuously cast slab of the present invention example has an average prior austenite grain size of 0.5 mm or more and 2.0 mm or less at a position 10 mm from the slab surface layer, and the microstructure has an area ratio of ferrite and pearlite.
  • the total amount was found to be more than 90%.
  • the continuously cast slabs of the examples of the present invention had a ferrite area ratio of less than 5% or more than 10%.
  • the temperature at a position 10 mm below the surface layer of the slab is 1450°C or lower, and the residence time at 1200°C or higher is 130 seconds or less, and then the temperature at the center surface of the slab width is lowered. Cooling is performed so that the cooling rate at 850°C or lower and 700°C or higher is 20°C/hr or less, and further, the average cooling rate at 700°C or lower and 500°C or higher is 10°C/hr or less. It is preferable to employ three stages of cooling.
  • cooling is performed so that the cooling rate is 20°C/hr or less in the area where the temperature of the central surface of the slab width is 850°C or lower and 700°C or higher, and then the average temperature of the central surface of the slab width is 700°C or lower and 500°C or higher.
  • the cooling rate is 10° C./hr or less, a continuously cast slab having such a microstructure can be obtained.
  • the method for manufacturing a continuous casting slab having the microstructure of the continuous casting slab described above is not limited to this.
  • the continuously cast slab of the present invention has an average prior austenite grain size of 0.5 mm or more and 2.0 mm or less at a position 10 mm from the surface layer of the slab, and a microstructure with a total area ratio of ferrite and pearlite of 90 mm. % or more, and the area ratio of ferrite is less than 5% or more than 10%, so it is possible to provide high-strength steel slabs without slab cracking after casting, and it is also possible to prevent problems such as holes during rolling. Therefore, it is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

The present invention provides: a continuous casting slab in which season cracking does not occur while cooling, even when the continuous casting slab has a low toughness; and a method for manufacturing the same. A continuous casting slab for high-strength steel, characterized in that: the average prior austenite grain size at a 10-mm position from the continuous casting slab surface layer is 0.5-2.0 mm inclusive; and the microstructure is such that the total of the area ratio of ferrite and the area ratio of perlite is 90% or more and the area ratio of ferrite is below 5% or 10% or more.

Description

連続鋳造スラブおよびその製造方法Continuous casting slab and its manufacturing method
 本発明は、冷却時の割れを防止した連続鋳造スラブおよびその製造方法に関する。より詳しくは、高強度鋼(ハイテン)用連続鋳造スラブであって、置き割れ防止に有効であり、圧延時に穴あきのトラブルを発生させない連続鋳造スラブおよびその製造方法に関する。 The present invention relates to a continuously cast slab that prevents cracking during cooling and a method for manufacturing the same. More specifically, the present invention relates to a continuously cast slab for high-strength steel (high tensile strength steel) that is effective in preventing cracking and does not cause problems with holes during rolling, and a method for producing the same.
 近年、自動車の分野では、車体のさらなる薄肉化と衝突安全性の確保との両立のため、高強度鋼のさらなる高強度化、そのための高合金化が進行している。高合金化によりスラブの靭性を大きく低下させている。 In recent years, in the field of automobiles, in order to achieve both further thinning of car bodies and ensuring collision safety, progress has been made in increasing the strength of high-strength steel, and in order to achieve this, the use of higher alloys. High alloying greatly reduces the toughness of the slab.
 高合金化によるスラブの靭性の低下に伴い、スラブ冷却時の割れ、いわゆる、置き割れが頻発するようになってきた。置き割れが生じると、スラブ搬送時にスラブが破断し、スラブを熱間圧延に供することができなくなるおそれがある。また、スラブが破断しなくとも、スラブの熱間圧延中に亀裂が開口して、熱間圧延鋼板が破断するおそれがある。あるいは、スラブの亀裂が小さいものについては、熱間圧延後や冷間圧延後、焼鈍後あるいはめっき後の鋼板にヘゲ疵やスリバー疵などの表面欠陥となって表れる。通常、スラブ表面の亀裂はグラインダーで除去している。ところが、高合金化によってスラブの靭性が低下し、グラインダーの応力により、スラブの亀裂が進展してしまい、スラブの亀裂を完全に除去することができないことがある。一方で、スラブの亀裂が小さいものについては、見逃されて、熱間圧延後、冷間圧延後、焼鈍後あるいはめっき後の鋼板に表面欠陥として現れる場合がある。これらのことから、スラブの割れは抑制する必要がある。 With the decline in slab toughness due to high alloying, cracking during slab cooling, so-called cracking, has become more frequent. If a crack occurs, the slab may break during slab transportation, and the slab may not be able to be subjected to hot rolling. Furthermore, even if the slab does not break, cracks may open during hot rolling of the slab and the hot rolled steel plate may break. Alternatively, if the cracks in the slab are small, they appear as surface defects such as sludge defects and sliver defects on the steel plate after hot rolling, cold rolling, annealing, or plating. Cracks on the slab surface are usually removed using a grinder. However, the toughness of the slab decreases due to high alloying, and the cracks in the slab propagate due to the stress of the grinder, so that it may not be possible to completely remove the cracks in the slab. On the other hand, small cracks in the slab may be overlooked and appear as surface defects on the steel plate after hot rolling, cold rolling, annealing, or plating. For these reasons, it is necessary to suppress cracking of the slab.
 図1は、置き割れにより破断した高強度鋼用スラブ亀裂部の破面を走査電子顕微鏡(SEM)により撮影した拡大写真である。図1からも明らかなように、スラブ亀裂部の破面は、旧オーステナイト粒界に沿った粒界破面の様相を呈していた。図2にスラブ亀裂部の断面を組織写真で示す。スラブ亀裂の深さは、主にスラブ表層から20mm程度であった。スラブ亀裂は旧オーステナイト粒界近傍を伝播しており、スラブ亀裂部先端には粒界フェライトが存在していた。また、旧オーステナイト粒内には、パーライト、あるいは、パーライトとベイナイトが観察された。 FIG. 1 is an enlarged photograph taken using a scanning electron microscope (SEM) of the fracture surface of a cracked part of a high-strength steel slab that was fractured due to a crack. As is clear from FIG. 1, the fracture surface of the slab crack had the appearance of a grain boundary fracture surface along prior austenite grain boundaries. Figure 2 shows a photograph of the cross section of the slab crack. The depth of the slab cracks was mainly about 20 mm from the slab surface layer. The slab crack propagated near the prior austenite grain boundaries, and grain boundary ferrite was present at the tip of the slab crack. In addition, pearlite or pearlite and bainite were observed within the prior austenite grains.
 粒界破壊は、旧オーステナイト粒が粗大であり、粒界が脆化した場合に発生する。粒界は粒内に比べて析出物やフェライトが生成しやすい。粒界の析出物は粒界強度を下げ、スラブの靭性を低下させる要因となる。旧オーステナイト粒が粗大であると、粒界の占める割合が少なくなり、析出物密度が大きくなるため粒界はさらに脆化する。また、粒界フェライトが生じた場合、粒内のパーライトおよびベイナイトとの強度差が生じるため、強度の低い粒界フェライト部に応力集中が起こり、より低い応力でもスラブの亀裂へと進展する。こちらも旧オーステナイト粒が粗大であると、直線的に薄く伸びた粒界フェライトが析出してしまうため、スラブ割れの伸展を止めることができず、スラブの亀裂による被害が拡大する。一方、スラブを冷却すると、スラブ表面と内部の熱収縮差や変態膨張差に起因した応力が発生する。この応力が大きいとスラブを室温まで冷却する際にスラブ割れが発生する。近年の高合金高強度鋼ではスラブの靭性が低いため、このように発生したスラブの深い亀裂は、グラインダー等の手入れによって除去することが困難であり、スラブの歩留まりを大きく下げる問題となっていた。 Grain boundary fracture occurs when the prior austenite grains are coarse and the grain boundaries become brittle. Precipitates and ferrite are more likely to form at grain boundaries than inside grains. Precipitates at grain boundaries reduce grain boundary strength and become a factor in reducing slab toughness. If the prior austenite grains are coarse, the proportion occupied by the grain boundaries will decrease, and the density of precipitates will increase, making the grain boundaries even more brittle. Furthermore, when grain boundary ferrite is formed, there is a difference in strength between pearlite and bainite within the grains, so stress concentration occurs in the grain boundary ferrite portion, which has low strength, and even a lower stress develops into cracks in the slab. Here too, if the prior austenite grains are coarse, grain boundary ferrite that extends thinly in a straight line will precipitate, making it impossible to stop the extension of slab cracks and increasing the damage caused by cracks in the slab. On the other hand, when the slab is cooled, stress is generated due to differences in thermal contraction and transformation expansion between the surface and the inside of the slab. If this stress is large, slab cracking will occur when the slab is cooled to room temperature. Since the slab toughness of recent high-alloy high-strength steels is low, it is difficult to remove deep cracks in the slab by using a grinder, etc., and this has been a problem that greatly reduces the yield of slabs. .
 このような観点から、高張力鋼のスラブに置き割れが発生することを抑制する方法が提案されている。例えば、特許文献1には、オーステナイトからフェライトに変態する温度域である700~500℃を徐冷することで、ベイナイト/マルテンサイト変態を抑制し、その変態膨張によって生じる応力を低減させる方法が提案されている。すなわち、特許文献1には、高張力鋼において置き割れが発生しやすい鋼種でも、置き割れの発生を抑制することが可能な方法が開示されている。具体的に特許文献1に開示された高張力鋼のスラブの冷却方法は、高張力鋼の内部応力がその冷却速度に依存するという知見に基づいて高張力鋼に発生した内部割れ長さに応じて、スラブの冷却速度を制御することにより、置き割れの発生を抑制する方法である。 From this point of view, methods have been proposed to suppress the occurrence of cracks in high-tensile steel slabs. For example, Patent Document 1 proposes a method of suppressing bainite/martensite transformation and reducing stress caused by the transformation expansion by slowly cooling the temperature range of 700 to 500°C, which is the temperature range where austenite transforms to ferrite. has been done. That is, Patent Document 1 discloses a method capable of suppressing the occurrence of cracks even in high-tensile steel, which is a type of steel where cracks are likely to occur. Specifically, the method for cooling a high-tensile steel slab disclosed in Patent Document 1 is based on the knowledge that the internal stress of high-tensile steel depends on its cooling rate. This method suppresses the occurrence of cracks by controlling the cooling rate of the slab.
 また、特許文献2には、スラブの鋳造後すぐに徐冷を開始し、700℃以上の温度で10時間以上、700~500℃までの温度をさらに徐冷することで温度差や変態時の応力を低減する方法が提案されている。すなわち、特許文献2には、Siを含む成分のスラブであっても、当該スラブの冷却中のスラブ割れのみならず、熱延時のヘゲ等の品質欠陥が発生しない高強度鋼板用スラブの冷却方法が開示されている。具体的に特許文献2に開示された高強度鋼板用スラブの冷却方法は、C、Si、Mn等の化学成分の含有量を限定した高強度熱延鋼板の連続鋳造スラブの500~700℃における平均冷却速度を20℃/hr以下とするものである。 In addition, Patent Document 2 discloses that slow cooling is started immediately after the slab is cast, and further slow cooling is carried out at a temperature of 700 to 500 °C for 10 hours or more at a temperature of 700 °C or higher, thereby reducing temperature differences and transformation. Methods have been proposed to reduce stress. In other words, Patent Document 2 describes a method for cooling a slab for high-strength steel sheets that does not cause not only slab cracking during cooling but also quality defects such as baldness during hot rolling even if the slab has a component containing Si. A method is disclosed. Specifically, the method for cooling a high-strength steel plate slab disclosed in Patent Document 2 is to continuously cast a high-strength hot-rolled steel plate slab with a limited content of chemical components such as C, Si, and Mn at 500 to 700°C. The average cooling rate is 20° C./hr or less.
特開2020-139209号公報Japanese Patent Application Publication No. 2020-139209 特開2019-167560号公報Japanese Patent Application Publication No. 2019-167560
 しかしながら、上記従来技術には以下の問題がある。特許文献1に記載された高張力鋼のスラブを鋳造後に冷却する方法は、スラブ鋳造後、冷却した際、スラブの温度が700℃になってから500℃に至るまでの温度範囲のみに着目して、スラブの発生する内部応力が小さくなるように制御している。しかし、近年の高合金化された高強度鋼ではスラブの靭性が低いため、置き割れが伝播する旧オーステナイト粒界の状態も非常に重要になってくる。特許文献1に記載の方法では、旧オーステナイト粒径や粒界フェライトの制御を行っていないため、特許文献1に記載された高張力鋼のスラブの冷却方法を用いて炭素の含有率を高めたスラブを製造しても、スラブの置き割れ発生を十分に抑制することができない。 However, the above conventional technology has the following problems. The method of cooling a high-strength steel slab after casting described in Patent Document 1 focuses only on the temperature range from 700°C to 500°C when the slab is cooled after casting. The internal stress generated in the slab is controlled to be small. However, because the toughness of slabs in recent high-alloyed high-strength steels is low, the state of prior austenite grain boundaries, where cracks propagate, is also extremely important. Since the method described in Patent Document 1 does not control the prior austenite grain size or grain boundary ferrite, the carbon content was increased using the method for cooling a slab of high-strength steel described in Patent Document 1. Even if the slab is manufactured, it is not possible to sufficiently suppress the occurrence of cracking in the slab.
 さらに、特許文献2に記載された高強度鋼板用スラブの冷却方法は、スラブ割れの原因が鋼中へのSi添加とスラブ内の温度ムラに起因して発生する熱応力にあるという知見に基づき、熱応力の低減に着目してスラブの割れを抑制している。しかし、特許文献2に記載された高強度鋼板用スラブの冷却方法において、スラブのミクロ組織について何ら限定されていない。このため、特許文献2に記載された高強度鋼板用スラブの冷却方法を用いてスラブを製造しても、スラブの置き割れ発生を十分に抑制することができない。
 また、本発明者らが鋭意検討した結果、従来技術によるC、Si、Mnを多く含んだスラブでは靭性がかなり低く、完全に置き割れを抑制することが不可能であり、圧延時に穴あきのトラブルが発生することを知見した。
Furthermore, the cooling method for high-strength steel plate slabs described in Patent Document 2 is based on the knowledge that the cause of slab cracking is the addition of Si to the steel and the thermal stress generated due to temperature unevenness within the slab. , focuses on reducing thermal stress to suppress cracking of slabs. However, in the method for cooling a high-strength steel plate slab described in Patent Document 2, there are no limitations on the microstructure of the slab. For this reason, even if a slab is manufactured using the cooling method for a high-strength steel plate slab described in Patent Document 2, it is not possible to sufficiently suppress the occurrence of cracking in the slab.
In addition, as a result of intensive studies by the present inventors, it was found that the conventional slabs containing a large amount of C, Si, and Mn had considerably low toughness, making it impossible to completely suppress cracking, and causing problems with holes during rolling. We found that this occurs.
 本発明は、このような事情に鑑みてなされたものであって、靭性の低い連続鋳造スラブであっても、当該スラブの冷却中において、スラブの置き割れが発生することなく、圧延時に穴あきのトラブルを発生させない連続鋳造スラブおよびその製造方法の提供を目的としている。 The present invention has been made in view of the above circumstances, and even in continuously cast slabs with low toughness, cracks do not occur during cooling of the slab, and holes are not formed during rolling. The purpose of the present invention is to provide a continuous casting slab that does not cause trouble and a method for manufacturing the same.
 発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。その結果、スラブ割れの破壊形態を解析し、その破面には旧オーステナイト粒界に沿った粒界破面、旧オーステナイト粒界を横切る粒内破面(へき開破面)の破面のうち少なくとも1種が存在していることを見出した。さらに、発明者らは、詳細な検討を重ね、スラブの置き割れは、冷却速度の制御および温度ムラの低減による応力低下だけでは抑制できず、ミクロ組織の形態が大きく影響していることを明らかにした。具体的には、連続鋳造スラブにおける平均旧オーステナイト粒径やミクロ組織を制御し、その靭性を向上させることにより、連続鋳造スラブの冷却過程でのスラブ置き割れを抑制し、圧延時に穴あきのトラブルを発生させないようにできることを見出し、本発明に想到した。 The inventors have made extensive studies to achieve the above objective. As a result, we analyzed the fracture morphology of slab cracks, and found that the fracture surfaces include at least two of the following: intergranular fracture surfaces along prior austenite grain boundaries, and intragranular fracture surfaces (cleavage fracture surfaces) that cross prior austenite grain boundaries. It was discovered that one species exists. Furthermore, the inventors conducted detailed studies and found that cracking in slabs cannot be suppressed by stress reduction alone by controlling the cooling rate and reducing temperature unevenness, and that the morphology of the microstructure has a large effect. I made it. Specifically, by controlling the average prior austenite grain size and microstructure in continuously cast slabs and improving their toughness, we are able to suppress slab cracking during the cooling process of continuously cast slabs, and to reduce the problem of holes during rolling. They discovered that it is possible to prevent this from occurring, and came up with the present invention.
 すなわち、上記課題を有利に解決する本発明に係る連続鋳造スラブは、高強度鋼用連続鋳造スラブであって、連続鋳造スラブ表層から10mm位置における平均旧オーステナイト粒径が0.5mm以上2.0mm以下であり、かつ、ミクロ組織が、フェライトの面積率とパーライトの面積率との合計で90%以上であって、前記フェライトの面積率が5%未満または10%以上であることを特徴とする。 That is, the continuous casting slab according to the present invention, which advantageously solves the above problems, is a continuous casting slab for high-strength steel, and the average prior austenite grain size at a position 10 mm from the surface layer of the continuous casting slab is 0.5 mm or more and 2.0 mm. and the microstructure is characterized in that the total area ratio of ferrite and pearlite is 90% or more, and the area ratio of ferrite is less than 5% or 10% or more. .
 なお、本発明に係る連続鋳造スラブは、(a)質量%で、C:0.10%以上1.00%以下、Si:0.10%以上2.50%以下、Mn:0.40%以上5.00%以下を含有すること、などがより好ましい解決手段になり得るものと考えられる。 The continuous casting slab according to the present invention contains (a) in mass %, C: 0.10% or more and 1.00% or less, Si: 0.10% or more and 2.50% or less, Mn: 0.40% It is considered that containing 5.00% or less of the above amount may be a more preferable solution.
 さらに、本発明に係る連続鋳造スラブの製造方法は、冷却により発生するスラブ置き割れが抑制された高強度鋼用連続鋳造スラブの製造方法であって、
(a)に記載の成分組成の連続鋳造スラブを、
 連続鋳造スラブ幅方向中央であり、かつ前記連続鋳造スラブ表層から10mm位置における前記連続鋳造スラブの冷却温度が1200℃以上1450℃以下であり、前記連続鋳造スラブの滞留時間が130s以下である冷却条件により冷却する第一冷却工程と、
 前記連続鋳造スラブ幅方向中央の表面温度が700℃以上850℃以下における平均冷却速度が20℃/hr以下である冷却条件により冷却する第二冷却工程と、
 前記連続鋳造スラブ幅方向中央の表面温度が500℃以上700℃以下における平均冷却速度が10℃/hr以下である冷却条件により冷却する第三冷却工程と、を含むことを特徴とする。
Furthermore, the method for producing a continuously cast slab according to the present invention is a method for producing a continuously cast slab for high-strength steel in which slab cracking caused by cooling is suppressed,
A continuous casting slab having the composition described in (a),
Cooling conditions in which the cooling temperature of the continuous casting slab at the center in the width direction of the continuous casting slab and at a position 10 mm from the surface layer of the continuous casting slab is 1200°C or more and 1450°C or less, and the residence time of the continuous casting slab is 130 seconds or less. a first cooling step of cooling by;
A second cooling step in which the continuously cast slab is cooled under cooling conditions in which the surface temperature at the center in the width direction is 700° C. or more and 850° C. or less and the average cooling rate is 20° C./hr or less;
The continuous casting slab is characterized by including a third cooling step of cooling under cooling conditions in which the surface temperature at the center in the width direction is from 500° C. to 700° C. and the average cooling rate is 10° C./hr or less.
 本発明によれば、高強度鋼用連続鋳造スラブの成分系であっても、冷却過程での置き割れが発生することなく、圧延時に穴あきのトラブルを発生させない連続鋳造スラブを提供することができる。 According to the present invention, it is possible to provide a continuous casting slab that does not cause cracking during the cooling process and does not cause problems with holes during rolling, even with the composition system of continuous casting slabs for high-strength steel. .
置き割れにより破断した高強度鋼用連続鋳造スラブの亀裂部破面を走査電子顕微鏡(SEM)により撮影した写真である。This is a photograph taken using a scanning electron microscope (SEM) of a fractured surface of a cracked part of a continuously cast slab for high-strength steel that was fractured due to a crack. 上記亀裂部の断面組織写真である。It is a photograph of the cross-sectional structure of the above-mentioned cracked part. 本発明に係る実施形態の連続鋳造スラブの発明例(試験No.D-9)において製造した連続鋳造スラブの光学顕微鏡による観察拡大写真である。1 is an enlarged photograph observed with an optical microscope of a continuous casting slab manufactured in an invention example (Test No. D-9) of a continuous casting slab according to an embodiment of the present invention.
 以下、本発明の実施の形態について具体的に説明する。なお、各図面は模式的なものであって、現実のものとは異なる場合がある。また、以下の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be specifically described. Note that each drawing is schematic and may differ from the actual drawing. Furthermore, the following embodiments are intended to exemplify devices and methods for embodying the technical idea of the present invention, and the configuration is not limited to the following. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.
[第1実施形態]
 第1実施形態に係る連続鋳造スラブについて説明する。本実施形態に係る連続鋳造スラブは、高強度鋼用連続鋳造スラブであって、(i)連続鋳造スラブ表層から10mm位置における平均旧オーステナイト粒径が0.5mm以上2.0mm以下であり、(ii) ミクロ組織が、フェライトの面積率とパーライトの面積率との合計が90%以上であって、(iii)前記フェライトの面積率が5%未満または10%以上であることを特徴とする。すなわち、本実施形態に係る発明によれば、少なくとも上記(i)~(iii)の特性を備えることにより、連続鋳造スラブの靭性が非常に低い近年の高強度鋼用連続鋳造スラブにおいても、冷却過程でのスラブ置き割れを発生させず、圧延時の穴あきトラブル等も防ぐことができ、歩留まりの良い高強度鋼用連続鋳造スラブを提供することができる。
[First embodiment]
A continuous casting slab according to the first embodiment will be described. The continuous casting slab according to the present embodiment is a continuous casting slab for high-strength steel, and (i) the average prior austenite grain size at a position 10 mm from the surface layer of the continuous casting slab is 0.5 mm or more and 2.0 mm or less, and ( ii) The microstructure is characterized in that the total area ratio of ferrite and pearlite is 90% or more, and (iii) the area ratio of ferrite is less than 5% or 10% or more. That is, according to the invention according to this embodiment, by providing at least the characteristics (i) to (iii) above, cooling is possible even in recent continuous casting slabs for high-strength steel, which have extremely low toughness. It is possible to provide a continuously cast slab for high-strength steel with a high yield, without causing cracks in the slab during the rolling process, and preventing problems with holes during rolling.
 まず、連続鋳造スラブのミクロ組織の適性範囲および限定理由について説明する。なお、以下の説明において、ミクロ組織の構成率を示す「%」は、特に明記しない限り「面積%」を意味する。また、連続鋳造スラブのミクロ組織の観察は、常温で行ったものとする。 First, the appropriate range of the microstructure of a continuously cast slab and the reason for its limitation will be explained. In the following description, "%" indicating the composition ratio of the microstructure means "area %" unless otherwise specified. Furthermore, the microstructure of the continuously cast slab was observed at room temperature.
 前述したように、置き割れにより破断した高強度鋼用連続鋳造スラブの亀裂部の破面の破壊形態を観察したところ、割れの多くがスラブ表層下20mm程度まで進展していること、及び旧オーステナイト結晶粒界に割れが進展した「粒界破壊」の形態をとっていることが判明した。つまり、高強度鋼用連続鋳造スラブにおいて、結晶粒界の破壊による置き割れの要因は、旧オーステナイト粒径が粗大であること、及び結晶粒界を脆化する因子となっている結晶粒界フェライト組織の存在である。高合金高強度鋼板では、元々の連続鋳造スラブの靭性が非常に低いことに加え、これらの脆化因子がある場合には、スラブを徐冷し応力を低減させたとしても、置き割れを抑制することができない。そこで、本実施形態は、冷却過程での置き割れが発生しない高強度鋼用連続鋳造スラブに必要な条件として、(i)連続鋳造スラブの表層から所定の位置における平均旧オーステナイト粒径と、(ii)~(iii)前記連続鋳造スラブのミクロ組織とからなる、これら2つの事象に着目した。 As mentioned above, when we observed the fracture morphology of the fracture surface of the cracked part of a continuously cast slab for high-strength steel that had fractured due to over-place cracking, we found that most of the cracks had propagated to about 20 mm below the surface layer of the slab, and that prior austenite It was found that this was a form of "grain boundary fracture" in which cracks developed at grain boundaries. In other words, in continuously cast slabs for high-strength steel, the causes of cracking due to grain boundary fracture are the coarse prior austenite grain size and the grain boundary ferrite, which is a factor that embrittles the grain boundaries. It is the existence of an organization. In high-alloy high-strength steel plates, in addition to the extremely low toughness of the original continuously cast slab, if these embrittlement factors are present, even if the slab is slowly cooled to reduce stress, it is difficult to suppress cracking due to placement. Can not do it. Therefore, in this embodiment, as necessary conditions for a continuous casting slab for high-strength steel that does not cause cracking during the cooling process, (i) the average prior austenite grain size at a predetermined position from the surface layer of the continuous casting slab; We focused on these two phenomena, consisting of ii) to (iii) the microstructure of the continuously cast slab.
<(i)平均旧オーステナイト粒径について>
 本実施形態に係る高強度鋼用連続鋳造スラブは、冷却により発生する置き割れが抑制された高強度鋼用連続鋳造スラブであって、(i)連続鋳造スラブ表層から10mm位置における平均旧オーステナイト粒径が0.5mm以上2.0mm以下であることを特徴とする。ここで、平均旧オーステナイト粒径は、当該スラブの破壊の単位を決める因子である。粒界には溶質成分が濃化しやすいため析出物が集中しやすい特徴がある。すなわち、平均旧オーステナイト粒径が大きい程、単位体積当たりの粒界割合が減少するため、析出物密度が増大し、それによって連続鋳造スラブの靭性は低下する。ここで、平均旧オーステナイト粒径は、複数の視野分において測定された旧オーステナイト粒径から算出された複数の旧オーステナイト粒径の値を平均した値をいう。
<(i) Regarding average prior austenite grain size>
The continuous casting slab for high-strength steel according to the present embodiment is a continuous casting slab for high-strength steel in which cracking caused by cooling is suppressed, and includes (i) average prior austenite grains at a position of 10 mm from the surface layer of the continuous casting slab; It is characterized by having a diameter of 0.5 mm or more and 2.0 mm or less. Here, the average prior austenite grain size is a factor that determines the unit of fracture of the slab. Grain boundaries have the characteristic that precipitates tend to concentrate because solute components tend to concentrate. That is, as the average prior austenite grain size increases, the grain boundary ratio per unit volume decreases, so the precipitate density increases, thereby decreasing the toughness of the continuously cast slab. Here, the average prior austenite grain size refers to the average value of a plurality of prior austenite grain sizes calculated from prior austenite grain sizes measured in a plurality of visual fields.
 従来の連続鋳造スラブでは、平均旧オーステナイト粒径が数mmサイズと非常に大きい。このため、当該連続鋳造スラブの靭性を大きく低下させている。従来の低合金鋼では、元々の連続鋳造スラブの靭性も高いため、平均旧オーステナイト粒径は問題とならなかったが、高合金高強度鋼においては、平均旧オーステナイト粒径が非常に重大な問題となり得る。そこで、本実施形態に係る連続鋳造スラブは、連続鋳造スラブ表層から10mm位置における平均旧オーステナイト粒径を2.0mm以下に設定した。平均旧オーステナイト粒径が2.0mm以下であれば、旧オーステナイト粒界に集中する析出物を分散でき、連続鋳造スラブの靭性を低下させることがないため好ましい。
 一方、平均旧オーステナイト粒径の下限は厳密には限定しないが、平均旧オーステナイト粒径を0.5mm未満の微細なサイズにするには、例えば凝固の初期に強冷をする必要がある。その場合に不均一凝固性のブレークアウトが発生する危険がある。このため、平均旧オーステナイト粒径の下限は、0.5mm以上が好ましい。なお、平均旧オーステナイト粒径の下限は、好ましくは0.8mm以上であり、より好ましくは1.0mm以上である。
In conventional continuously cast slabs, the average prior austenite grain size is very large, several mm in size. For this reason, the toughness of the continuously cast slab is greatly reduced. In conventional low alloy steels, the average prior austenite grain size was not a problem because the original continuously cast slab had high toughness, but in high alloy high strength steels, the average prior austenite grain size became a very serious issue. It can be. Therefore, in the continuous casting slab according to the present embodiment, the average prior austenite grain size at a position 10 mm from the surface layer of the continuous casting slab was set to 2.0 mm or less. It is preferable that the average prior austenite grain size is 2.0 mm or less because precipitates concentrated at prior austenite grain boundaries can be dispersed and the toughness of the continuously cast slab is not reduced.
On the other hand, although the lower limit of the average prior austenite grain size is not strictly limited, in order to reduce the average prior austenite grain size to a fine size of less than 0.5 mm, it is necessary to perform strong cooling at the initial stage of solidification, for example. In that case, there is a risk of heterogeneous coagulation breakout occurring. Therefore, the lower limit of the average prior austenite grain size is preferably 0.5 mm or more. Note that the lower limit of the average prior austenite grain size is preferably 0.8 mm or more, more preferably 1.0 mm or more.
 平均旧オーステナイト粒径は、連続鋳造スラブ表層から10mm位置における旧オーステナイト組織を構成する結晶粒の粒径としている。ここで、平均旧オーステナイト粒径を設定するに際して、連続鋳造スラブ表層から10mm位置であることを規定した理由は、スラブの置き割れの多くがスラブ表層下20mm程度まで進展していることから、連続鋳造スラブ表層から10mm位置がスラブの置き割れを抑制するために必要な位置であると考えられるからである。
 一方で、連続鋳造スラブ表層から5mm未満の領域は、鋳型あるいは鋳型直下の水スプレーにより直接急冷される。このため、連続鋳造スラブのγ粒径が微細な組織であり、当該スラブの靭性が高く、この領域から置き割れの起点が生じているとは考えにくい。このため、連続鋳造スラブ表層から5mm未満の領域をスラブ組織の制御が必要な位置から除外することができる。したがって、連続鋳造スラブ組織の制御が必要な位置は、スラブ厚み方向に入った深さから10mm位置であり、例えば、連続鋳造スラブ表層から10mm位置を基準として、例えば、連続鋳造スラブ表層から深さ5~20mmであってもよい。
The average prior austenite grain size is defined as the grain size of crystal grains constituting the prior austenite structure at a position 10 mm from the surface layer of the continuous casting slab. Here, when setting the average prior austenite grain size, the reason why it was specified to be 10 mm from the surface layer of the continuous casting slab is that most of the cracks in slabs have progressed to about 20 mm below the surface layer of the slab. This is because a position 10 mm from the surface layer of the cast slab is considered to be a necessary position to suppress cracking of the slab.
On the other hand, a region less than 5 mm from the surface of the continuously cast slab is directly quenched by the mold or water spray directly under the mold. For this reason, the continuously cast slab has a microstructure with a fine γ grain size, and the slab has high toughness, and it is difficult to imagine that the starting point of placement cracks occurs from this region. Therefore, the region less than 5 mm from the surface layer of the continuously cast slab can be excluded from the position where control of the slab structure is required. Therefore, the position where the continuous casting slab structure needs to be controlled is the position 10 mm from the depth in the slab thickness direction, for example, based on the position 10 mm from the surface layer of the continuous casting slab, It may be 5 to 20 mm.
 本実施形態に係る連続鋳造スラブにおいて、平均旧オーステナイト粒径を決定する因子は、連続鋳造スラブを冷却する際の温度である。連続鋳造スラブを冷却する温度は、特に1450℃以下1200℃以上の範囲であり、その滞留時間が影響する。さらに、連続鋳造スラブの滞留時間が長いほど平均旧オーステナイト粒径が粗大化する。すなわち、本実施形態に係る連続鋳造スラブが(i)連続鋳造スラブ表層から10mm位置における平均旧オーステナイト粒径が0.5mm以上2.0mm以下である条件を満たすためには、1450℃以下1200℃以上における連続鋳造スラブの滞留時間を制御することが重要である。具体的には、スラブ表層から厚み方向に10mm入った位置における1450℃以下1200℃以上における連続鋳造スラブの滞留時間を130s以下とすることが好ましい。
 1450℃以下1200℃以上における連続鋳造スラブの滞留時間が130s以下であれば、平均旧オーステナイト粒径を2.0mm以下とすることができ、平均旧オーステナイト粒径を小さく制御することにより析出物や粒界フェライトを分散させスラブの靭性を向上させスラブの置き割れを抑制することができるため好ましい。
 さらに、このような観点から連続鋳造スラブの滞留時間を好ましくは120s以下とし、より好ましくは110s以下とし、さらに好ましくは100s以下とする。
 なお、連続鋳造スラブの滞留時間の下限は特に限定しないが、滞留時間が短すぎると不均一凝固による連続鋳造でのブレークアウトのリスクが高くなるため、40s以上とする。
 すなわち、1450℃以下1200℃以上における連続鋳造スラブの滞留時間が40s未満であると、不均一凝固起因の割れが生じブレークアウトに至る危険があるため、40s以上とすることが好ましい。このような観点から、1450℃以下1200℃以上における連続鋳造スラブの滞留時間は、60s以上がより好ましく、さらには70s以上がより好ましい。
In the continuous casting slab according to this embodiment, the factor that determines the average prior austenite grain size is the temperature at which the continuous casting slab is cooled. The temperature at which the continuously cast slab is cooled is particularly in the range of 1450° C. or lower and 1200° C. or higher, and is influenced by the residence time. Furthermore, the longer the residence time of the continuously cast slab, the coarser the average prior austenite grain size. That is, in order for the continuous casting slab according to this embodiment to satisfy the condition that (i) the average prior austenite grain size at a position 10 mm from the surface layer of the continuous casting slab is 0.5 mm or more and 2.0 mm or less, It is important to control the residence time of the continuously cast slab in the above process. Specifically, it is preferable that the residence time of the continuously cast slab at a temperature of 1450° C. or lower and 1200° C. or higher at a position 10 mm in the thickness direction from the surface layer of the slab is 130 seconds or less.
If the residence time of the continuously cast slab at temperatures below 1450°C and above 1200°C is 130 seconds or less, the average prior austenite grain size can be reduced to 2.0 mm or less, and by controlling the average prior austenite grain size small, precipitates and This is preferable because grain boundary ferrite can be dispersed, the toughness of the slab can be improved, and cracks in the slab can be suppressed.
Furthermore, from this point of view, the residence time of the continuously cast slab is preferably 120 seconds or less, more preferably 110 seconds or less, and still more preferably 100 seconds or less.
Note that the lower limit of the residence time of the continuous casting slab is not particularly limited, but if the residence time is too short, the risk of breakout during continuous casting due to uneven solidification increases, so it is set to 40 seconds or more.
That is, if the residence time of the continuously cast slab at temperatures below 1450° C. and above 1200° C. is less than 40 seconds, there is a risk of cracking due to uneven solidification and breakout, so it is preferably set to 40 seconds or more. From this point of view, the residence time of the continuously cast slab at a temperature of 1450° C. or lower and 1200° C. or higher is more preferably 60 seconds or more, and even more preferably 70 seconds or more.
 連続鋳造スラブの滞留時間は、スラブ鋳造の初期段階の冷却条件を調整することで制御が可能である。例えば、鋼の連続鋳造では、まず成分を調整した溶鋼を水冷銅鋳型に注入し、初期凝固シェルを生成させる。その後引き抜きを開始し、水冷銅鋳型から出た後は水スプレーによる冷却を実施する。上述の範囲のスラブ表面温度は鋳型内や鋳型直下の冷却が大きく影響するため、例えば、鋳型内潤滑をするためのモールドパウダーの熱伝導率を向上させてもよいし、鋳型直下の水スプレーの流量を増加させることで制御することが可能である。 The residence time of continuously cast slabs can be controlled by adjusting the cooling conditions at the initial stage of slab casting. For example, in continuous steel casting, molten steel whose composition has been adjusted is first injected into a water-cooled copper mold to form an initial solidified shell. After that, drawing begins, and after it comes out of the water-cooled copper mold, it is cooled by water spray. The slab surface temperature in the above range is greatly influenced by the cooling inside the mold and directly below the mold, so for example, it is possible to improve the thermal conductivity of the mold powder to lubricate the inside of the mold, or to improve the thermal conductivity of the mold powder used to lubricate the inside of the mold. It can be controlled by increasing the flow rate.
 それらの冷却条件を制御することで、連続鋳造スラブの表層下10mmにおける平均旧オーステナイト粒径を制御することができる。連続鋳造スラブの冷却温度を実測することは、困難である。このため、伝熱解析によって連続鋳造スラブ表層から、例えば、スラブ厚み方向に5mm入った深さから、20mm入った深さ位置までの領域を代表して、当該連続鋳造スラブ表層からスラブ厚み方向に10mm入った位置での温度履歴を算出し、連続鋳造スラブの冷却温度を推定することができる。連続鋳造スラブの内部において、最も上記温度域の滞留時間が長くなるようにするため、伝熱解析位置を上記連続鋳造スラブ幅中央に設定することができる。 By controlling these cooling conditions, it is possible to control the average prior austenite grain size in the 10 mm below the surface of the continuously cast slab. It is difficult to actually measure the cooling temperature of continuously cast slabs. For this reason, heat transfer analysis is performed to represent the area from a depth of 5 mm in the thickness direction of the continuous casting slab to a depth of 20 mm in the thickness direction of the continuous casting slab. By calculating the temperature history at a position 10 mm in, it is possible to estimate the cooling temperature of the continuous casting slab. In order to maximize the residence time in the temperature range inside the continuous casting slab, the heat transfer analysis position can be set at the center of the width of the continuous casting slab.
<(ii)~(iii)連続鋳造スラブのミクロ組織について>
 本実施形態に係る連続鋳造スラブは、(ii)ミクロ組織が、フェライトの面積率とパーライトの面積率との合計が90%以上であって、(iii)フェライトの面積率が5%未満または10%以上であることを特徴とする。すなわち、連続鋳造スラブ表層から10mm位置における平均旧オーステナイト粒径が2.0mm以下であることに加えて、ベイナイトとフェライトなどの内部組織の比率も破壊の単位を決める因子であり、適切な比率でスラブの靭性が向上することが知られている。そこで、発明者らは、冷却速度を制御し、(ii)ミクロ組織がフェライトの面積率とパーライトの面積率との合計で90%以上であって、(iii)フェライトの面積率が5%未満または10%以上であることで、スラブの靭性が向上することを見出した。なお、フェライトの面積率及びパーライトの面積率は、光学顕微鏡等の観察手段を用いて、連続鋳造スラブのミクロ組織の観察結果に基づいて算出することができる。そして、光学顕微鏡等の観察手段を用いて、連続鋳造スラブのミクロ組織に含まれるフェライトとパーライトを識別することができる。
<(ii) to (iii) Microstructure of continuous casting slab>
The continuous casting slab according to the present embodiment has (ii) a microstructure in which the total area ratio of ferrite and pearlite is 90% or more, and (iii) the area ratio of ferrite is less than 5% or 10%. % or more. In other words, in addition to the average prior austenite grain size at a position 10 mm from the surface of the continuous casting slab being 2.0 mm or less, the ratio of internal structures such as bainite and ferrite is also a factor that determines the unit of fracture, and it is necessary to It is known to improve the toughness of slabs. Therefore, the inventors controlled the cooling rate so that (ii) the microstructure had a total area ratio of ferrite and pearlite of 90% or more, and (iii) the area ratio of ferrite was less than 5%. It has also been found that when the content is 10% or more, the toughness of the slab is improved. Note that the area ratio of ferrite and the area ratio of pearlite can be calculated based on the observation results of the microstructure of the continuously cast slab using an observation means such as an optical microscope. Then, using an observation means such as an optical microscope, ferrite and pearlite contained in the microstructure of the continuously cast slab can be distinguished.
 連続鋳造スラブのミクロ組織の識別結果により、連続鋳造スラブのミクロ組織の面積Stotalと、フェライトの面積Sferriteとパーライトの面積Spearliteとを合計した面積S(ferrite+pearlite)とを算出する。そして、連続鋳造スラブのミクロ組織の面積Stotalに対するフェライトの面積Sferriteとパーライトの面積Spearliteとを合計した面積S(ferrite+pearlite)の比率を面積率(%)として定義して算出する。 Based on the identification results of the microstructure of the continuous casting slab, the area S total of the microstructure of the continuous casting slab and the total area S (ferrite+pearlite) of the area S ferrite and the area S pearlite are calculated. Then, the ratio of the area S (ferrite+pearlite), which is the sum of the ferrite area S ferrite and the pearlite area S pearlite to the area S total of the microstructure of the continuous casting slab, is defined as an area ratio (%) and calculated.
 本実施形態に係る連続鋳造スラブは、(ii)ミクロ組織が、フェライトの面積率とパーライトの面積率との合計が90%以上であることを特徴とする。すなわち、本実施形態に係る連続鋳造スラブにおいて、(ii)連続鋳造スラブのミクロ組織の面積Stotalに対するフェライトの面積Sferriteとパーライトの面積Spearliteとを合計した面積S(ferrite+pearlite)の比率である面積率(%)が90%以上であれば、スラブ徐冷時のベイナイト・マルテンサイト変態による熱応力・変態応力を低減することができ、また、発生したこれらの応力もミクロ組織内に十分に多く存在しているフェライト・パーライトに分散し連続鋳造スラブの靭性を向上できるため好ましい。一方、上記面積率が90%未満であると、連続鋳造スラブの靭性が低下するため好ましくない。 The continuous casting slab according to the present embodiment is characterized in that (ii) the microstructure has a total area ratio of ferrite and pearlite of 90% or more. That is, in the continuous casting slab according to the present embodiment, (ii) the ratio of the area S (ferrite+pearlite), which is the sum of the ferrite area S ferrite and the pearlite area S pearlite , to the area S total of the microstructure of the continuous casting slab. If the area ratio (%) is 90% or more, it is possible to reduce thermal stress and transformation stress due to bainite-martensitic transformation during slow cooling of the slab, and these stresses that occur are also sufficiently absorbed within the microstructure. It is preferable because it can improve the toughness of continuously cast slabs by dispersing it into ferrite and pearlite, which are present in large quantities. On the other hand, if the area ratio is less than 90%, the toughness of the continuously cast slab will decrease, which is not preferable.
 さらに、本実施形態に係る連続鋳造スラブは、(iii)フェライトの面積率が5%未満または10%以上であることを特徴とする。すなわち、本実施形態に係る連続鋳造スラブにおいて、フェライトの面積率が5%以上10%未満の場合、粒界に薄いフェライトが存在した状態であり、軟質なフェライト部に応力が集中し割れが進展するため好ましくない。フェライトの面積率が5%未満であれば、割れが進展してもすぐに止まるため好ましく、フェライトの面積率が10%以上の時はフェライト部に応力集中しにくく、割れが進展しないため好ましい。 Furthermore, the continuous casting slab according to the present embodiment is characterized in that (iii) the area ratio of ferrite is less than 5% or 10% or more. That is, in the continuously cast slab according to the present embodiment, when the area ratio of ferrite is 5% or more and less than 10%, thin ferrite exists at the grain boundaries, stress concentrates on the soft ferrite part, and cracks develop. It is not desirable because If the area ratio of ferrite is less than 5%, it is preferable because even if a crack develops, it stops immediately, and when the area ratio of ferrite is 10% or more, it is preferable because stress is difficult to concentrate in the ferrite part and the crack does not develop.
 ここで、結晶粒界フェライトは、結晶粒界強度を決める因子である。結晶粒界フェライトが発生すると、連続鋳造スラブの靭性を低下させる。また、フェライトは、オーステナイトやパーライト、ベイナイトと比べ強度が低いため、応力がかかった場合、粒界フェライトに応力が集中しやすいと言った問題もある。このような観点を踏まえ、本発明者らが調査を重ねた結果、本実施形態に係る連続鋳造スラブが有するミクロ組織種について、パーライト主体の組織においても粒界フェライトの生成を抑制することで連続鋳造スラブの靭性を大きく向上できることを知見した。 Here, grain boundary ferrite is a factor that determines grain boundary strength. When grain boundary ferrite occurs, it reduces the toughness of continuously cast slabs. Furthermore, since ferrite has lower strength than austenite, pearlite, and bainite, there is a problem in that when stress is applied, stress tends to concentrate on grain boundary ferrite. Based on this point of view, the inventors of the present invention have repeatedly investigated and found that the microstructure types of the continuous casting slab according to the present embodiment can be continuously cast by suppressing the formation of grain boundary ferrite even in a pearlite-based structure. It was discovered that the toughness of cast slabs can be greatly improved.
 なお、フェライトには、最大で0.02質量%の炭素を含む鉄が含まれており、純鉄に近い組織である。フェライトは、常温から780℃までは強磁性体であり、鉄鋼組織の中で最も柔らかく延性に優れている。パーライトは、オーステナイトをゆっくり冷却したときに得られる組織である。パーライトは、フェライト層とセメンタイト層とからなり、これらの層が交互に並ぶことによって形成される。 Note that ferrite contains iron containing up to 0.02% by mass of carbon, and has a structure close to that of pure iron. Ferrite is a ferromagnetic material from room temperature to 780° C., and is the softest and most ductile of all steel structures. Pearlite is a structure obtained when austenite is slowly cooled. Pearlite consists of ferrite layers and cementite layers, and is formed by arranging these layers alternately.
 粒界フェライトの析出には、フェライト変態域の冷却速度が大きく影響している。冷却速度が臨界速度よりも遅い場合、フェライト析出が起こるため、850℃以下700℃以下の冷却速度を制御する必要がある。フェライト変態域の冷却速度が臨界速度より遅いが十分な析出時間が確保できない場合は、析出が起こりやすい粒界に優先的にフェライト析出する。このため、この後に変態するパーライトやベイナイト・マルテンサイト変態時の応力が軟質なフェライト部に集中してしまい、スラブ置き割れが発生するためふさわしくない。その対策として、フェライト変態域での冷却速度を低下させ、十分にフェライトの析出時間を確保することで、粒界から析出したフェライトを成長させ、ポリゴナルフェライトにすることが可能である。ポリゴナルフェライトの場合、過度な応力集中を抑制するため、スラブの靭性を向上させることができる。 The precipitation of grain boundary ferrite is greatly influenced by the cooling rate in the ferrite transformation region. If the cooling rate is slower than the critical rate, ferrite precipitation will occur, so it is necessary to control the cooling rate to below 850°C and below 700°C. If the cooling rate in the ferrite transformation region is slower than the critical rate but sufficient precipitation time cannot be secured, ferrite will precipitate preferentially at grain boundaries where precipitation is likely to occur. For this reason, stress during pearlite and bainite-martensite transformation, which will be transformed later, will be concentrated in the soft ferrite portion, which will cause slab placement cracks, which is not suitable. As a countermeasure, it is possible to grow ferrite precipitated from grain boundaries and turn it into polygonal ferrite by reducing the cooling rate in the ferrite transformation region and ensuring sufficient time for ferrite precipitation. In the case of polygonal ferrite, the toughness of the slab can be improved because it suppresses excessive stress concentration.
 また、スラブ置き割れを抑制する上で、旧オーステナイト粒界の脆化を抑制するだけでなく、変態時の応力を低減することも重要である。そこで、パーライト変態域(700℃以下500℃以上)での冷却速度も種々制御することによって、連続鋳造スラブのミクロ組織を制御することができる。 Furthermore, in order to suppress slab cracking, it is important not only to suppress embrittlement of prior austenite grain boundaries, but also to reduce stress during transformation. Therefore, the microstructure of the continuously cast slab can be controlled by variously controlling the cooling rate in the pearlite transformation region (700° C. or lower and 500° C. or higher).
 なお、連続鋳造スラブが連続鋳造機を出た後の冷却は、連続鋳造機出側のスラブ温度、複数のスラブを積重ねるまでの時間、積重ねるスラブの枚数、保温カバーの有無、水靭処理等の条件等を変更することで制御可能である。冷却速度の測定は、熱電対で行うことができる。例えば、連続鋳造機からスラブが出てきた後にスラブの広い面(長辺)の上面中央部に熱電対を設置することで測定ができる。 In addition, cooling after the continuous casting slab leaves the continuous casting machine depends on the temperature of the slab at the exit side of the continuous casting machine, the time it takes to stack multiple slabs, the number of slabs to be stacked, the presence or absence of a heat insulation cover, and water toughness treatment. It can be controlled by changing conditions such as. Measuring the cooling rate can be done with a thermocouple. For example, measurement can be performed by installing a thermocouple at the center of the top of the wide side (long side) of the slab after it comes out of the continuous casting machine.
 以上説明したように、第1実施形態に係る発明によれば、連続鋳造スラブの靭性が非常に低い近年の高強度鋼用連続鋳造スラブにおいても、冷却過程でのスラブ置き割れを発生させず、圧延時の穴あきトラブル等も防ぐことができ、歩留まりの良い高強度鋼用連続鋳造スラブを得ることができる。 As explained above, according to the invention according to the first embodiment, even in recent continuous casting slabs for high-strength steel where the toughness of continuous casting slabs is extremely low, slab placement cracks do not occur during the cooling process, and Problems such as holes during rolling can be prevented, and a continuously cast slab for high-strength steel with a high yield can be obtained.
[第2実施形態]
 第2実施形態に係る連続鋳造スラブについて説明する。本実施形態に係る連続鋳造スラブは、上記実施形態に係る連続鋳造スラブにおいて、連続鋳造スラブが質量%でC:0.10%以上1.00%以下、Si:0.10%以上2.50%以下、Mn:1.50%以上5.00%以下を含有する。
 なお、以下の説明において、鋼の成分元素の含有量を表す「%」は、特に明記しない限り「質量%」を意味する。
[Second embodiment]
A continuous casting slab according to a second embodiment will be described. The continuous casting slab according to the present embodiment is different from the continuous casting slab according to the above embodiment in that the continuous casting slab has C: 0.10% or more and 1.00% or less and Si: 0.10% or more and 2.50% by mass. % or less, Mn: 1.50% or more and 5.00% or less.
In the following description, "%" representing the content of component elements of steel means "mass %" unless otherwise specified.
<C:0.10%以上1.00%以下>
 本実施形態に係る連続鋳造スラブにおいて、連続鋳造スラブに含まれる各化学成分を限定する理由について説明する。なお、連続鋳造スラブに含まれる各化学成分の含有量は質量%である。連続鋳造スラブに含まれるCの含有量を0.10%以上1.00%以下とする理由は以下の通りである。高強度鋼用連続鋳造スラブに含まれるCは、連続鋳造スラブを原料とする高強度鋼板の強度を高めるために必要な元素である。Cの含有量が0.10%未満であると、高強度鋼板に必要な強度を得ることが出来ないため、Cの含有量の下限は、0.10%である。一方、Cの含有量が1.00%を超えると、上記高強度鋼板の溶接性や加工性が不充分となるため好ましくない。
<C: 0.10% or more and 1.00% or less>
In the continuous casting slab according to this embodiment, the reason for limiting each chemical component contained in the continuous casting slab will be explained. Note that the content of each chemical component contained in the continuous casting slab is expressed in mass %. The reason why the content of C contained in the continuous casting slab is set to 0.10% or more and 1.00% or less is as follows. C contained in continuous casting slabs for high-strength steel is an element necessary for increasing the strength of high-strength steel plates made from continuous casting slabs. If the C content is less than 0.10%, the strength required for a high-strength steel plate cannot be obtained, so the lower limit of the C content is 0.10%. On the other hand, if the C content exceeds 1.00%, it is not preferable because the weldability and workability of the high-strength steel sheet become insufficient.
 したがって、このような観点から、本実施形態に係る連続鋳造スラブにおいて、当該連続鋳造スラブに含まれるCの含有量を0.10%以上1.00%以下とすることが好ましく、さらに0.12%以上0.40%以下とすることがより好ましく、0.15%以上0.40%以下とすることが特に好ましい。 Therefore, from such a viewpoint, in the continuously cast slab according to the present embodiment, it is preferable that the content of C contained in the continuous cast slab is 0.10% or more and 1.00% or less, and more preferably 0.12% or less. % or more and 0.40% or less, and particularly preferably 0.15% or more and 0.40% or less.
<Si:0.10%以上2.50%以下>
 次に、高強度鋼用連続鋳造スラブに含まれるSiの含有量を0.10%以上2.50%以下とする理由は以下の通りである。連続鋳造スラブに含まれるSiは、連続鋳造スラブを原料とする高強度鋼板の焼鈍工程おいて、当該鋼板に残留オーステナイトを確保するために必要な元素である。加えて、連続鋳造スラブに含まれるSiは、固溶強化により高強度鋼板の高強度化にも寄与するため必須の添加元素である。Siの含有量が0.10%未満であると、高強度鋼板に必要な強度を得ることが出来ないため、Siの含有量の下限は、0.10%である。
<Si: 0.10% or more and 2.50% or less>
Next, the reason why the Si content contained in the continuous casting slab for high-strength steel is set to 0.10% or more and 2.50% or less is as follows. Si contained in the continuous casting slab is an element necessary for ensuring retained austenite in the steel plate in the annealing process of the high strength steel plate using the continuous casting slab as a raw material. In addition, Si contained in the continuous casting slab is an essential additive element because it contributes to increasing the strength of high-strength steel sheets through solid solution strengthening. If the Si content is less than 0.10%, the strength required for a high-strength steel plate cannot be obtained, so the lower limit of the Si content is 0.10%.
 一方、Siの含有量が2.50%を超えると、高強度鋼板に必要な強度を得ることが出来る効果が飽和するとともに、高強度鋼板に加工される前の熱延板に強固なスケールが発生する。その結果、高強度鋼板の外観及び酸洗性を劣化させるため、Siの含有量の上限は、2.50%である。 On the other hand, when the Si content exceeds 2.50%, the effect of obtaining the strength required for high-strength steel sheets is saturated, and strong scales are formed in hot-rolled sheets before being processed into high-strength steel sheets. Occur. As a result, the upper limit of the Si content is 2.50% because it deteriorates the appearance and pickling properties of the high-strength steel sheet.
 したがって、このような観点から、本実施形態に係る連続鋳造スラブにおいて、当該連続鋳造スラブに含まれるSiの含有量を0.10%以上2.50%以下とすることが好ましく、さらに0.50%以上2.00%以下とすることが好ましく、1.00%以上1.80%以下とすることがより好ましい。 Therefore, from such a viewpoint, in the continuous casting slab according to the present embodiment, it is preferable that the Si content contained in the continuous casting slab is 0.10% or more and 2.50% or less, and further 0.50% or less. % or more and 2.00% or less, more preferably 1.00% or more and 1.80% or less.
<Mn:0.40%以上5.00%以下>
 さらに、連続鋳造スラブに含まれるMnの含有量を0.40%以上5.00%以下とする理由は以下の通りである。連続鋳造スラブに含まれるMnは、高強度鋼板の強度をさらに高めるために必要な元素である。具体的には、Mnは、連続鋳造スラブの熱延工程において、その変態制御を通じて高強度鋼板の強度を制御するために添加される元素である。Mnの含有量が0.40%未満であると、高強度鋼板の十分な強化が出来ないため、Mnの含有量の下限は、0.40%である。一方、Mnの含有量が5.00%を超えると、高強度鋼板の十分な強化される程度が飽和するとともに、高強度鋼板の製造コストが増加し、経済性の観点から好ましくない。
<Mn: 0.40% or more and 5.00% or less>
Furthermore, the reason why the content of Mn contained in the continuous casting slab is set to 0.40% or more and 5.00% or less is as follows. Mn contained in the continuous casting slab is an element necessary to further increase the strength of the high-strength steel plate. Specifically, Mn is an element added to control the strength of a high-strength steel plate through transformation control during the hot rolling process of continuously cast slabs. If the Mn content is less than 0.40%, the high-strength steel plate cannot be sufficiently strengthened, so the lower limit of the Mn content is 0.40%. On the other hand, if the Mn content exceeds 5.00%, the degree of sufficient strengthening of the high-strength steel plate becomes saturated, and the manufacturing cost of the high-strength steel plate increases, which is not preferable from an economic standpoint.
 したがって、このような観点から、本実施形態に係る連続鋳造スラブにおいて、当該連続鋳造スラブに含まれるMnの含有量を0.40%以上5.00%以下とすることが好ましく、1.20%以上4.50%以下とすることがさらに好ましく、1.40%以上4.00%以下とすることがより好ましい。 Therefore, from such a viewpoint, in the continuous casting slab according to the present embodiment, it is preferable that the Mn content contained in the continuous casting slab is 0.40% or more and 5.00% or less, and 1.20% or less. It is more preferably 4.50% or less, and more preferably 1.40% or more and 4.00% or less.
 本実施形態に係る連続鋳造スラブは、上記成分組成を有し、残部がFeおよび不可避不純物からなり、適切な組成の平均旧オーステナイト粒径およびミクロ組織を有するものである。その限りにおいて、他の特性を考慮し、Pを0.100%以下、Sを0.0200%以下、Nを0.0100%以下、Alを0.100%以下およびOを0.0100%以下、含有していてもよい。ここで不可避的不純物として、Zn、PbおよびAsが挙げられる。これら不可避的不純物の合計で0.100%以下の含有は許容される。 The continuous casting slab according to the present embodiment has the above-mentioned component composition, with the remainder consisting of Fe and unavoidable impurities, and has an average prior austenite grain size and microstructure with an appropriate composition. To that extent, considering other properties, P is 0.100% or less, S is 0.0200% or less, N is 0.0100% or less, Al is 0.100% or less, and O is 0.0100% or less. , may be contained. Here, unavoidable impurities include Zn, Pb, and As. The total content of these unavoidable impurities is allowed to be 0.100% or less.
 Pは、旧オーステナイト粒界に偏析して粒界を脆化させるため、スラブ置き割れを生じさせることがある。そのため、Pの含有量は0.100%以下にすることが好ましい。なお、Pの含有量の下限は特に規定しないが、Pは固溶強化元素であり、鋼板の強度を上昇させることができることから、0.001%以上とすることが好ましい。したがって、Pの含有量は、好ましくは、0.100%以下とする。好ましくは0.001%以上とする。さらに好ましくは0.070%以下とする。 Since P segregates in prior austenite grain boundaries and embrittles the grain boundaries, it may cause slab placement cracks. Therefore, the content of P is preferably 0.100% or less. Although the lower limit of the P content is not particularly defined, it is preferably 0.001% or more since P is a solid solution strengthening element and can increase the strength of the steel sheet. Therefore, the content of P is preferably 0.100% or less. Preferably it is 0.001% or more. More preferably, it is 0.070% or less.
 Sは、硫化物として存在し、スラブ脆化をもたらす元素である。そのため、Sの含有量は0.0200%以下にすることが好ましい。なお、Sの含有量の下限は特に規定しないが、生産技術上の制約から、0.0001%以上とすることが好ましい。したがって、Sの含有量は、好ましくは0.0200%以下とする。好ましくは0.0001%以上とする。さらに好ましくは0.0050%以下とする。 S is an element that exists as a sulfide and causes slab embrittlement. Therefore, the S content is preferably 0.0200% or less. Although the lower limit of the S content is not particularly specified, it is preferably 0.0001% or more due to production technology constraints. Therefore, the S content is preferably 0.0200% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
 Alは、スラブ冷却中の炭化物生成を抑制し、残留オーステナイトの生成を促進することから、スラブの残留オーステナイトの分率に影響する元素である。また、脱酸のため0.005%以上添加することが好ましい。Alの含有量が0.100%を超えると、スラブ脆化をもたらすおそれがある。したがって、Alの含有量は、0.100%以下とすることが好ましい。さらに好ましくは0.010%以上とする。さらに好ましくは0.080%以下とする。 Al is an element that affects the fraction of retained austenite in the slab because it suppresses the generation of carbides during cooling of the slab and promotes the generation of retained austenite. Further, it is preferable to add 0.005% or more for deoxidation. If the Al content exceeds 0.100%, there is a risk of slab embrittlement. Therefore, the Al content is preferably 0.100% or less. More preferably, it is 0.010% or more. More preferably, it is 0.080% or less.
 Nは、窒化物として存在し、スラブの脆化をもたらす元素である。そのため、Nの含有量は0.0100%以下にすることが好ましい。なお、Nの含有量の下限は特に規定しないが、生産技術上の制約から、Nの含有量は0.0001%以上とすることが好ましい。したがって、Nの含有量は、好ましくは0.0100%以下とする。好ましくは0.0001%以上とする。さらに好ましくは0.0050%以下とする。 N is an element that exists as a nitride and causes slab embrittlement. Therefore, the N content is preferably 0.0100% or less. Although the lower limit of the N content is not particularly specified, it is preferable that the N content is 0.0001% or more due to constraints on production technology. Therefore, the N content is preferably 0.0100% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
 Oは、酸化物として存在し、スラブの脆化をもたらす元素である。そのため、Oの含有量は0.0100%以下にすることが好ましい。なお、Oの含有量の下限は特に規定しないが、生産技術上の制約から、Oの含有量は0.0001%以上とすることが好ましい。したがって、Oの含有量は、好ましくは0.0100%以下とする。好ましくは0.0001%以上とする。さらに好ましくは0.0050%以下とする。 O is an element that exists as an oxide and causes embrittlement of the slab. Therefore, the content of O is preferably 0.0100% or less. Although the lower limit of the O content is not particularly defined, it is preferable that the O content is 0.0001% or more due to production technology constraints. Therefore, the O content is preferably 0.0100% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
 本実施形態に係る連続鋳造スラブは、高強度鋼板用として、上記成分組成に加えて、さらに、Ti:0.200%以下、Nb:0.200%以下、V:0.200%以下、Ta:0.10%以下、W:0.10%以下、Cr:2.00%以下、Mo:2.00%以下、Ni:2.00%以下、Cu:2.00%以下、B:0.0100%以下から選ばれる少なくとも1種の元素を単独で、あるいは、2種以上を組み合わせて含有してもよい。 The continuous casting slab according to the present embodiment is suitable for use in high-strength steel plates, and in addition to the above-mentioned composition, it further contains Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, and Ta. : 0.10% or less, W: 0.10% or less, Cr: 2.00% or less, Mo: 2.00% or less, Ni: 2.00% or less, Cu: 2.00% or less, B: 0 At least one element selected from .0100% or less may be contained alone or in combination of two or more.
 Ti、NbおよびVは、それぞれ0.200%以下の含有量であれば、粗大な析出物や介在物が多量に生成せず、スラブの靭性を低下させない。そのため、Ti、NbおよびVの含有量はそれぞれ0.200%以下にすることが好ましい。なお、Ti、NbおよびVの含有量の下限は特に規定しないが、連続鋳造スラブの熱間圧延時あるいは連続焼鈍時に、微細な炭化物、窒化物もしくは炭窒化物を形成することによって、鋼板の強度を上昇させることから、Ti、NbおよびVの含有量はそれぞれ0.001%以上とすることがより好ましい。したがって、Ti、NbおよびVを含有する場合には、その含有量はそれぞれ0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If the content of each of Ti, Nb and V is 0.200% or less, large amounts of coarse precipitates and inclusions will not be generated and the toughness of the slab will not be reduced. Therefore, it is preferable that the contents of Ti, Nb, and V are each 0.200% or less. Although the lower limits of the contents of Ti, Nb, and V are not particularly specified, the strength of the steel sheet can be improved by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing of continuously cast slabs. It is more preferable that the contents of Ti, Nb, and V are each 0.001% or more because the content of Ti, Nb, and V increases. Therefore, when Ti, Nb, and V are contained, their contents are each 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 TaおよびWは、それぞれ0.10%以下の含有量であれば、粗大な析出物や介在物が多量に生成せず、スラブの靭性を低下させない。そのため、TaおよびWの含有量はそれぞれ0.10%以下にすることが好ましい。なお、TaおよびWの含有量の下限は特に規定しないが、連続鋳造スラブの熱間圧延時あるいは連続焼鈍時に、微細な炭化物、窒化物もしくは炭窒化物を形成することによって、鋼板の強度を上昇させることから、TaおよびWの含有量はそれぞれ0.01%以上とすることがより好ましい。したがって、TaおよびWを含有する場合には、その含有量はそれぞれ0.10%以下とする。より好ましくは0.01%以上とする。さらに好ましくは0.08%以下とする。 If the content of Ta and W is 0.10% or less, large amounts of coarse precipitates and inclusions will not be generated and the toughness of the slab will not be reduced. Therefore, it is preferable that the contents of Ta and W are each 0.10% or less. Although there is no particular lower limit to the content of Ta and W, the strength of the steel sheet can be increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing of continuously cast slabs. Therefore, it is more preferable that the contents of Ta and W are each 0.01% or more. Therefore, when Ta and W are contained, their contents are each 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
 本実施形態に係る連続鋳造スラブには、本発明の目的を損なわない範囲で必要に応じて、Cr、Mo、NiおよびCuから選ばれる少なくとも1種を含有していてもよい。Cr、Mo、NiおよびCuは、連続鋳造スラブの熱間圧延での組織制御を通じた鋼板の高強度化という効果をもたらす。この効果は、Cr、Mo、NiおよびCuの1種又は2種以上を、それぞれ、0.01%以上添加することで顕著になることから、0.01%以上添加することが好ましい。各元素の量が各元素の上限を超えると、鋼板の溶接性、熱間加工性などが劣化することから、Cr、Mo、NiおよびCuの各元素の量の上限は1.00%とする。したがって、連続鋳造スラブがCr、Mo、NiおよびCuを含有する場合はその各含有量は、1.00%以下とする。好ましくは、0.01%以上とする。さらに好ましくは0.80%以下とする。 The continuous casting slab according to the present embodiment may contain at least one selected from Cr, Mo, Ni, and Cu, as necessary, within a range that does not impair the object of the present invention. Cr, Mo, Ni, and Cu have the effect of increasing the strength of the steel plate through microstructural control during hot rolling of the continuous casting slab. This effect becomes remarkable by adding 0.01% or more of each of Cr, Mo, Ni, and Cu, so it is preferable to add 0.01% or more. If the amount of each element exceeds the upper limit of each element, the weldability, hot workability, etc. of the steel plate will deteriorate, so the upper limit of the amount of each element of Cr, Mo, Ni, and Cu is set at 1.00%. . Therefore, when the continuous casting slab contains Cr, Mo, Ni, and Cu, the content of each of them is 1.00% or less. Preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
 Bは、連続鋳造スラブの熱間圧延や焼鈍中の組織変態を制御するため、組織強化を通じて強度に影響を与えることから添加してもよい。Bは、0.0100%以下であればスラブの靭性に影響しない。そのため、Bの含有量は0.0100%以下にすることが好ましい。なお、Bの含有量の下限は特に規定しないが、連続鋳造スラブの熱間圧延や焼鈍中にオーステナイト粒界に偏析し、焼入れ性を向上させる元素であることから、Bの含有量は0.0003%以上とすることがより好ましい。したがって、Bを含有する場合には、その含有量は0.0100%以下とする。より好ましくは0.0003%以上とする。さらに好ましくは0.0080%以下とする。 B may be added to control the structural transformation during hot rolling and annealing of the continuously cast slab, since it affects the strength through structural strengthening. B does not affect the toughness of the slab if it is 0.0100% or less. Therefore, the content of B is preferably 0.0100% or less. Note that the lower limit of the B content is not particularly specified, but since it is an element that segregates at austenite grain boundaries during hot rolling and annealing of continuous casting slabs and improves hardenability, the B content should be 0. It is more preferable to set it to 0003% or more. Therefore, when B is contained, its content should be 0.0100% or less. More preferably, it is 0.0003% or more. More preferably, it is 0.0080% or less.
 Coは、1.00%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Coの含有量は1.00%以下にすることが好ましい。なお、Coの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Coの含有量は0.001%以上とすることがより好ましい。したがって、Coを含有する場合には、その含有量は1.00%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.80%以下とする。 If Co is 1.00% or less, coarse precipitates and inclusions do not increase and the toughness of the slab does not deteriorate. Therefore, the Co content is preferably 1.00% or less. Although the lower limit of the Co content is not particularly specified, since it is an element that improves hardenability, the Co content is more preferably 0.001% or more. Therefore, when Co is contained, the content should be 1.00% or less. More preferably, it is 0.001% or more. More preferably, it is 0.80% or less.
 Cuは、1.00%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Cuの含有量は1.00%以下にすることが好ましい。なお、Cuの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Cuの含有量は0.01%以上とすることよりが好ましい。したがって、Cuを含有する場合には、その含有量は1.00%以下とする。より好ましくは、0.01%以上とする。さらに好ましくは0.80%以下とする。 If Cu is 1.00% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the Cu content is preferably 1.00% or less. Although the lower limit of the Cu content is not particularly specified, since it is an element that improves hardenability, the Cu content is preferably 0.01% or more. Therefore, if Cu is contained, the content should be 1.00% or less. More preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
 Snは、0.200%以下であればスラブの靭性に影響をしない。そのため、Snの含有量は0.200%以下にすることが好ましい。なお、Snの含有量の下限は特に規定しないが、Snは焼入れ性を向上させる元素であることから、Snの含有量は0.001%以上とすることがより好ましい。したがって、Snを含有する場合には、その含有量は0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If Sn is 0.200% or less, it does not affect the toughness of the slab. Therefore, the content of Sn is preferably 0.200% or less. Although the lower limit of the Sn content is not particularly defined, since Sn is an element that improves hardenability, the Sn content is more preferably 0.001% or more. Therefore, if Sn is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 Sbは、0.200%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Sbの含有量は0.200%以下にすることが好ましい。なお、Sbの含有量の下限は特に規定しないが、脱炭を抑制し、鋼板の強度調整を可能にする元素であることから、Sbの含有量は0.001%以上とすることがより好ましい。したがって、Sbを含有する場合には、その含有量は0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If Sb is 0.200% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the content of Sb is preferably 0.200% or less. Although the lower limit of the Sb content is not particularly defined, it is more preferable that the Sb content is 0.001% or more, since it is an element that suppresses decarburization and enables the strength adjustment of steel sheets. . Therefore, if Sb is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 Ca、MgおよびREMは、それぞれ0.0100%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Ca、MgおよびREMの各含有量は、0.0100%以下にすることが好ましい。なお、Ca、MgおよびREMの各含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、スラブの靭性を向上する元素であることから、Ca、MgおよびREMの含有量は、それぞれ0.0005%以上とすることがより好ましい。したがって、Ca、MgおよびREMを含有する場合には、その含有量はそれぞれ0.0100%以下とする。より好ましくは0.0005%以上とする。さらに好ましくは0.0050%以下とする。 If each of Ca, Mg and REM is 0.0100% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, each content of Ca, Mg, and REM is preferably 0.0100% or less. Note that the lower limits of each content of Ca, Mg, and REM are not specified in particular, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the toughness of slabs, the contents of Ca, Mg, and REM are It is more preferable for each of these to be 0.0005% or more. Therefore, when Ca, Mg and REM are contained, their contents are each 0.0100% or less. More preferably, it is 0.0005% or more. More preferably, it is 0.0050% or less.
 ZrおよびTeは、それぞれ0.100%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、ZrおよびTeの各含有量は、0.100%以下にすることが好ましい。なお、ZrおよびTeの各含有量の下限は特に規定しないが、ZrおよびTeは、窒化物や硫化物の形状を球状化し、スラブの靭性を向上する元素であることから、ZrおよびTeの含有量はそれぞれ0.001%以上とすることがより好ましい。したがって、ZrおよびTeを含有する場合には、その含有量はそれぞれ0.100%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.080%以下とする。 If Zr and Te are each 0.100% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, each content of Zr and Te is preferably 0.100% or less. Note that the lower limits of each content of Zr and Te are not particularly specified, but since Zr and Te are elements that make the shape of nitrides and sulfides spheroidal and improve the toughness of slabs, the content of Zr and Te is More preferably, each amount is 0.001% or more. Therefore, when Zr and Te are contained, their contents are each 0.100% or less. More preferably, it is 0.001% or more. More preferably, it is 0.080% or less.
 Hfは、0.10%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Hfの含有量は0.10%以下にすることが好ましい。なお、Hfの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、鋼板の極限変形能を向上する元素であることから、Hfの含有量は0.01%以上とすることがより好ましい。したがって、Hfを含有する場合には、その含有量は0.10%以下とする。より好ましくは0.01%以上とする。さらに好ましくは0.08%以下とする。 If Hf is 0.10% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the Hf content is preferably 0.10% or less. Note that there is no particular lower limit to the Hf content, but since it is an element that spheroidizes the shape of nitrides and sulfides and improves the ultimate deformability of steel sheets, the Hf content should be 0.01% or more. It is more preferable to do so. Therefore, if Hf is contained, the content should be 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
 Biは、0.200%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Biの含有量は0.200%以下にすることが好ましい。なお、Biの含有量の下限は特に規定しないが、偏析を軽減する元素であることから、Biの含有量は0.001%以上とすることがより好ましい。したがって、Biを含有する場合には、その含有量は0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If Bi is 0.200% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the Bi content is preferably 0.200% or less. Although the lower limit of the Bi content is not particularly defined, since it is an element that reduces segregation, the Bi content is more preferably 0.001% or more. Therefore, when Bi is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 なお、上記したTi、Nb、V、Ta、W、B、Cr、Mo、Ni、Co、Cu、Sn、Sb、Ca、Mg、REM、Zr、Te、HfおよびBiについて、各含有量が好ましい下限値未満の場合には本発明の効果を害することがないため、不可避的不純物として含むものとする。 In addition, each content of Ti, Nb, V, Ta, W, B, Cr, Mo, Ni, Co, Cu, Sn, Sb, Ca, Mg, REM, Zr, Te, Hf and Bi is preferable. If it is less than the lower limit, the effect of the present invention will not be impaired, and therefore it is included as an unavoidable impurity.
 以上説明したように、第2実施形態に係る発明によれば、高強度鋼に必要な強度を得ることができ、さらに、高強度鋼の溶接性、加工性及び外観に優れた連続鋳造スラブを得ることができる。 As explained above, according to the invention according to the second embodiment, it is possible to obtain the strength required for high-strength steel, and furthermore, it is possible to produce a continuously cast slab that has excellent weldability, workability, and appearance of high-strength steel. Obtainable.
[第3実施形態]
 第3実施形態に係る連続鋳造スラブの製造方法について説明する。本実施形態に係る連続鋳造スラブの製造方法は、冷却により発生するスラブ置き割れが抑制された高強度鋼用連続鋳造スラブの製造方法であって、上記実施形態に記載された連続鋳造スラブの成分組成を有する連続鋳造スラブを、連続鋳造スラブ幅方向中央であり、かつ、連続鋳造スラブ表層から10mm位置における前記連続鋳造スラブの冷却温度が1200℃以上1450℃以下であり、前記連続鋳造スラブの滞留時間が130s以下である冷却条件により冷却する第一冷却工程と、
 前記連続鋳造スラブ幅方向中央の表面温度が700℃以上850℃以下における平均冷却速度が20℃/hr以下である冷却条件により冷却する第二冷却工程と、
 前記連続鋳造スラブ幅方向中央の表面温度が500℃以上700℃以下における平均冷却速度が10℃/hr以下である冷却条件により冷却する第三冷却工程と、を含む。
[Third embodiment]
A method for manufacturing a continuous casting slab according to a third embodiment will be described. The method for manufacturing a continuous casting slab according to the present embodiment is a method for manufacturing a continuous casting slab for high-strength steel in which slab cracking caused by cooling is suppressed, and includes the components of the continuous casting slab described in the above embodiment. A continuous casting slab having a composition is provided such that the cooling temperature of the continuous casting slab at the center in the width direction of the continuous casting slab and at a position 10 mm from the surface layer of the continuous casting slab is 1200°C or more and 1450°C or less, and the continuous casting slab is retained. a first cooling step of cooling under cooling conditions for a time of 130 seconds or less;
A second cooling step in which the continuously cast slab is cooled under cooling conditions in which the surface temperature at the center in the width direction is 700° C. or more and 850° C. or less and the average cooling rate is 20° C./hr or less;
A third cooling step of cooling the continuously cast slab under cooling conditions in which the surface temperature at the center in the width direction is from 500° C. to 700° C. and the average cooling rate is 10° C./hr or less.
 ここで、第二冷却工程及び第三冷却工程における平均冷却速度の下限は、特に指定しないが、スラブを複数枚積重ね、さらに保温カバーを用いた場合の700℃以上850℃以下ならびに500℃以上700℃以下の平均冷却速度は、それぞれ最小で2℃/hr、1℃/hrである。第二冷却工程及び第三冷却工程において、これらの平均冷却速度より遅い平均冷却速度による冷却は、例えばスラブを加熱炉へ入れ、熱を加えることが必要となり、設備を要するため経済性の観点からも好ましくない。そのため、第二冷却工程において、700℃以上850℃以下の平均冷却速度の下限は2℃/hrとし、第三冷却工程において、500℃以上700℃以下の平均冷却速度の下限は1℃/hrとするとよい。 Here, the lower limit of the average cooling rate in the second cooling process and the third cooling process is not specified in particular, but when multiple slabs are stacked and a heat insulation cover is used, the lower limit is 700°C or more and 850°C or less, and 500°C or more and 700°C The average cooling rate below .degree. C. is at least 2.degree. C./hr and 1.degree. C./hr, respectively. In the second cooling process and the third cooling process, cooling at an average cooling rate that is slower than these average cooling rates requires, for example, placing the slab in a heating furnace and applying heat, which requires equipment, so it is not recommended from an economic point of view. I also don't like it. Therefore, in the second cooling process, the lower limit of the average cooling rate from 700°C to 850°C is 2°C/hr, and in the third cooling process, the lower limit to the average cooling rate from 500°C to 700°C is 1°C/hr. It is good to say.
 なお、本実施形態に係る高強度鋼板用スラブの製造方法は、その製造工程の諸条件により積替えが発生する場合がある。積替えが発生した場合、スラブの冷却速度は、一時的に既定の冷却速度を超えることがある。しかしながら、変態にかかる時間は10hr以上と非常にゆっくりであるため、積替え程度のハンドリング時間(長くて1~2hr)であれば、置き割れの発生に至らない。そのため本発明では最大冷却速度ではなく平均冷却速度と規定している。
 以下、本実施形態に係る連続鋳造スラブの製造方法が含む各工程について説明する。
Note that in the method for manufacturing a high-strength steel plate slab according to the present embodiment, transshipment may occur depending on the conditions of the manufacturing process. When transshipment occurs, the cooling rate of the slab may temporarily exceed the predetermined cooling rate. However, since the time required for transformation is very slow at 10 hr or more, the handling time required for transshipment (1 to 2 hr at most) will not cause cracking. Therefore, in the present invention, the average cooling rate is defined instead of the maximum cooling rate.
Each process included in the continuous casting slab manufacturing method according to this embodiment will be described below.
(第一冷却工程)
 本実施形態に係る連続鋳造スラブの製造方法は、冷却により発生するスラブ置き割れが抑制された高強度鋼用連続鋳造スラブの製造方法であって、上記実施形態に記載された連続鋳造スラブの成分組成を有する連続鋳造スラブを、
 連続鋳造スラブ幅方向中央であり、かつ、連続鋳造スラブ表層から10mm位置における前記連続鋳造スラブの冷却温度が1200℃以上1450℃以下であり、前記連続鋳造スラブの滞留時間が130s以下である冷却条件により冷却する第一冷却工程を含む。
(First cooling process)
The method for manufacturing a continuous casting slab according to the present embodiment is a method for manufacturing a continuous casting slab for high-strength steel in which slab cracking caused by cooling is suppressed, and includes the components of the continuous casting slab described in the above embodiment. Continuously cast slabs with the composition
Cooling conditions in which the cooling temperature of the continuous casting slab at the center in the width direction of the continuous casting slab and at a position 10 mm from the surface layer of the continuous casting slab is 1200°C or more and 1450°C or less, and the residence time of the continuous casting slab is 130 seconds or less. It includes a first cooling step of cooling.
 第一冷却工程は、上記実施形態に係る連続鋳造スラブに含まれる平均旧オーステナイト粒径を所定位置において2.0mm以下に制御するための工程である。平均旧オーステナイト粒径を2.0mm以下に制御することで旧オーステナイト粒界に析出する析出物密度の低減、および有害な粒界フェライトの析出を抑制し、スラブ靭性を向上させることができる。
 本実施形態に係る連続鋳造スラブの製造方法において、平均旧オーステナイト粒径を決定する因子は、スラブを冷却する際の温度である。第一冷却工程において、連続鋳造スラブを冷却する温度は、1450℃以下1200℃以上の範囲である。このように、本実施形態に係る連続鋳造スラブの製造方法は、平均旧オーステナイト粒径を決定する因子である連続鋳造スラブの1450℃以下1200℃以上の範囲における冷却温度に着目して、その温度を制御している。
The first cooling step is a step for controlling the average prior austenite grain size contained in the continuous casting slab according to the above embodiment to 2.0 mm or less at a predetermined position. By controlling the average prior austenite grain size to 2.0 mm or less, it is possible to reduce the density of precipitates that precipitate at prior austenite grain boundaries, suppress the precipitation of harmful grain boundary ferrite, and improve slab toughness.
In the continuous casting slab manufacturing method according to the present embodiment, the factor that determines the average prior austenite grain size is the temperature at which the slab is cooled. In the first cooling step, the temperature at which the continuous casting slab is cooled is in the range of 1450°C or lower and 1200°C or higher. As described above, the continuous casting slab manufacturing method according to the present embodiment focuses on the cooling temperature of the continuous casting slab in the range of 1450°C or lower and 1200°C or higher, which is a factor that determines the average prior austenite grain size. is under control.
 さらに、第一冷却工程において、連続鋳造スラブを冷却する上記温度範囲における当該連続鋳造スラブの滞留時間は、130s以下である。連続鋳造スラブの上記温度の滞留時間が130s以下であれば、平均旧オーステナイト粒径を2.0mm以下にでき、スラブの置き割れを抑制することができるため好ましい。なお、1200℃以上1450℃以下での連続鋳造スラブの滞留時間の下限は特に規定しないが、滞留時間が短すぎると不均一凝固による連続鋳造でのブレークアウトのリスクが高くなるため、40s以上とすることが好ましく、60s以上がより好ましく、さらには70s以上がより好ましい。 Furthermore, in the first cooling step, the residence time of the continuous casting slab in the above temperature range for cooling the continuous casting slab is 130 seconds or less. It is preferable that the residence time of the continuously cast slab at the above temperature is 130 seconds or less, since the average prior austenite grain size can be made 2.0 mm or less, and cracking in the slab can be suppressed. There is no particular lower limit to the residence time of continuously cast slabs at temperatures above 1,200°C and below 1,450°C, but if the residence time is too short, the risk of breakout during continuous casting due to uneven solidification increases, so it is recommended that the residence time be 40 seconds or more. It is preferable to do so, more preferably 60 seconds or more, and even more preferably 70 seconds or more.
(第二冷却工程)
 次に、本実施形態に係る連続鋳造スラブの製造方法は、前記連続鋳造スラブ幅方向中央の表面温度が700℃以上850℃以下における平均冷却速度が20℃/hr以下である冷却条件により冷却する第二冷却工程を含む。第二冷却工程は、上記実施形態に係る連続鋳造スラブのミクロ組織に含まれる粒界フェライトの析出を抑止し、フェライトの面積率を5%未満または10%以上とするための工程である。
(Second cooling process)
Next, in the method for manufacturing a continuously cast slab according to the present embodiment, the continuously cast slab is cooled under cooling conditions in which the average cooling rate is 20°C/hr or less when the surface temperature at the widthwise center of the continuously cast slab is 700°C or more and 850°C or less. Includes a second cooling step. The second cooling step is a step for suppressing the precipitation of grain boundary ferrite contained in the microstructure of the continuously cast slab according to the above embodiment, and making the area ratio of ferrite less than 5% or more than 10%.
 第二冷却工程において、連続鋳造スラブをさらに冷却する温度は、700℃以上850℃以下である。このように、本実施形態に係る連続鋳造スラブの製造方法は、フェライトの析出を制御することができるフェライト変態域における温度範囲の冷却速度に着目して、その温度を制御している。 In the second cooling step, the temperature at which the continuous casting slab is further cooled is 700°C or higher and 850°C or lower. In this way, the method for manufacturing a continuously cast slab according to the present embodiment controls the temperature by focusing on the cooling rate in the temperature range in the ferrite transformation region where ferrite precipitation can be controlled.
 第二冷却工程において、連続鋳造スラブを冷却する上記温度範囲において、当該連続鋳造スラブの平均冷却速度が20℃/hr以下である。平均冷却速度が20℃/hr超の場合、旧オーステナイト粒界にのみ薄くフェライト析出が起こり、粒界を脆化させるためふさわしくない。当該連続鋳造スラブの平均冷却速度が20℃/hr以下であれば、フェライト変態温度域での連続鋳造スラブの滞留時間を十分に確保でき、粒界フェライトをポリゴナルフェライトへ成長させ、粒界フェライトへの応力集中を抑止できるため好ましい。
 なお、平均冷却速度の下限については厳密には限定しないが、冷却速度の制御に必要なエネルギー源が別途必要となるため、2℃/hr以上が好ましい。さらに好ましくは、上記平均冷却速度は、5℃/hr以上18℃/hr以下である。
In the second cooling step, the average cooling rate of the continuously cast slab is 20° C./hr or less in the above temperature range in which the continuously cast slab is cooled. If the average cooling rate exceeds 20° C./hr, thin ferrite precipitation occurs only at prior austenite grain boundaries, which embrittles the grain boundaries, which is not suitable. If the average cooling rate of the continuous casting slab is 20°C/hr or less, sufficient residence time of the continuous casting slab in the ferrite transformation temperature range can be ensured, allowing grain boundary ferrite to grow into polygonal ferrite and forming grain boundary ferrite. This is preferable because it can prevent stress concentration on.
Although the lower limit of the average cooling rate is not strictly limited, it is preferably 2° C./hr or more since a separate energy source is required to control the cooling rate. More preferably, the average cooling rate is 5° C./hr or more and 18° C./hr or less.
(第三冷却工程)
 さらに、本実施形態に係る連続鋳造スラブの製造方法は、前記連続鋳造スラブの幅方向中央の表面温度が500℃以上700℃以下における平均冷却速度が10℃/hr以下である冷却条件により冷却する第三冷却工程を含む。
 第三冷却工程は、上記実施形態に係る連続鋳造スラブのミクロ組織をパーライト主体の組織にし、また、内部応力を下げるための工程である。具体的に第三冷却工程は、連続鋳造スラブのミクロ組織の面積Stotalに対するフェライトの面積Sferriteとパーライトの面積Spearliteとを合計した面積S(ferrite+pearlite)の比率である面積率(%)を90%以上とするための工程である。
(Third cooling process)
Further, in the method for manufacturing a continuously cast slab according to the present embodiment, the continuously cast slab is cooled under cooling conditions in which the average cooling rate is 10°C/hr or less when the surface temperature at the center in the width direction is 500°C or more and 700°C or less. Includes a third cooling step.
The third cooling step is a step for changing the microstructure of the continuously cast slab according to the above embodiment to a pearlite-based structure and reducing internal stress. Specifically, the third cooling step calculates the area ratio (%), which is the ratio of the total area S (ferrite + pearlite) of the ferrite area S ferrite and pearlite area S pearlite to the microstructure area S total of the continuous casting slab. This is a process to make it 90% or more.
 第三冷却工程において、連続鋳造スラブをさらに冷却する温度は、500℃以上700℃以下である。このように、本実施形態に係る連続鋳造スラブの製造方法は、パーライト変態域における温度範囲の冷却速度に着目して、その温度を制御している。 In the third cooling step, the temperature at which the continuous casting slab is further cooled is 500°C or more and 700°C or less. In this manner, the continuous casting slab manufacturing method according to the present embodiment controls the temperature by focusing on the cooling rate in the temperature range in the pearlite transformation region.
 第三冷却工程において、連続鋳造スラブを冷却する上記温度範囲において、当該連続鋳造スラブの平均冷却速度が10℃/hr以下である。当該連続鋳造スラブの平均冷却速度が10℃/hr超であると、パーライト主体のミクロ組織に対し、ベイナイト・マルテンサイトが析出してしまい、それにより大きな応力が生じるためふさわしくない。ベイナイト・マルテンサイトはパーライトに比べて変態温度が低く、その変態応力はすでに変態が完了しているパーライト部にかかるため割れを助長する要因となる。
 このような観点から、当該連続鋳造スラブの平均冷却速度が10℃/hr以下であれば、ベイナイト変態を抑制しパーライト主体の組織にすることで内部応力を低減できるため好ましい。
 なお、平均冷却速度の下限については厳密には限定しないが、冷却速度の制御に必要なエネルギー源が別途必要となるため、1℃/hr以上が好ましく、さらに好ましくは5℃/hr以上である。
In the third cooling step, the average cooling rate of the continuously cast slab is 10° C./hr or less in the above temperature range in which the continuously cast slab is cooled. If the average cooling rate of the continuously cast slab exceeds 10° C./hr, bainite/martensite will precipitate from the pearlite-based microstructure, which will cause large stress, which is not suitable. Bainite/martensite has a lower transformation temperature than pearlite, and the transformation stress is applied to the pearlite part that has already undergone transformation, which is a factor that promotes cracking.
From this point of view, it is preferable that the average cooling rate of the continuously cast slab is 10° C./hr or less, since internal stress can be reduced by suppressing bainite transformation and creating a pearlite-based structure.
The lower limit of the average cooling rate is not strictly limited, but since a separate energy source is required to control the cooling rate, it is preferably 1°C/hr or more, more preferably 5°C/hr or more. .
 このように本実施形態に係る連続鋳造スラブの製造方法は、連続鋳造スラブの冷却工程として、三段階による冷却工程を採用して平均旧オーステナイト粒径、連続鋳造スラブのミクロ組織を緻密に制御することによって、冷却により発生するスラブ置き割れが抑制され、圧延時の穴あきトラブル等も防ぐことが可能となる高強度鋼用連続鋳造スラブを提供することができる。 As described above, the continuous casting slab manufacturing method according to the present embodiment employs a three-step cooling process to precisely control the average prior austenite grain size and the microstructure of the continuous casting slab. As a result, it is possible to provide a continuously cast slab for high-strength steel, which suppresses slab cracks that occur due to cooling and prevents problems such as holes during rolling.
 以上説明したように、第3実施形態に係る連続鋳造スラブの製造方法によれば、高強度鋼用連続鋳造スラブの成分系であっても、冷却工程を三段階に分けて、各冷却工程を緻密に制御することにより、冷却過程での置き割れが発生せず、圧延時の穴あきトラブル等も防ぐことができる高強度鋼用連続鋳造スラブを提供することができる。 As explained above, according to the continuous casting slab manufacturing method according to the third embodiment, even if the composition system of the continuous casting slab for high-strength steel is used, the cooling process is divided into three stages, and each cooling process is By precise control, it is possible to provide a continuously cast slab for high-strength steel that does not cause cracking during the cooling process and prevents problems such as holes during rolling.
[他の実施形態]
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の技術的範囲で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステム、または装置も、本発明の技術的範囲に含まれる。
[Other embodiments]
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the above embodiments. The structure and details of the present invention can be modified in various ways within the technical scope of the present invention, which can be understood by those skilled in the art. Furthermore, systems or devices that combine the separate features included in each embodiment in any way are also included within the technical scope of the present invention.
 以下、本発明の効果を実施例に基づいて具体的に説明するが、本発明はこれら実施例に限定されるものではない。すなわち、本発明者らは、本発明の効果を確認するため、比較例(試験No.A-1~A-4、試験No.B-1~B-8、試験No.C-1~C-3)及び発明例(試験No.D-1~D-24)において、各鋼種を原料として用い、連続鋳造スラブを製造した。表1に比較例(試験No.A-1~A-4、試験No.B-1~B-8、試験No.C-1~C-3)、及び発明例(試験No.D-1~D-24)で用いた連続鋳造スラブの原料である鋼の鋼種A~Iを示す。 Hereinafter, the effects of the present invention will be specifically explained based on Examples, but the present invention is not limited to these Examples. That is, in order to confirm the effects of the present invention, the present inventors conducted comparative examples (Test No. A-1 to A-4, Test No. B-1 to B-8, Test No. C-1 to C -3) and the invention examples (Test Nos. D-1 to D-24), continuous casting slabs were manufactured using each steel type as a raw material. Table 1 shows comparative examples (Test No. A-1 to A-4, Test No. B-1 to B-8, Test No. C-1 to C-3) and invention examples (Test No. D-1). ~ D-24) The steel types A to I that are the raw materials for the continuous casting slabs used are shown below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここで、連続鋳造スラブの冷却条件は、(I)1200℃以上1450℃以下の滞留時間[s]、(II)700℃以上850℃以下の平均冷却速度[℃/hr]、及び(III)500℃以上700℃以下の平均冷却速度[℃/hr]からなる三段階冷却工程を採用し、これらの各段階の条件を適宜変化して冷却を行った。 Here, the cooling conditions for the continuous casting slab are (I) residence time [s] of 1200°C or more and 1450°C or less, (II) average cooling rate [°C/hr] of 700°C or more and 850°C or less, and (III) A three-stage cooling process consisting of an average cooling rate [° C./hr] of 500° C. or more and 700° C. or less was employed, and cooling was performed by changing the conditions of each of these stages as appropriate.
 表2~4に連続鋳造スラブ冷却条件(I)~(III)、得られた連続鋳造スラブのミクロ構造、スラブ置き割れの評価を示す。 Tables 2 to 4 show the continuous casting slab cooling conditions (I) to (III), the microstructure of the obtained continuous casting slab, and the evaluation of slab placement cracking.
 比較例及び発明例において製造した連続鋳造スラブにおける、平均旧オーステナイト粒径の測定、フェライト及びパーライト面積率の算出、連続鋳造スラブの置き割れ評価は、以下の通りにして行った。 Measurement of the average prior austenite grain size, calculation of ferrite and pearlite area ratios, and evaluation of cracks in the continuous casting slabs in the continuous casting slabs produced in the comparative examples and inventive examples were performed as follows.
<平均旧オーステナイト粒径の測定>
 ここで、平均旧オーステナイト粒径の測定方法は、以下の通りである。冷却後のスラブの幅中央位置からサンプルを切り出し、スラブ幅方向に平行なスラブ厚断面が観察面となるようにした。次いで、観察面はダイヤモンドペーストを用いて鏡面研磨し、その後、コロイダルシリカを用い仕上げ研磨を施し、さらに、3vol.%ナイタールでエッチングして観察面に組織を現出させる。光学顕微鏡を用いて、スラブ表層下10mm位置において、10倍の倍率で、5視野観察し、連続鋳造スラブに係るミクロ組織画像を得る。得られたミクロ組織画像をJIS G 0551:2020に準拠した切断法により、5視野観察により得られた旧オーステナイト粒径をそれぞれ求め、これらの平均値を平均旧オーステナイト粒径として算出した。
<Measurement of average prior austenite grain size>
Here, the method for measuring the average prior austenite grain size is as follows. A sample was cut out from the width center position of the slab after cooling, so that the slab thickness cross section parallel to the slab width direction served as the observation surface. Next, the observation surface was mirror polished using diamond paste, then finished polished using colloidal silica, and further polished using 3vol. % nital to reveal the structure on the observation surface. Using an optical microscope, 5 fields of view are observed at a magnification of 10 times at a position 10 mm below the surface layer of the slab to obtain a microstructure image of the continuously cast slab. The prior austenite grain size obtained by observing the obtained microstructure image in 5 fields was determined by a cutting method based on JIS G 0551:2020, and the average value of these was calculated as the average prior austenite grain size.
<フェライト面積率の測定方法>
 フェライト面積率の測定方法は、上記平均旧オーステナイト粒径の測定方法と同様にスラブの観察面を用意する。次いで、観察面はダイヤモンドペーストを用いて鏡面研磨し、その後、コロイダルシリカを用い仕上げ研磨を施し、さらに、3vol.%ナイタールでエッチングして組織を現出させる。加速電圧が15kVの条件で、SEM(Scanning Electron Microscope;走査電子顕微鏡)を用いて、スラブ表層下10mm位置において、50倍の倍率で10視野観察し、得られた連続鋳造スラブに係るミクロ組織画像を、Adobe社のPHOTOSHOP(登録商標)を用いて、フェライトの面積率を10視野分算出し、それらの値を平均してフェライトの面積率として求めた。なお、フェライトはその他の組織(パーライト、ベイナイト、焼戻しマルテンサイト、焼入れマルテンサイト、残留オーステナイト)と比較して粒径が大きく、かつ、平滑な表面でコントラストが暗いため、50倍の倍率で容易に区別ができる。
<Measurement method of ferrite area ratio>
To measure the ferrite area ratio, prepare the observation surface of the slab in the same manner as the above-mentioned method for measuring the average prior austenite grain size. Next, the observation surface was mirror polished using diamond paste, then finished polished using colloidal silica, and further polished using 3vol. Etch with % nital to reveal the tissue. A microstructure image of the continuously cast slab obtained by observing 10 fields of view at a magnification of 50 times at a position 10 mm below the surface of the slab using an SEM (Scanning Electron Microscope) at an accelerating voltage of 15 kV. The area ratio of ferrite was calculated for 10 fields of view using Adobe's PHOTOSHOP (registered trademark), and the values were averaged to determine the area ratio of ferrite. In addition, ferrite has a larger grain size than other structures (pearlite, bainite, tempered martensite, hardened martensite, retained austenite), has a smooth surface, and has a dark contrast, so it can be easily seen at 50x magnification. I can tell the difference.
<パーライトの面積率の測定方法>
 パーライトの組織の面積率の測定方法は、上記フェライトの測定方法と同様にスラブの観察面に組織を現出させる。加速電圧が15kVの条件で、SEMを用いて、スラブ表層下10mm位置において、フェライトを視野から外して10000倍の倍率で10視野観察して、得られた連続鋳造スラブに係るミクロ組織画像を、Adobe社のPHOTOSHOP(登録商標)を用いて、パーライトの面積率およびベイナイトの面積率を10視野分算出し、それらの値を平均し、前述の方法で測定したフェライトの面積率と合わせて合計で100%になるように計算し、各組織の面積率として求めた。パーライトは、フェライトとセメンタイトの共析晶であり、上記走査電子顕微鏡により観察すると両者の薄片状の層が真珠のような光沢を呈する組織である。
<Method for measuring area ratio of pearlite>
The method for measuring the area ratio of the pearlite structure involves making the structure appear on the observation surface of the slab, similar to the method for measuring ferrite described above. Under the condition of an accelerating voltage of 15 kV, using a SEM, 10 fields of view were observed at a magnification of 10,000 times with the ferrite removed from the field of view at a position 10 mm below the surface layer of the slab, and the obtained microstructure image of the continuously cast slab was obtained. Using Adobe's PHOTOSHOP (registered trademark), calculate the area ratio of pearlite and the area ratio of bainite for 10 fields, average these values, and calculate the total by combining them with the area ratio of ferrite measured using the method described above. It was calculated to be 100% and determined as the area percentage of each tissue. Pearlite is a eutectoid crystal of ferrite and cementite, and when observed using the above-mentioned scanning electron microscope, the flaky layers of both have a pearl-like luster.
 本発明に係る連続鋳造スラブのミクロ組織は、パーライト主体であり粒界フェライトの無い組織である。しかし、粒界フェライトとポリゴナルフェライトを厳密に分類することは困難である。そこで、本発明者らは、スラブ置き割れが発生したスラブを鋭意調査し、フェライトの面積率が5%より大きく10%未満の時に粒界に多くのフェライトが存在していることを見出した。つまり、フェライト+パーライトの面積率が90%以上であり、かつ、フェライトの面積率が5%未満または10%以上の組織である。 The microstructure of the continuously cast slab according to the present invention is mainly pearlite and has no grain boundary ferrite. However, it is difficult to strictly classify grain boundary ferrite and polygonal ferrite. Therefore, the present inventors conducted a thorough investigation of slabs in which slab placement cracks had occurred, and found that a large amount of ferrite was present at grain boundaries when the area ratio of ferrite was greater than 5% and less than 10%. That is, it is a structure in which the area ratio of ferrite + pearlite is 90% or more, and the area ratio of ferrite is less than 5% or 10% or more.
<スラブの置き割れ評価>
 スラブ置き割れの評価方法はJIS Z 2343:2017に規定された浸透探傷試験に基づいて試験を行い、スラブの広面および狭面部の割れの有無を評価した。現像液を塗布後に浸透液の表出を目視することにより、目視で表面に発生したスラブの置き割れをチェックした。
 なお、長さ50mm以上の割れがある場合、スラブハンドリング時や加熱炉内でのスラブ破断リスクが高く、また、圧延時の穴あきトラブルにもつながる可能性が高いため、スラブの置き割れの評価基準は、以下の通りとした。
・スラブの置き割れ 〇・・・スラブ表面に長さ50mm以上の割れが無いもの
・スラブの置き割れ ×・・・スラブ表面に長さ50mm以上の割れがあるもの
<Slab crack evaluation>
The evaluation method for slab placement cracks was based on the penetrant test specified in JIS Z 2343:2017, and the presence or absence of cracks on the wide and narrow sides of the slab was evaluated. After applying the developer, the appearance of the penetrating solution was visually observed to visually check for cracks in the slab that had occurred on the surface.
In addition, if there is a crack with a length of 50 mm or more, there is a high risk of the slab breaking during slab handling or in the heating furnace, and there is also a high possibility that it will lead to problems with holes during rolling. The criteria were as follows.
・Slab cracks 〇...No cracks of 50 mm or more in length on the slab surface ・Slab cracks in place ×...Cracks of 50 mm or more in length on the slab surface
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<比較例(試験No.A-1~A-4)>
 試験No.A-1~A-4において製造された連続鋳造スラブが満たしているスラブのミクロ組織構造を条件Aとする。条件Aは、スラブ表層下10mm位置での平均旧オーステナイト粒径が2.0mmより大きくなってしまった例の条件である。これらの場合、旧オーステナイト粒界の析出物密度増大により旧オーステナイト粒界の靭性が低下してしまっているため、スラブ連続鋳造機を出てからのスラブ徐冷の条件を種々振ったとしても、スラブ置き割れを抑制することができなかった。
<Comparative example (Test No. A-1 to A-4)>
Test No. Condition A is the microstructure of the slab that is satisfied by the continuously cast slabs manufactured in A-1 to A-4. Condition A is a condition for an example in which the average prior austenite grain size at a position 10 mm below the surface layer of the slab is larger than 2.0 mm. In these cases, the toughness of the prior austenite grain boundaries has decreased due to the increased precipitate density at the prior austenite grain boundaries, so even if the conditions for slow cooling of the slab after it exits the continuous slab casting machine are varied, Slab cracking could not be suppressed.
<比較例(試験No.B-1~B-8)>
 試験No.B-1~B-8において製造された連続鋳造スラブが満たしているスラブのミクロ組織構造を条件Bとする。条件Bはスラブ表層下10mm位置での平均旧オーステナイト粒径は2.0mm以下であるが、旧オーステナイト粒界に粒界フェライトが析出してしまった条件である。これらの場合、粒界フェライトによって、旧オーステナイト粒界の靭性が低下してしまっているため、それ以降の冷却速度を種々変化させ、ミクロ組織の構成を変化させたとしても、スラブ置き割れを抑制することができなかった。
<Comparative example (Test No. B-1 to B-8)>
Test No. Condition B is the microstructure of the slab that is satisfied by the continuously cast slabs manufactured in B-1 to B-8. Condition B is a condition in which the average prior austenite grain size at a position 10 mm below the surface layer of the slab is 2.0 mm or less, but grain boundary ferrite is precipitated at the prior austenite grain boundaries. In these cases, grain boundary ferrite reduces the toughness of prior austenite grain boundaries, so even if the subsequent cooling rate is varied and the microstructure composition is changed, it is difficult to suppress slab cracking. I couldn't.
<比較例(試験No.C-1~C-3)>
 試験No.C-1~C-3において製造された連続鋳造スラブが満たしているスラブのミクロ組織構造を条件Cとする。条件Cは、平均旧オーステナイト粒径は2.0mm以下で、かつ粒界フェライトの析出を抑制した条件であるが、ベイナイトが10%以上析出してしまったため、スラブ割れを抑制できなかった例の条件である。ベイナイト変態はパーライト変態よりも低温で生じるため、オーステナイトとの密度差が大きく、変態応力も大きくなるため、スラブ割れを抑制できなかったと考えられる。
<Comparative example (Test No. C-1 to C-3)>
Test No. Condition C is the microstructure of the slab that is satisfied by the continuously cast slabs manufactured in C-1 to C-3. Condition C is a condition in which the average prior austenite grain size is 2.0 mm or less and the precipitation of grain boundary ferrite is suppressed, but as 10% or more of bainite precipitates, slab cracking cannot be suppressed. It is a condition. Since bainite transformation occurs at a lower temperature than pearlite transformation, there is a large density difference with austenite, and the transformation stress is also large, so it is thought that slab cracking could not be suppressed.
<発明例(試験No.D-1~D-24)>
 試験No.D-1~D-24において製造された連続鋳造スラブが満たしているスラブのミクロ構造を条件Dとする。条件Dは、本発明例の条件であり、本発明例で製造された連続鋳造スラブは、平均旧オーステナイト粒径が2.0mm以下であり、かつ、ミクロ組織は粒界フェライトがほとんど無く、ベイナイトも少ない組織であった。すなわち、旧オーステナイト粒界を小さく制御し析出物の分散による靭性向上に加え、粒界フェライト析出の抑制による靭性向上、また、ベイナイト析出抑止による内部応力の低下を行うことで、冷却後のスラブ置き割れも発生していない。
<Invention Examples (Test Nos. D-1 to D-24)>
Test No. Condition D is the slab microstructure that is satisfied by the continuously cast slabs manufactured in D-1 to D-24. Condition D is the condition of the present invention example, and the continuous casting slab manufactured in the present invention example has an average prior austenite grain size of 2.0 mm or less, and a microstructure with almost no grain boundary ferrite and bainite. There were also few organizations. In other words, in addition to improving toughness by controlling prior austenite grain boundaries and dispersing precipitates, improving toughness by suppressing grain boundary ferrite precipitation, and reducing internal stress by suppressing bainite precipitation, it is possible to improve the toughness of the slab after cooling. No cracks have occurred.
 表2~4によれば、(i)スラブ表層から10mm位置における平均旧オーステナイト粒径が0.5mm以上2.0mm以下であり、かつ、(ii)連続鋳造スラブのミクロ組織がフェライトとパーライトとの面積率が合計で90%以上、(iii)前記フェライトの面積率が5%未満または10%以上とすることでスラブの冷却時におけるスラブ置き割れの抑制可能なことが判明した。 According to Tables 2 to 4, (i) the average prior austenite grain size at a position 10 mm from the slab surface is 0.5 mm or more and 2.0 mm or less, and (ii) the microstructure of the continuously cast slab is composed of ferrite and pearlite. It has been found that slab placement cracking during cooling of the slab can be suppressed by setting the total area ratio of (iii) to 90% or more and (iii) the area ratio of the ferrite to less than 5% or 10% or more.
 すなわち、本発明の連続鋳造スラブは、スラブ表層から10mm位置における平均旧オーステナイト粒径が0.5mm以上2.0mm以下であり、かつ、ミクロ組織がフェライトとパーライトとの面積率で合計90%以上であり、フェライトの面積率が5%未満または10%以上であるので、鋳造後のスラブ割れの無い高合金高強度鋼用スラブを提供でき、圧延時の穴あきトラブル等も防ぐことが可能となる。すなわち、発明例及び比較例によれば、スラブ表層から10mm位置における平均旧オーステナイト粒径が0.5mm以上2.0mm以下であり、かつ、ミクロ組織がフェライトとパーライトとの面積率が合計で90%以上、(iii)前記フェライトの面積率が5%未満または10%以上とすることでスラブの冷却時の割れが抑制可能なことが判明した。 That is, the continuously cast slab of the present invention has an average prior austenite grain size of 0.5 mm or more and 2.0 mm or less at a position 10 mm from the slab surface layer, and a microstructure with a total area ratio of ferrite and pearlite of 90% or more. Since the area ratio of ferrite is less than 5% or more than 10%, it is possible to provide a slab for high-alloy high-strength steel without slab cracking after casting, and it is also possible to prevent problems such as holes during rolling. Become. That is, according to the invention examples and comparative examples, the average prior austenite grain size at a position 10 mm from the slab surface layer is 0.5 mm or more and 2.0 mm or less, and the microstructure has a total area ratio of ferrite and pearlite of 90 mm. % or more, and (iii) it has been found that cracking during cooling of the slab can be suppressed by setting the area ratio of the ferrite to less than 5% or 10% or more.
 図3は、連続鋳造スラブの発明例(試験No.D-9)において製造した連続鋳造スラブの光学顕微鏡による観察拡大写真である。図3に示された連続鋳造スラブの光学顕微鏡による観察拡大写真に基づいて、当該連続鋳造スラブに含まれる金属組織を識別し、連続鋳造スラブのミクロ組織の面積Stotalに対するフェライトの面積Sferriteとパーライトの面積Spearliteとを合計した面積S(ferrite+pearlite)の比率を面積率(%)として算出した。その結果、本発明例の連続鋳造スラブは、スラブ表層から10mm位置における平均旧オーステナイト粒径が0.5mm以上2.0mm以下であり、かつ、ミクロ組織がフェライトの面積率とパーライトの面積率との合計で90%以上であることが判明した。さらに、本発明例の連続鋳造スラブは、フェライトの面積率が5%未満または10%以上を満たすことが判明した。 FIG. 3 is an enlarged photograph observed with an optical microscope of the continuous casting slab manufactured in the invention example of the continuous casting slab (Test No. D-9). Based on the enlarged photograph of the continuously cast slab observed with an optical microscope shown in FIG . The ratio of the area S (ferrite+pearlite), which is the sum of the area S pearlite and the area S pearlite, was calculated as an area ratio (%). As a result, the continuously cast slab of the present invention example has an average prior austenite grain size of 0.5 mm or more and 2.0 mm or less at a position 10 mm from the slab surface layer, and the microstructure has an area ratio of ferrite and pearlite. The total amount was found to be more than 90%. Furthermore, it was found that the continuously cast slabs of the examples of the present invention had a ferrite area ratio of less than 5% or more than 10%.
 このような連続鋳造スラブのミクロ組織を得るためには、例えば、スラブ表層下10mm位置の温度が1450℃以下1200℃以上の滞留時間を130s以下で冷却し、その後、スラブ幅中央表面の温度が850℃以下700℃以上のところの冷却速度が20℃/hr以下となるように冷却し、さらに、スラブ幅中央表面の温度が700℃以下500℃以上の平均冷却速度が10℃/hr以下とする三段階の冷却を採用することが好ましい。 In order to obtain such a microstructure of a continuously cast slab, for example, the temperature at a position 10 mm below the surface layer of the slab is 1450°C or lower, and the residence time at 1200°C or higher is 130 seconds or less, and then the temperature at the center surface of the slab width is lowered. Cooling is performed so that the cooling rate at 850°C or lower and 700°C or higher is 20°C/hr or less, and further, the average cooling rate at 700°C or lower and 500°C or higher is 10°C/hr or less. It is preferable to employ three stages of cooling.
 なお、1450℃以下1200℃以上の温度範囲にて連続鋳造スラブを強冷却すると、不均一凝固によるスラブ表面割れが生じるリスクもある。そういった場合、例えば、スラブ幅中央、かつスラブ表層下10mm深さの温度が900℃以上1200℃以下の時点でスラブ表面をBS点以下に急冷後、冷却を停止しAC3点以上に復熱させることで、オーステナイト逆変態を利用し旧オーステナイト粒径を微細化することが可能である。その後、スラブ幅中央表面の温度が850℃以下700℃以上のところの冷却速度が20℃/hr以下となるように冷却し、その後、スラブ幅中央表面の温度が700℃以下500℃以上の平均冷却速度が10℃/hr以下とすることにより、このようなミクロ組織を有する連続鋳造スラブを得ることができる。また、上記連続鋳造スラブのミクロ組織を有する連続鋳造スラブの製造方法は、これに限定されない。 Note that if a continuously cast slab is strongly cooled in a temperature range of 1450°C or lower and 1200°C or higher, there is a risk that cracks will occur on the slab surface due to uneven solidification. In such a case, for example, when the temperature at the center of the slab width and at a depth of 10 mm below the surface layer of the slab is between 900°C and above and below 1200°C, the slab surface should be rapidly cooled to below the BS point, and then cooling should be stopped and reheated to above the AC3 point. Therefore, it is possible to refine the prior austenite grain size by utilizing austenite reverse transformation. After that, cooling is performed so that the cooling rate is 20°C/hr or less in the area where the temperature of the central surface of the slab width is 850°C or lower and 700°C or higher, and then the average temperature of the central surface of the slab width is 700°C or lower and 500°C or higher. By setting the cooling rate to 10° C./hr or less, a continuously cast slab having such a microstructure can be obtained. Furthermore, the method for manufacturing a continuous casting slab having the microstructure of the continuous casting slab described above is not limited to this.
 本発明の連続鋳造スラブは、スラブ表層から10mm位置における平均旧オーステナイト粒径が0.5mm以上2.0mm以下であり、かつ、ミクロ組織がフェライトの面積率とパーライトの面積率との合計で90%以上であり、フェライトの面積率が5%未満または10%以上であるので、鋳造後のスラブ割れの無い高強度鋼用スラブを提供でき、圧延時の穴あきトラブル等も防ぐことが可能となるので、産業上有用である。 The continuously cast slab of the present invention has an average prior austenite grain size of 0.5 mm or more and 2.0 mm or less at a position 10 mm from the surface layer of the slab, and a microstructure with a total area ratio of ferrite and pearlite of 90 mm. % or more, and the area ratio of ferrite is less than 5% or more than 10%, so it is possible to provide high-strength steel slabs without slab cracking after casting, and it is also possible to prevent problems such as holes during rolling. Therefore, it is industrially useful.

Claims (3)

  1.  高強度鋼用連続鋳造スラブであって、
     連続鋳造スラブ表層から10mm位置における平均旧オーステナイト粒径が0.5mm以上2.0mm以下であり、かつ、
     ミクロ組織が、フェライトの面積率とパーライトの面積率との合計で90%以上であって、前記フェライトの面積率が5%未満または10%以上であることを特徴とする連続鋳造スラブ。
    A continuous casting slab for high strength steel,
    The average prior austenite grain size at a position 10 mm from the surface layer of the continuous casting slab is 0.5 mm or more and 2.0 mm or less, and
    A continuous casting slab characterized in that the microstructure has a total area ratio of ferrite and pearlite of 90% or more, and the area ratio of ferrite is less than 5% or 10% or more.
  2.  前記連続鋳造スラブは、
     質量%で、
     C:0.10%以上1.00%以下、
     Si:0.10%以上2.50%以下、
     Mn:0.40%以上5.00%以下を含有することを特徴とする請求項1に記載の連続鋳造スラブ。
    The continuous casting slab is
    In mass%,
    C: 0.10% or more and 1.00% or less,
    Si: 0.10% or more and 2.50% or less,
    The continuous casting slab according to claim 1, containing Mn: 0.40% or more and 5.00% or less.
  3.  冷却により発生するスラブ置き割れが抑制された高強度鋼用連続鋳造スラブの製造方法であって、
     請求項2に記載の成分組成の連続鋳造スラブを、
     連続鋳造スラブ幅方向中央であり、かつ、連続鋳造スラブ表層から10mm位置における前記連続鋳造スラブの冷却温度が1200℃以上1450℃以下であり、前記連続鋳造スラブの滞留時間が130s以下である冷却条件により冷却する第一冷却工程と、
     前記連続鋳造スラブ幅方向中央の表面温度が700℃以上850℃以下における平均冷却速度が20℃/hr以下である冷却条件により冷却する第二冷却工程と、
     前記連続鋳造スラブ幅方向中央の表面温度が500℃以上700℃以下における平均冷却速度が10℃/hr以下である冷却条件により冷却する第三冷却工程と、を含むことを特徴とする連続鋳造スラブの製造方法。
    A method for manufacturing a continuous casting slab for high-strength steel in which slab cracking caused by cooling is suppressed, the method comprising:
    A continuous casting slab having the composition according to claim 2,
    Cooling conditions in which the cooling temperature of the continuous casting slab at the center in the width direction of the continuous casting slab and at a position 10 mm from the surface layer of the continuous casting slab is 1200°C or more and 1450°C or less, and the residence time of the continuous casting slab is 130 seconds or less. a first cooling step of cooling by;
    A second cooling step in which the continuously cast slab is cooled under cooling conditions in which the surface temperature at the center in the width direction is 700° C. or more and 850° C. or less and the average cooling rate is 20° C./hr or less;
    A continuous casting slab characterized by comprising: a third cooling step of cooling under cooling conditions in which the surface temperature at the center in the width direction of the continuous casting slab is 500° C. or more and 700° C. or less, and the average cooling rate is 10° C./hr or less. manufacturing method.
PCT/JP2023/012746 2022-05-09 2023-03-29 Continuous casting slab and method for manufacturing same WO2023218787A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023541329A JP7477052B2 (en) 2022-05-09 2023-03-29 Continuously cast slab and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-077095 2022-05-09
JP2022077095 2022-05-09

Publications (1)

Publication Number Publication Date
WO2023218787A1 true WO2023218787A1 (en) 2023-11-16

Family

ID=88730055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012746 WO2023218787A1 (en) 2022-05-09 2023-03-29 Continuous casting slab and method for manufacturing same

Country Status (3)

Country Link
JP (1) JP7477052B2 (en)
TW (1) TW202346606A (en)
WO (1) WO2023218787A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181861A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Ind Ltd Continuously cast slab
JP2019167559A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2019167560A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2020139210A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Cooling method of slab of high tensile steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181861A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Ind Ltd Continuously cast slab
JP2019167559A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2019167560A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2020139210A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Cooling method of slab of high tensile steel

Also Published As

Publication number Publication date
JPWO2023218787A1 (en) 2023-11-16
TW202346606A (en) 2023-12-01
JP7477052B2 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP6409917B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
KR101896852B1 (en) Hot-rolled steel sheet
US7105066B2 (en) Steel plate having superior toughness in weld heat-affected zone and welded structure made therefrom
JP5093422B2 (en) High strength steel plate and manufacturing method thereof
JP6048580B2 (en) Hot rolled steel sheet and manufacturing method thereof
CN102333899B (en) Hot rolled steel sheet having excellent punching workability and fatigue properties, hot dip galvanized steel sheet, and method for producing same
KR101897932B1 (en) Hot-rolled steel sheet
EP1254275B1 (en) STEEL PLATE TO BE PRECIPITATING TiN + ZrN FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME AND WELDING FABRIC USING THE SAME
WO2021065346A1 (en) Hot-rolled steel sheet
JP7045459B2 (en) High-strength steel materials for polar environments with excellent fracture resistance at low temperatures and their manufacturing methods
EP1339889B1 (en) STEEL PLATE TO BE PRECIPITATING TiN+CuS FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME, WELDING FABRIC USING THE SAME
US6946038B2 (en) Steel plate having Tin+MnS precipitates for welded structures, method for manufacturing same and welded structure
WO2023218787A1 (en) Continuous casting slab and method for manufacturing same
WO2021153037A1 (en) Hot-rolled steel sheet
WO2023218786A1 (en) Continuous casting slab and method for manufacturing same
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JPH108132A (en) Production of thick steel plate excellent in toughness
JP2007186789A (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability, and its manufacturing method
WO2023218784A1 (en) Continuous cast slab
JP7508026B2 (en) Heavy steel plate and its manufacturing method
WO2023132342A1 (en) Hot-rolled steel sheet and method for producing same
KR20240075905A (en) Heavy steel plate and manufacturing method thereof
WO2023218785A1 (en) Slab for high-strength steel sheet and cooling method thereof, method for producing high-strength hot-rolled steel sheet, method for producing high-strength cold-rolled steel sheet, and method for producing high-strength plated steel sheet
WO2022070840A1 (en) High-strength steel sheet
KR20020044240A (en) Method for manufacturing high strength steel plate to be precipitating TiN+MnS by nitriding treatment for welded structures

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023541329

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803270

Country of ref document: EP

Kind code of ref document: A1