WO2023218785A1 - Slab for high-strength steel sheet and cooling method thereof, method for producing high-strength hot-rolled steel sheet, method for producing high-strength cold-rolled steel sheet, and method for producing high-strength plated steel sheet - Google Patents

Slab for high-strength steel sheet and cooling method thereof, method for producing high-strength hot-rolled steel sheet, method for producing high-strength cold-rolled steel sheet, and method for producing high-strength plated steel sheet Download PDF

Info

Publication number
WO2023218785A1
WO2023218785A1 PCT/JP2023/012741 JP2023012741W WO2023218785A1 WO 2023218785 A1 WO2023218785 A1 WO 2023218785A1 JP 2023012741 W JP2023012741 W JP 2023012741W WO 2023218785 A1 WO2023218785 A1 WO 2023218785A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
slab
strength
steel sheet
temperature
Prior art date
Application number
PCT/JP2023/012741
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 山崎
智也 小田垣
大輝 川▲崎▼
一輝 遠藤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023539842A priority Critical patent/JP7396544B1/en
Publication of WO2023218785A1 publication Critical patent/WO2023218785A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a high-strength steel plate slab that prevents cracking during cooling, and a method for cooling the same.
  • high-strength hot-rolled steel sheets are manufactured from the high-strength steel plate slabs
  • high-strength cold-rolled steel sheets are manufactured from the high-strength hot-rolled steel sheets
  • high-strength plated steel sheets are manufactured from the high-strength cold-rolled steel sheets.
  • cracking With the decrease in toughness due to high alloying, cracking during cooling of the slab, so-called cracking, has become more frequent. When cracks occur, there is a risk that the slab will break during slab transportation, making it impossible to use it for hot rolling. Further, even if the slab does not break, cracks may open during hot rolling and the hot rolled steel plate may break. Alternatively, if the cracks are small, they appear as surface defects such as sludge marks and sliver marks on the steel plate after hot rolling, cold rolling, annealing, or plating. Usually, cracks on the slab surface are removed using a grinder. However, the toughness of the slab decreases due to high alloying, and cracks may propagate due to the stress of the grinder, making it impossible to completely remove them. On the other hand, small cracks may be overlooked and appear as surface defects on the steel sheet after hot rolling, cold rolling, annealing, or plating. For these reasons, it is necessary to suppress cracking of slabs.
  • Patent Document 1 discloses a method of suppressing bainite/martensite transformation and reducing stress caused by the transformation expansion by slowly cooling the material to 700 to 500°C, which is the temperature range at which austenite transforms to ferrite.
  • Patent Document 2 discloses that slow cooling is started immediately after casting, and further slow cooling is carried out at a temperature of 700 to 500 °C for 10 hours or more at a temperature of 700 °C or higher to reduce temperature differences and stress during transformation. A method is disclosed.
  • the present invention has been made in view of the above-mentioned circumstances, and provides a high-strength steel plate slab and a cooling method thereof that do not cause slab cracking during cooling of the slab, even in the case of a high-alloy slab with low toughness. It is to be.
  • Another object of the present invention is to provide a method for producing high-strength hot-rolled steel sheets, high-strength cold-rolled steel sheets, and high-strength plated steel sheets using the slabs.
  • the inventors have made extensive studies to achieve the above object.
  • the fracture morphology of slab cracking was analyzed, and the fracture surface included at least one type of fracture among intergranular fracture surfaces along prior austenite grain boundaries and intragranular fracture surfaces (cleavage fracture surfaces) across prior austenite grain boundaries. I discovered that there is a surface. After further investigation, we discovered the following. (1) By setting the average prior austenite grain size at a position 10 mm from the surface layer of the slab to 2.0 mm or less, grain boundary fracture along prior austenite grain boundaries can be suppressed.
  • the microstructure at a position 10 mm from the surface layer of the slab has a total area ratio of bainitic ferrite and/or tempered martensite of 50% to 97%, and retained austenite of 3% to 30% in area ratio.
  • the present invention was completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
  • a continuously cast slab for high-strength steel plate in which the average prior austenite grain size at a position 10 mm from the slab surface is 2.0 mm or less, and the microstructure is composed of bainitic ferrite and tempered martensite. is 50% or more and 97% or less in total area ratio, retained austenite is 3% or more and 30% or less in area ratio, ferrite is 20% or less in area ratio, and pearlite and hardened martensite are in the area ratio
  • a slab for high-strength steel plate characterized by a total strength of 20% or less.
  • the high-strength steel plate slab contains, in mass %, C: 0.10% or more and 0.50% or less, Si: 0.10% or more and 2.50% or less, and Mn: 1.00% or more.5. Contains 0.00% or less, P: 0.100% or less, S: 0.0200% or less, Al: 0.005% or more and 2.500% or less, N: 0.0100% or less, and O: 0.0100% or less.
  • the high-strength steel plate slab according to 1 above contains, in mass %, C: 0.10% or more and 0.50% or less, Si: 0.70% or more and 2.50% or less, and Mn: 1.00% or more. Contains 0.00% or less, P: 0.100% or less, S: 0.0200% or less, Al: 0.005% or more and 2.500% or less, N: 0.0100% or less, and O: 0.0100% or less.
  • the average cooling rate is 15°C/hr or more at a temperature of 400°C or more and less than 550°C, and then the average cooling rate is 10°C/hr or more until the cooling stop temperature is 250°C or more and less than 400°C. Then, it is heated to a reheating temperature exceeding the cooling stop temperature and 450°C or less, and then heated so that the average cooling rate at 200°C or more and below the reheating temperature is 30°C/hr or less.
  • a method for cooling a slab for high-strength steel plate which is characterized by cooling. [5] The high-strength steel plate slab having the composition described in 3 above is cooled so that the residence time at 1200 ° C.
  • the average cooling rate is 25°C/hr or more when the surface temperature at the center of the slab width is 700°C or more and 850°C or less, and then the average cooling rate is 20°C/hr or more when the surface temperature is 550°C or more and less than 700°C. Cooled so that the average cooling rate at 400°C or higher and lower than 550°C is 10°C/hr or higher, and then cooled so that the average cooling rate at 200°C or higher and lower than 400°C is 30°C/hr or lower.
  • a method for cooling a slab for high-strength steel plate which is characterized by cooling.
  • the high-strength steel plate slab according to any one of 1 to 3 above is heated so that the slab heating temperature is in the range of 1000°C or more and 1300°C or less, and after rough rolling, the finishing rolling temperature is 750°C.
  • a method for producing a high-strength hot-rolled steel sheet characterized in that finish rolling is carried out so that the temperature is above 1000°C and winding is carried out so that the coiling temperature is above room temperature and below 750°C.
  • a method for manufacturing high-strength cold-rolled steel sheets [8] The high-strength cold-rolled steel sheet obtained by the cold rolling described in 7 above is heated so that the annealing temperature is 750°C or more and 950°C or less, and then molten metal is added to the high-strength cold-rolled steel sheet. The plated steel sheet is subjected to a plating treatment, and then the plated steel sheet is cooled at a cooling stop temperature of 150° C.
  • the hot-dip metal plating treatment is applied to zinc plating, zinc-based alloy plating, or zinc-based plating.
  • a method for producing a high-strength plated steel sheet characterized by plating with one type selected from Al alloy plating and Al plating. [9] The method for producing a high-strength plated steel sheet according to item 8, characterized in that the plated steel sheet that has been subjected to the hot-dip metal plating treatment is subjected to an alloying treatment.
  • the surface is subjected to electroplating treatment, and optionally, the electroplating treatment is applied to zinc plating, zinc-based alloy plating, or zinc plating.
  • the electroplating treatment is applied to zinc plating, zinc-based alloy plating, or zinc plating.
  • the present invention it is possible to provide a slab that does not crack during the cooling process even if it is made of a high-alloy component system for high-strength steel sheets. Furthermore, it is possible to provide a method for producing a high-strength hot-rolled steel sheet, a high-strength cold-rolled steel sheet, and a high-strength plated steel sheet with few surface defects using the slab.
  • the average prior austenite grain size is a factor that determines the unit of fracture; the larger it is, the lower the toughness of the slab is, and slab cracks exhibiting intergranular fracture surfaces occur.
  • the average prior austenite grain size at a position 10 mm from the surface layer of the slab needs to be 2.0 mm or less. Preferably it is 1.8 mm or less, more preferably 1.5 mm or less.
  • the average prior austenite grain size can be measured by the method described in Examples described later.
  • Total area ratio of bainitic ferrite and tempered martensite 50% or more and 97% or less
  • Bainitic ferrite and tempered martensite which are important constituent elements in this embodiment, have higher toughness than pearlite and hardened martensite, can increase the toughness of steel, and suppress slab cracking. I can do it.
  • the total area ratio of bainitic ferrite and tempered martensite at a position 10 mm from the slab surface layer needs to be 50% or more. Preferably it is 60% or more, more preferably 70% or more, and still more preferably 80% or more.
  • the area ratio of bainitic ferrite and tempered martensite can be measured by the method described in Examples described below.
  • retained austenite which is an extremely important constituent element, has a face-centered cubic lattice (FCC) crystal structure and no cleavage planes, so it can dramatically improve the toughness of the steel.
  • retained austenite undergoes martensitic transformation when subjected to high stress. Even if a crack occurs due to slab cracking, martensite is generated at the stress concentration area at the tip of the crack, which alleviates the stress concentration and stops the crack from propagating. Therefore, surface defects of the steel sheet after hot rolling, cold rolling, annealing, or plating can be suppressed.
  • the area ratio of retained austenite at a position 10 mm from the slab surface layer needs to be 3% or more. Preferably it is 5% or more, more preferably 7% or more. If the retained austenite exceeds 30%, the unstable retained austenite increases, causing martensitic transformation under small stress, which may reduce toughness, so it is set to 30% or less. Preferably it is 25% or less, more preferably 20% or less.
  • the area ratio of retained austenite can be measured by the method described in Examples described later.
  • Ferrite has a larger grain size and lower strength than bainitic ferrite, tempered martensite, hardened martensite, retained austenite, and pearlite. Therefore, when stress is applied, stress concentration occurs in the ferrite, and cracks may occur starting from the ferrite.
  • the area ratio of ferrite at a position 10 mm from the surface layer of the slab needs to be 20% or less. Preferably it is 15% or less, more preferably 10% or less, and still more preferably 0%. Note that the area ratio of ferrite can be measured by the method described in Examples described later.
  • total area ratio of pearlite and hardened martensite 20% or less
  • Pearlite and hardened martensite have inferior toughness compared to retained austenite, bainitic ferrite, and tempered martensite, and when present in large amounts, cracks may occur starting from these structures.
  • the total area ratio of pearlite and hardened martensite at a position 10 mm from the slab surface layer must be 20% or less. Preferably it is 15% or less, more preferably 10% or less, and even more preferably 0%.
  • the area ratio of pearlite and hardened martensite can be measured by the method described in Examples described later.
  • C is an important element that affects the retained austenite fraction of the slab and increases the strength of the steel sheet. If the C content is less than 0.10%, there is a risk that sufficient retained austenite cannot be ensured in the slab. Alternatively, it may become difficult to achieve the tensile strength (TS) required for the steel plate. On the other hand, if the C content exceeds 0.50%, the quenched martensite fraction of the slab may become excessive. Therefore, the content of C is preferably 0.10% or more and 0.50% or less. More preferably, it is 0.12% or more. More preferably, it is 0.45% or less. More preferably, it is 0.15% or more. More preferably, it is 0.40% or less.
  • Si is an element that affects the fraction of retained austenite because it suppresses the generation of carbides during slab cooling and promotes the generation of retained austenite.
  • the Si content is preferably 0.10% or more. If the Si content is less than 0.10%, the fraction of retained austenite decreases and slab cracking may occur. More preferably, it is 0.15% or more. More preferably, it is 0.20% or more.
  • the Si content is preferably 0.70% or more.
  • the Si content is less than 0.70%, the fraction of retained austenite decreases and slab cracking may occur. More preferably, it is 0.90% or more. More preferably, it is 1.00% or more. On the other hand, if the Si content exceeds 2.50%, strong scale may occur in the hot-rolled steel sheet, which may cause surface defects. Therefore, the Si content is preferably 2.50% or less. More preferably, it is 2.00% or less. More preferably, it is 1.80% or less.
  • Mn 1.00% or more and 5.00% or less
  • Mn is an important element that affects the fraction of retained austenite and increases the strength of steel sheets. If the Mn content is less than 1.00%, there is a risk that sufficient retained austenite cannot be ensured in the slab. Alternatively, it may become difficult to achieve the tensile strength (TS) required for the steel plate. On the other hand, if the Mn content exceeds 5.00%, the quenched martensite fraction of the slab may become excessive. Therefore, the Mn content is preferably 1.00% or more and 5.00% or less. More preferably, it is 1.20% or more. More preferably, it is 4.50% or less. More preferably, it is 1.40% or more. More preferably, it is 4.00% or less.
  • the content of P is preferably 0.100% or less.
  • the lower limit of the P content is not particularly specified, it is more preferably 0.001% or more since P is a solid solution strengthening element and can increase the strength of the steel sheet. More preferably, it is 0.070% or less.
  • S is an element that exists as a sulfide and causes slab embrittlement. Therefore, the S content is preferably 0.0200% or less. Although the lower limit of the S content is not particularly defined, it is more preferably 0.0001% or more due to production technology constraints. More preferably, it is 0.0050% or less.
  • Al 0.005% or more and 2.500% or less
  • Al is an element that affects the fraction of retained austenite in the slab because it suppresses the generation of carbides during cooling of the slab and promotes the generation of retained austenite. Further, it is preferable to add 0.005% or more for deoxidation. On the other hand, if the Al content exceeds 2.500%, there is a risk of slab embrittlement. Therefore, the Al content is preferably 0.005% or more and 2.500% or less. More preferably, it is 0.010% or more. More preferably, it is 1.000% or less. More preferably, it is 0.100% or less.
  • N is an element that exists as a nitride and causes embrittlement of the slab. Therefore, the N content is preferably 0.0100% or less. Note that although the lower limit of the N content is not particularly specified, it is more preferable that the N content is 0.0001% or more due to constraints on production technology. More preferably, it is 0.0050% or less.
  • O is an element that exists as an oxide and causes embrittlement of the slab. Therefore, the content of O is preferably 0.0100% or less. Although the lower limit of the O content is not particularly defined, it is more preferable that the O content is 0.0001% or more due to production technology constraints. More preferably, it is 0.0050% or less.
  • the high-strength steel plate slab according to an embodiment of the present invention has a composition containing the above-mentioned components, with the remainder containing Fe and inevitable impurities.
  • the high-strength steel plate slab according to an embodiment of the present invention contains the above-mentioned components, with the remainder consisting of Fe and unavoidable impurities.
  • unavoidable impurities include Zn, Pb, and As. The total content of these impurities is allowed to be 0.100% or less.
  • the high-strength steel plate of the present invention further includes, in mass %, Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, Ta: 0. 10% or less, W: 0.10% or less, B: 0.0100% or less, Cr: 1.00% or less, Mo: 1.00% or less, Ni: 1.00% or less, Co: 1.00% Below, Cu: 1.00% or less, Sn: 0.200% or less, Sb: 0.200% or less, Ca: 0.0100% or less, Mg: 0.0100% or less, REM: 0.0100% or less, Contains at least one element selected from Zr: 0.100% or less, Te: 0.100% or less, Hf: 0.10% or less, and Bi: 0.200% or less, singly or in combination. It's okay.
  • the contents of Ti, Nb, and V are each 0.200% or less.
  • the lower limits of the content of Ti, Nb, and V are not particularly specified, but the strength of the steel sheet can be increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. Therefore, it is more preferable that the contents of Ti, Nb, and V are each 0.001% or more. Therefore, when Ti, Nb, and V are contained, their contents are each 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • the contents of Ta and W are each 0.10% or less. Note that there is no particular lower limit to the content of Ta and W, but the strength of the steel sheet is increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. It is more preferable that the contents of Ta and W are each 0.01% or more. Therefore, when Ta and W are contained, their contents are each 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
  • the content of B is preferably 0.0100% or less.
  • the lower limit of the B content is not particularly specified, but since it is an element that segregates at austenite grain boundaries during hot rolling and annealing and improves hardenability, the B content should be 0.0003% or more. It is more preferable to do so. Therefore, when B is contained, its content should be 0.0100% or less. More preferably, it is 0.0003% or more. More preferably, it is 0.0080% or less.
  • each of Cr, Mo, and Ni is 1.00% or less, coarse precipitates and inclusions do not increase and the toughness of the slab does not deteriorate. Therefore, it is preferable that the contents of Cr, Mo, and Ni are each 1.00% or less.
  • the lower limit of the content of Cr, Mo, and Ni is not particularly specified, but since they are elements that improve hardenability, it is more preferable that the content of Cr, Mo, and Ni is each 0.01% or more. . Therefore, when Cr, Mo, and Ni are contained, their contents are each 1.00% or less. More preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
  • the Co content is preferably 1.00% or less.
  • the lower limit of the Co content is not particularly specified, since it is an element that improves hardenability, the Co content is more preferably 0.001% or more. Therefore, when Co is contained, the content should be 1.00% or less. More preferably, it is 0.001% or more. More preferably, it is 0.80% or less.
  • the Cu content is preferably 1.00% or less.
  • the lower limit of the Cu content is not particularly specified, since it is an element that improves hardenability, the Cu content is preferably 0.01% or more. Therefore, if Cu is contained, the content should be 1.00% or less. More preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
  • the content of Sn is preferably 0.200% or less.
  • the lower limit of the Sn content is not particularly defined, since Sn is an element that improves hardenability, the Sn content is more preferably 0.001% or more. Therefore, if Sn is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • the content of Sb is preferably 0.200% or less.
  • the lower limit of the Sb content is not particularly defined, it is more preferable that the Sb content is 0.001% or more, since it is an element that suppresses decarburization and enables the strength adjustment of steel sheets. . Therefore, if Sb is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • the content of Ca, Mg and REM is preferably 0.0100% or less.
  • the lower limits of the contents of Ca, Mg, and REM are not particularly stipulated, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the toughness of slabs, the contents of Ca, Mg, and REM are More preferably, each content is 0.0005% or more. Therefore, when Ca, Mg and REM are contained, their contents are each 0.0100% or less. More preferably, it is 0.0005% or more. More preferably, it is 0.0050% or less.
  • the contents of Zr and Te are preferably 0.100% or less.
  • the lower limits of the contents of Zr and Te are not particularly specified, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the toughness of the slab, the contents of Zr and Te are each 0.001. % or more is more preferable. Therefore, when Zr and Te are contained, their contents are each 0.100% or less. More preferably, it is 0.001% or more. More preferably, it is 0.080% or less.
  • the Hf content is preferably 0.10% or less. Note that there is no particular lower limit to the Hf content, but since it is an element that spheroidizes the shape of nitrides and sulfides and improves the ultimate deformability of steel sheets, the Hf content should be 0.01% or more. It is more preferable to do so. Therefore, if Hf is contained, the content should be 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
  • the Bi content is preferably 0.200% or less.
  • the lower limit of the Bi content is not particularly defined, since it is an element that reduces segregation, the Bi content is more preferably 0.001% or more. Therefore, when Bi is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • each content of Ti, Nb, V, Ta, W, B, Cr, Mo, Ni, Co, Cu, Sn, Sb, Ca, Mg, REM, Zr, Te, Hf and Bi is preferable. If it is less than the lower limit, the effect of the present invention will not be impaired, and therefore it is included as an unavoidable impurity.
  • the method for cooling a high-strength steel plate slab according to the first embodiment involves reheating during cooling.
  • a case involving reheating during cooling of the slab is selected, and a steel material having the selected component composition is melted to produce a steel slab.
  • the method of melting the steel material is not particularly limited, and any known melting method such as a converter or an electric furnace is suitable.
  • the steel slab (slab) is preferably manufactured by a continuous casting method, but it can also be manufactured by a thin slab casting method or the like.
  • the prior austenite grain size is a factor that determines the unit of fracture, and the larger it is, the lower the toughness is.
  • the factor that determines the austenite grain size is the residence time at 1200° C. or more and 1450° C. or less, and the longer the residence time, the coarser the prior austenite grain size. If the residence time at 1200° C. or higher and 1450° C. or lower exceeds 130 seconds, the average prior austenite grain size may exceed 2.0 mm, and slab cracking may occur. Therefore, the residence time at 1200° C. or higher and 1450° C.
  • the temperature history at a position 10 mm below the surface of the slab was calculated by heat transfer analysis. The analysis position was set at the center of the slab width, where the residence time in the above temperature range is the longest within the slab.
  • a temperature range of 700° C. or more and 850° C. or less is a temperature range in which ferrite transformation occurs, and if the cooling rate in this temperature range is low, the area ratio of ferrite in the slab increases and the toughness of the slab decreases. In order to control the area ratio of ferrite to a low level, it is necessary to increase the cooling rate. In order to obtain such an effect, the average cooling rate at 700° C. or higher and 850° C. or lower is set to 25° C./hr or higher.
  • the average cooling rate is set to 1000° C./hr or less since it becomes difficult to control the cooling stop at 250° C. or more and less than 400° C.
  • it is 500°C/hr or less, more preferably 200°C/hr or less.
  • the cooling rate was measured using a thermocouple. After the slab came out of the continuous casting machine, a thermocouple was installed at the center of the upper surface of the wide side (long side) of the slab, and the cooling rate was determined from the measured temperature. All cooling rates of the slab described below are cooling rates determined by the method described above.
  • the temperature range of 550°C or more and less than 700°C is the temperature range where ferrite transformation and pearlite transformation occur, and if the cooling rate in this temperature range is low, the ferrite and/or pearlite fraction of the slab will increase, and the toughness of the slab will decrease. descend. Therefore, the average cooling rate at 550°C or higher and lower than 700°C is set to 20°C/hr or higher. Preferably it is 30°C/hr or more, more preferably 40°C/hr or more, and still more preferably 50°C/hr or more.
  • the upper limit of the average cooling rate is not particularly specified, it is set to 1000° C./hr or less since it becomes difficult to control the cooling stop at 250° C. or more and less than 400° C. Preferably it is 500°C/hr or less, more preferably 200°C/hr or less.
  • the temperature range of 400°C or more and less than 550°C is the temperature range where pearlite transformation and bainite transformation occur, and if the cooling rate in this temperature range is low, the pearlite fraction of the slab will increase and the toughness of the slab will decrease. Therefore, the average cooling rate at 400°C or higher and lower than 550°C is set to 15°C/hr or higher. Preferably it is 20°C/hr or more, more preferably 30°C/hr or more, and still more preferably 50°C/hr or more.
  • the upper limit of the average cooling rate is not particularly specified, it is set to 500° C./hr or less since it becomes difficult to control the cooling stop at 250° C. or more and less than 400° C. Preferably it is 300°C/hr or less, more preferably 100°C/hr or less.
  • the temperature range of 250°C or more and less than 400°C is a temperature range in which bainite transformation and martensitic transformation occur.
  • the cooling rate to the cooling stop temperature is set to 10° C./hr or more. Preferably it is 15°C/hr or more, more preferably 20°C/hr or more, and still more preferably 30°C/hr or more.
  • the upper limit of the average cooling rate is not particularly specified, it is set to 500° C./hr or less since it becomes difficult to control the cooling stop temperature. Preferably it is 300°C/hr or less, more preferably 100°C/hr or less. Furthermore, if the cooling stop temperature is lower than 250°C, the transformation will be completed, making it impossible to ensure residual austenite. Therefore, the cooling stop temperature is set to 250°C or higher. The temperature is preferably 270°C or higher, more preferably 300°C or higher. If the cooling stop temperature is 400° C. or higher, pearlite transformation will proceed, making it impossible to ensure retained austenite. Therefore, the cooling stop temperature is set to less than 400°C. The temperature is preferably 380°C or lower, more preferably 350°C or lower.
  • the reheating temperature is set to exceed the cooling stop temperature.
  • the cooling stop temperature is +20°C or higher, more preferably the cooling stop temperature +40°C or higher.
  • the reheating temperature is set to 450°C or less.
  • the temperature is preferably 430°C or lower, more preferably 410°C or lower.
  • the temperature range of 200° C. or higher and lower than the reheating temperature is a temperature range in which bainite transformation and martensitic transformation occur, and bainite transformation occurs at a higher temperature than martensitic transformation. If the cooling rate is high in this temperature range, quenched martensite will be generated and the toughness of the slab will be reduced. Furthermore, in bainitic transformation, carbon is concentrated in untransformed austenite during the formation of bainitic ferrite, promoting the formation of retained austenite.
  • the average cooling rate at 200° C. or higher and lower than the reheating temperature is set to 30° C./hr or lower. Preferably it is 25°C/hr or less, more preferably 20°C/hr or less. Although the lower limit of the average cooling rate is not particularly specified, it is preferably 5° C./hr or more from the viewpoint of productivity.
  • ⁇ Method for cooling high-strength steel plate slab according to second embodiment> The method for cooling a high-strength steel plate slab according to the second embodiment uniformly lowers the temperature without reheating during cooling. Common parts with the first embodiment will be omitted, and different parts will be explained. Among the above-mentioned component compositions, a case without reheating during cooling of the slab is selected, and a steel material having the selected component composition is melted to produce a steel slab in the same manner as in the first embodiment.
  • Average cooling rate at 550°C or higher and lower than 700°C is 20°C/hr or higher] This is common to the first embodiment.
  • the temperature range of 400°C or more and less than 550°C is the temperature range where pearlite transformation and bainite transformation occur, and if the cooling rate in this temperature range is low, the pearlite fraction of the slab will increase and the toughness of the slab will decrease. Therefore, the average cooling rate at 400°C or higher and lower than 550°C is set to 10°C/hr or higher. Preferably it is 15°C/hr or more, more preferably 20°C/hr or more, and still more preferably 30°C/hr or more.
  • the upper limit of the average cooling rate is not particularly specified, it is set to be 500°C/hr or less since it becomes difficult to control the cooling rate at 200°C or more and less than 400°C. Preferably it is 300°C/hr or less, more preferably 100°C/hr or less.
  • the temperature range of 200°C or higher and lower than 400°C is a temperature range in which bainite transformation and martensitic transformation occur, and bainite transformation occurs at a higher temperature than martensitic transformation. If the cooling rate is high in this temperature range, quenched martensite will be generated and the toughness of the slab will be reduced. Furthermore, in bainitic transformation, carbon is concentrated in untransformed austenite during the formation of bainitic ferrite, promoting the formation of retained austenite. In order to ensure the residual austenite fraction and bainite fraction of the slab, it is necessary to allow bainite transformation to occur for a sufficient period of time.
  • the average cooling rate at 200°C or higher and lower than 400°C is set to 30°C/hr or less. Preferably it is 25°C/hr or less, more preferably 20°C/hr or less. Although the lower limit of the average cooling rate is not particularly specified, it is preferably 5° C./hr or more from the viewpoint of productivity.
  • the slab heating temperature is 1000°C or higher and 1300°C or lower
  • finish rolling is performed at a finish rolling temperature of 750°C or higher and 1000°C or lower
  • the coiling temperature is room temperature or higher and 750°C or lower.
  • take up the winding From the completion of finish rolling to the time of winding, rapid cooling, maintaining/insulating sheet temperature, or air cooling may be performed. After winding, it may be rolled at an elongation rate of 0.05% or more and 1.00% or less.
  • pickling may be performed. Pickling may be carried out once or in multiple steps. In this way, a high-strength hot-rolled steel sheet is manufactured.
  • the above-mentioned high-strength hot-rolled steel sheet is used, and after pickling, cold rolling is performed at a rolling reduction of 30% or more and 80% or less. Since pickling can remove oxides on the surface of the steel sheet, it is important for ensuring good chemical conversion treatability and plating quality in the final high-strength steel sheet. Further, the pickling may be carried out once or in multiple steps. Cold rolling introduces strain uniformly and efficiently, resulting in a uniform structure. It is preferable to perform rolling. In this way, the high-strength cold-rolled steel sheet 1 is manufactured.
  • the high-strength cold-rolled steel sheet 1 is heated at an annealing temperature of 750°C or higher and 950°C or lower, cooled to a cooling stop temperature of 300°C or higher and 600°C or lower, and then cooled to 100°C or lower. After the cooling, it may be rolled at an elongation rate of 0.05% or more and 1.00% or less. In this way, high-strength cold-rolled steel sheet 2 is manufactured.
  • the annealing temperature is heated at 750°C or higher and 950°C or lower, cooled to a cooling stop temperature of 130°C or higher and 400°C or lower, then reheated at 200°C or higher and 450°C or lower, and then heated to 100°C or higher and 450°C or lower. Cool to below °C. After the cooling, it may be rolled at an elongation rate of 0.05% or more and 1.00% or less. In this way, the high-strength cold-rolled steel sheet 3 is manufactured.
  • high-strength cold-rolled steel sheet 1 heat at an annealing temperature of 750°C or higher and 950°C or lower, start water quenching at 500°C or higher, water cool to 100°C or lower, and then reheat at 100°C or higher and 300°C or lower. After the reheating, rolling may be performed at an elongation rate of 0.05% or more and 1.00% or less. In this way. In this way, high-strength cold-rolled steel sheet 4 is manufactured.
  • the high-strength cold-rolled steel sheet 1 is heated at an annealing temperature of 750° C. or higher and 950° C. or lower, and then the high-strength cold-rolled steel sheet is subjected to a hot-dip metal plating treatment to obtain a plated steel sheet, and then the plated steel sheet is Cooling is performed at a cooling stop temperature of 150°C or less.
  • a cold-rolled steel sheet is immersed in a hot-dip galvanizing bath at a temperature of 440° C. or higher and 500° C. or lower.
  • a hot-dip galvanizing bath having a composition in which the amount of Al is 0.10% by mass or more and 0.23% by mass or less, and the balance is Zn and unavoidable impurities.
  • the amount of plating deposited is preferably 20 to 80 g/m 2 per side (both sides plated). Note that the amount of plating deposited can be adjusted by performing gas wiping or the like after the hot-dip galvanizing process. After the cooling, it may be rolled at an elongation rate of 0.05% or more and 1.00% or less. In this way, a high-strength hot-dip galvanized steel sheet is manufactured.
  • zinc plating it can also be applied to zinc-based alloy plating, zinc-Al alloy plating, Al plating, etc.
  • the plated steel sheet is subjected to an alloying process.
  • alloying treatment is preferably carried out in a temperature range of 460° C. or higher and 600° C. or lower. In this way, a high strength alloyed galvanized steel sheet is produced.
  • electroplating is performed on the surface to produce a high-strength plated steel sheet.
  • electroplating can also be applied to zinc-based alloy plating, zinc-Al alloy plating, Al plating, etc.
  • Manufacturing conditions other than those mentioned above are not particularly limited and may be according to conventional methods.
  • the method for measuring the average prior austenite grain size is as follows. A sample was cut out from the width center position of the slab after cooling, so that the slab thickness cross section parallel to the slab width direction served as the observation surface. Next, the observation surface was mirror polished using diamond paste, then finished polished using colloidal silica, and further polished using 3vol. % nital to reveal the structure on the observation surface. Using an optical microscope, 5 fields of view are observed at 10x magnification at a position 10 mm below the surface layer of the slab to obtain a tissue image. The prior austenite grain size was determined for five fields of view by cutting the obtained structure image in accordance with JIS G 0551:2020, and the values were averaged to determine the average prior austenite grain size.
  • ferrite has a larger grain size than other structures (pearlite, bainitic ferrite, tempered martensite, hardened martensite, retained austenite), has a smooth surface, and has a dark contrast, so the magnification is 50x. can be easily distinguished.
  • the method for measuring mechanical properties is as follows.
  • the tensile test was conducted in accordance with JIS Z 2241:2011 using a JIS No. 5 test piece taken so that the length of the tensile test piece was perpendicular to the rolling direction of the steel plate (direction C). (Tensile strength) was measured.
  • a case where the TS is 590 MPa or more is defined as high strength and passed.
  • Table 1 shows the composition of the steel slabs used in the test.
  • the steel slabs were cooled under the cooling conditions including reheating shown in Tables 2-1 and 2-2.
  • t1 is the residence time (s) at 1200°C or more and 1450°C or less at the center of the slab width and 10 mm below the surface layer
  • v1 is the residence time at the center of the slab width of 700°C or more.
  • v2 is the average cooling rate (°C/hr) at 850°C or lower
  • v3 is the average cooling rate (°C/hr) at 400°C or higher and lower than 550°C. hr
  • v4 is the average cooling rate (°C/hr) to a cooling stop temperature of 250°C or more and less than 400°C
  • Tf is the cooling stop temperature (°C)
  • Th is the reheating temperature (°C).
  • v5 is the average cooling rate (°C/hr) at 200°C or higher and lower than the reheating temperature.
  • d ( ⁇ ) is the average prior austenite grain size (mm)
  • BF + TM is the total area ratio (%) of bainitic ferrite and tempered martensite
  • R ⁇ is the area ratio (%) of retained austenite
  • F is the area ratio (%) of ferrite
  • P+FM is the total area ratio (%) of pearlite and hardened martensite.
  • Tables 3-1 and 3-2 list the compositions of the steel slabs used in the test.
  • the steel slabs were cooled under the cooling conditions shown in Tables 4-1 and 4-2, in which the temperature decreased uniformly.
  • t1 is the residence time (s) at 1200°C or higher and 1450°C or lower at the center of the slab width and 10 mm below the surface layer
  • v1 is the residence time at the center of the slab width of 700°C or higher.
  • v2 is the average cooling rate (°C/hr) at temperatures above 550°C and below 700°C
  • v3 is the average cooling rate (°C/hr) at temperatures above 400°C and below 550°C. hr)
  • v6 is the average cooling rate (°C/hr) at 200°C or higher and lower than 400°C.
  • the "Cracks" column the presence or absence of cracks during cooling of the slab was recorded.
  • d ( ⁇ ) is the average prior austenite grain size (mm)
  • BF + TM is the total area ratio (%) of bainitic ferrite and tempered martensite
  • R ⁇ is the area ratio (%) of retained austenite
  • F is the area ratio (%) of ferrite
  • P+FM is the total area ratio (%) of pearlite and hardened martensite.
  • THs is the slab heating temperature (°C)
  • THf is the finish rolling temperature of hot rolling (°C)
  • THr is the coiling temperature of the hot rolled steel strip (°C).
  • CR is the rolling ratio (%) of cold rolling, and represents the percentage of the plate thickness after rolling with respect to the plate thickness before rolling.
  • TA is the annealing temperature (°C) of the cold rolled steel plate
  • TW is the water quenching start temperature (°C)
  • TAf is the cooling stop temperature after annealing (°C)
  • TAh is the subsequent reheating temperature (°C). °C).
  • CR cold-rolled steel sheet
  • GI hot-dip galvanized steel sheet
  • GA is alloyed hot-dip galvanized steel sheet
  • EG is electrogalvanized steel sheet
  • Al is hot-dip aluminized steel sheet
  • HR is a hot rolled steel plate.
  • the method for cooling slabs of the present invention By using the method for cooling slabs of the present invention, even high-alloy slabs with low toughness do not suffer from slab cracking after casting, and the yield during manufacturing can be greatly improved.
  • the high-strength steel plate slab of the present invention it is possible to obtain high-strength hot-rolled steel plates, high-strength cold-rolled steel plates, and high-strength plated steel plates that have no surface defects even if they are made of a high alloy, and these steel plates When applied to automobile suspension parts, structural parts, and frame parts, it is industrially useful because the weight of the car can be reduced while ensuring the reliability of the car.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are a slab for a high-strength steel sheet and a cooling method thereof, wherein slab cracking is prevented during slab cooling. Also provided are methods for producing a high-strength hot-rolled steel sheet, a high-strength cold-rolled steel sheet, and a high-strength plated steel sheet by using said slab. The slab for a high-strength steel sheet is a slab continuously cast, and is characterized in that the average prior austenite grain size at a 10 mm depth from the surface layer of the slab is 2.0 mm or less, and the slab has a microstructure in which the total area ratio of bainitic ferrite and tempered martensite is 50-97%, the area ratio of retained austenite is 3-30%, the area ratio of ferrite is 20% or less, and the total area ratio of pearlite and quenched martensite is 20% or less.

Description

高強度鋼板用スラブおよびその冷却方法、高強度熱延鋼板の製造方法、高強度冷延鋼板の製造方法、ならびに高強度めっき鋼板の製造方法Slabs for high-strength steel plates and their cooling methods, methods for producing high-strength hot-rolled steel plates, methods for producing high-strength cold-rolled steel plates, and methods for producing high-strength plated steel plates.
 本発明は、冷却時の割れを防止した高強度鋼板用スラブおよびその冷却方法に関する。加えて、その高強度鋼板用スラブから高強度熱延鋼板を製造し、その高強度熱延鋼板から高強度冷延鋼板を製造し、および、その高強度冷延鋼板から高強度めっき鋼板を製造する方法に関する。 The present invention relates to a high-strength steel plate slab that prevents cracking during cooling, and a method for cooling the same. In addition, high-strength hot-rolled steel sheets are manufactured from the high-strength steel plate slabs, high-strength cold-rolled steel sheets are manufactured from the high-strength hot-rolled steel sheets, and high-strength plated steel sheets are manufactured from the high-strength cold-rolled steel sheets. Regarding how to.
 近年、自動車の分野では、車体のさらなる薄肉化と衝突安全性の確保の両立のため、高強度鋼のさらなる高強度化、そのための高合金化が進行している。高合金化によりスラブの靭性を大きく低下させている。 In recent years, in the field of automobiles, in order to achieve both further thinning of car bodies and ensuring collision safety, progress has been made in increasing the strength of high-strength steels and using higher alloys for this purpose. High alloying greatly reduces the toughness of the slab.
 高合金化による靭性の低下に伴い、スラブ冷却時の割れ、いわゆる、置き割れが頻発するようになってきた。置き割れが生じると、スラブ搬送時にスラブが破断し、熱間圧延に供することができなくなるおそれがある。また、スラブが破断しなくとも、熱間圧延中にき裂が開口して、熱間圧延鋼板が破断するおそれがある。あるいは、き裂が小さいものについては、熱間圧延後や冷間圧延後、焼鈍後あるいはめっき後の鋼板にヘゲ疵やスリバー疵などの表面欠陥となって表れる。通常、スラブ表面のき裂はグラインダーで除去している。ところが、高合金化によってスラブの靭性が低下し、グラインダーの応力によりき裂が進展してしまい、完全に除去することができないことがある。一方で、き裂が小さいものについては、見逃されて、熱間圧延後、冷間圧延後、焼鈍後あるいはめっき後の鋼板に表面欠陥として現れる場合がある。これらのことから、スラブの置き割れは抑制する必要がある。 With the decrease in toughness due to high alloying, cracking during cooling of the slab, so-called cracking, has become more frequent. When cracks occur, there is a risk that the slab will break during slab transportation, making it impossible to use it for hot rolling. Further, even if the slab does not break, cracks may open during hot rolling and the hot rolled steel plate may break. Alternatively, if the cracks are small, they appear as surface defects such as sludge marks and sliver marks on the steel plate after hot rolling, cold rolling, annealing, or plating. Usually, cracks on the slab surface are removed using a grinder. However, the toughness of the slab decreases due to high alloying, and cracks may propagate due to the stress of the grinder, making it impossible to completely remove them. On the other hand, small cracks may be overlooked and appear as surface defects on the steel sheet after hot rolling, cold rolling, annealing, or plating. For these reasons, it is necessary to suppress cracking of slabs.
 この点について、たとえば、特許文献1や2に記載されているような、スラブの割れに対する対策が検討されている。特許文献1には、オーステナイトからフェライトに変態する温度域である700~500℃を徐冷することで、ベイナイト/マルテンサイト変態を抑制し、その変態膨張によって生じる応力を低減させる方法が開示されている。特許文献2には、鋳造後すぐに徐冷を開始し、700℃以上の温度で10時間以上、700~500℃までの温度をさらに徐冷することで温度差や変態時の応力を低減する方法が開示されている。 Regarding this point, countermeasures against slab cracking are being considered, for example, as described in Patent Documents 1 and 2. Patent Document 1 discloses a method of suppressing bainite/martensite transformation and reducing stress caused by the transformation expansion by slowly cooling the material to 700 to 500°C, which is the temperature range at which austenite transforms to ferrite. There is. Patent Document 2 discloses that slow cooling is started immediately after casting, and further slow cooling is carried out at a temperature of 700 to 500 °C for 10 hours or more at a temperature of 700 °C or higher to reduce temperature differences and stress during transformation. A method is disclosed.
特開2020-139209号公報Japanese Patent Application Publication No. 2020-139209 特開2019-167560号公報Japanese Patent Application Publication No. 2019-167560
 しかしながら、従来技術では、以下のような課題があった。
 より高合金のスラブでは靭性が低く、特許文献1や2の技術では、完全にはスラブの置き割れを抑制できない問題があった。
However, the conventional technology has the following problems.
Slabs made of higher alloys have low toughness, and the techniques disclosed in Patent Documents 1 and 2 have a problem in that they cannot completely suppress cracking in slabs.
 本発明は、上記の事情を鑑みてなされたものであって、靭性の低い高合金スラブであっても、当該スラブの冷却中のスラブ割れを発生させない高強度鋼板用スラブおよびその冷却方法を提供することである。また、当該スラブを用いた高強度熱延鋼板、高強度冷延鋼板および高強度めっき鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and provides a high-strength steel plate slab and a cooling method thereof that do not cause slab cracking during cooling of the slab, even in the case of a high-alloy slab with low toughness. It is to be. Another object of the present invention is to provide a method for producing high-strength hot-rolled steel sheets, high-strength cold-rolled steel sheets, and high-strength plated steel sheets using the slabs.
 発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。スラブ割れの破壊形態を解析し、その破面には、旧オーステナイト粒界に沿った粒界破面および旧オーステナイト粒界を横切る粒内破面(へき開破面)のうち、少なくとも1種の破面が存在していることを見出した。さらに検討を重ね、以下を知見した。
(1)スラブの表層から10mm位置の平均旧オーステナイト粒径を2.0mm以下とすることで、旧オーステナイト粒界に沿った粒界破壊を抑制することができる。
(2)スラブの表層から10mm位置のミクロ組織を、ベイニティックフェライトおよび/または焼戻しマルテンサイトが面積率の合計で50%以上97%以下とし、残留オーステナイトが面積率で3%以上30%以下とし、フェライトが面積率で20%以下とし、パーライト、焼入れマルテンサイトが面積率の合計で20%以下とすることで旧オーステナイト粒内を横切る粒内破壊を抑制することができる。
(3)スラブ割れを抑制することで、熱間圧延後、冷間圧延後、焼鈍後あるいはめっき後の鋼板の表面欠陥を抑制することができる。
The inventors have made extensive studies to achieve the above object. The fracture morphology of slab cracking was analyzed, and the fracture surface included at least one type of fracture among intergranular fracture surfaces along prior austenite grain boundaries and intragranular fracture surfaces (cleavage fracture surfaces) across prior austenite grain boundaries. I discovered that there is a surface. After further investigation, we discovered the following.
(1) By setting the average prior austenite grain size at a position 10 mm from the surface layer of the slab to 2.0 mm or less, grain boundary fracture along prior austenite grain boundaries can be suppressed.
(2) The microstructure at a position 10 mm from the surface layer of the slab has a total area ratio of bainitic ferrite and/or tempered martensite of 50% to 97%, and retained austenite of 3% to 30% in area ratio. By setting the area ratio of ferrite to 20% or less and the total area ratio of pearlite and hardened martensite to 20% or less, it is possible to suppress intragranular fractures that cross within the prior austenite grains.
(3) By suppressing slab cracking, surface defects of the steel plate after hot rolling, cold rolling, annealing, or plating can be suppressed.
 本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
[1]高強度鋼板用に連続鋳造したスラブであって、スラブ表層から10mm位置における、平均旧オーステナイト粒径が2.0mm以下であり、かつ、ミクロ組織は、ベイニティックフェライトおよび焼戻しマルテンサイトが面積率の合計で50%以上97%以下であり、残留オーステナイトが面積率で3%以上30%以下であり、フェライトが面積率で20%以下であり、パーライトおよび焼入れマルテンサイトが面積率の合計で20%以下であることを特徴とする高強度鋼板用スラブ。
[2]前記高強度鋼板用スラブは、質量%で、C:0.10%以上0.50%以下、Si:0.10%以上2.50%以下、Mn:1.00%以上5.00%以下、P:0.100%以下、S:0.0200%以下、Al:0.005%以上2.500%以下、N:0.0100%以下およびO:0.0100%以下を含有し、さらに、任意選択的に、Ti:0.200%以下、Nb:0.200%以下、V:0.200%以下、Ta:0.10%以下、W:0.10%以下、B:0.0100%以下、Cr:1.00%以下、Mo:1.00%以下、Co:1.00%以下、Ni:1.00%以下、Cu:1.00%以下、Sn:0.200%以下、Sb:0.200%以下、Ca:0.0100%以下、Mg:0.0100%以下、REM:0.0100%以下、Zr:0.100%以下、Te:0.100%以下、Hf:0.10%以下およびBi:0.200%以下のうちから選ばれる少なくとも1種の元素を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする前記1に記載の高強度鋼板用スラブ。
[3]前記高強度鋼板用スラブは、質量%で、C:0.10%以上0.50%以下、Si:0.70%以上2.50%以下、Mn:1.00%以上5.00%以下、P:0.100%以下、S:0.0200%以下、Al:0.005%以上2.500%以下、N:0.0100%以下およびO:0.0100%以下を含有し、さらに、任意選択的に、Ti:0.200%以下、Nb:0.200%以下、V:0.200%以下、Ta:0.10%以下、W:0.10%以下、B:0.0100%以下、Cr:1.00%以下、Mo:1.00%以下、Co:1.00%以下、Ni:1.00%以下、Cu:1.00%以下、Sn:0.200%以下、Sb:0.200%以下、Ca:0.0100%以下、Mg:0.0100%以下、REM:0.0100%以下、Zr:0.100%以下、Te:0.100%以下、Hf:0.10%以下およびBi:0.200%以下のうちから選ばれる少なくとも1種の元素を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、前記1に記載の高強度鋼板用スラブ。
[4]前記2に記載の成分組成の前記高強度鋼板用スラブを、スラブ幅中央かつ表層下10mm位置における1200℃以上1450℃以下での滞留時間が130s以下となるように冷却をし、その後、スラブ幅中央の表面温度が700℃以上850℃以下における平均冷却速度が25℃/hr以上となるように冷却し、次いで550℃以上700℃未満における平均冷却速度が20℃/hr以上となるように冷却し、次いで400℃以上550℃未満における平均冷却速度が15℃/hr以上となるように冷却し、次いで250℃以上400℃未満の冷却停止温度まで平均冷却速度が10℃/hr以上となるように冷却し、次いで前記冷却停止温度超え450℃以下の再加熱温度になるように加熱し、その後200℃以上前記再加熱温度以下における平均冷却速度が30℃/hr以下となるように冷却することを特徴とする高強度鋼板用スラブの冷却方法。
[5]前記3に記載の成分組成の前記高強度鋼板用スラブを、スラブ幅中央かつ表層下10mm位置における1200℃以上1450℃以下での滞留時間が130s以下となるように冷却をし、その後、スラブ幅中央の表面温度が700℃以上850℃以下における平均冷却速度が25℃/hr以上となるように冷却し、次いで550℃以上700℃未満における平均冷却速度が20℃/hr以上となるように冷却し、次いで400℃以上550℃未満における平均冷却速度が10℃/hr以上となるように冷却し、次いで200℃以上400℃未満における平均冷却速度が30℃/hr以下となるように冷却することを特徴とする高強度鋼板用スラブの冷却方法。
[6]前記1から3のいずれか1に記載の高強度鋼板用スラブを、スラブ加熱温度が1000℃以上1300℃以下の範囲となるように加熱し、粗圧延後に仕上げ圧延終了温度が750℃以上1000℃以下となるように仕上げ圧延を行い、巻取り温度が室温以上750℃以下となるように巻取りを行うことを特徴とする高強度熱延鋼板の製造方法。
[7]前記6に記載の製造方法で製造された高強度熱延鋼板を酸洗後に、圧下率が30%以上80%以下となるように冷間圧延を行い、さらに、任意選択的に、a)前記冷間圧延により得られた高強度冷延鋼板を、焼鈍温度が750℃以上950℃以下となるように加熱し、300℃以上600℃以下の冷却停止温度まで冷却し、次いで100℃以下まで冷却する処理、b)前記冷間圧延により得られた高強度冷延鋼板を、焼鈍温度が750℃以上950℃以下となるように加熱し、130℃以上400℃以下の冷却停止温度まで冷却し、次いで200℃以上450℃以下に再加熱し、その後100℃以下まで冷却する処理、および、c)前記冷間圧延により得られた高強度冷延鋼板を、焼鈍温度が750℃以上950℃以下となるように加熱し、500℃以上で水焼入れを開始し、100℃以下まで水冷後、100℃以上300℃以下で再加熱する処理から選ばれた1つの処理を行うことを特徴とする高強度冷延鋼板の製造方法。
[8]前記7に記載の冷間圧延により得られた高強度冷延鋼板を、焼鈍温度が750℃以上950℃以下となるように加熱し、ついで、前記高強度冷延鋼板に、溶融金属めっき処理を施してめっき鋼板とし、ついで、前記めっき鋼板を、冷却停止温度150℃以下の条件で冷却し、任意選択的に、前記溶融金属めっき処理を、亜鉛めっき、亜鉛系合金めっき、亜鉛-Al合金めっき、および、Alめっきから選ばれる1種とすることを特徴とする高強度めっき鋼板の製造方法。
[9]前記溶融金属めっき処理を施しためっき鋼板に合金化処理を施すことを特徴とする8に記載の高強度めっき鋼板の製造方法。
[10]前記7に記載の製造方法で製造された高強度冷延鋼板を用い、表面に電気めっき処理を施し、任意選択的に、前記電気めっき処理を、亜鉛めっき、亜鉛系合金めっき、亜鉛-Al合金めっき、および、Alめっきから選ばれる1種とすることを特徴とする高強度めっき鋼板の製造方法。
The present invention was completed based on the above findings and further studies.
That is, the gist of the present invention is as follows.
[1] A continuously cast slab for high-strength steel plate, in which the average prior austenite grain size at a position 10 mm from the slab surface is 2.0 mm or less, and the microstructure is composed of bainitic ferrite and tempered martensite. is 50% or more and 97% or less in total area ratio, retained austenite is 3% or more and 30% or less in area ratio, ferrite is 20% or less in area ratio, and pearlite and hardened martensite are in the area ratio A slab for high-strength steel plate characterized by a total strength of 20% or less.
[2] The high-strength steel plate slab contains, in mass %, C: 0.10% or more and 0.50% or less, Si: 0.10% or more and 2.50% or less, and Mn: 1.00% or more.5. Contains 0.00% or less, P: 0.100% or less, S: 0.0200% or less, Al: 0.005% or more and 2.500% or less, N: 0.0100% or less, and O: 0.0100% or less. Optionally, Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, Ta: 0.10% or less, W: 0.10% or less, B : 0.0100% or less, Cr: 1.00% or less, Mo: 1.00% or less, Co: 1.00% or less, Ni: 1.00% or less, Cu: 1.00% or less, Sn: 0 .200% or less, Sb: 0.200% or less, Ca: 0.0100% or less, Mg: 0.0100% or less, REM: 0.0100% or less, Zr: 0.100% or less, Te: 0.100 % or less, Hf: 0.10% or less, and Bi: 0.200% or less, with the remainder consisting of Fe and inevitable impurities. The high-strength steel plate slab according to 1 above.
[3] The high-strength steel plate slab contains, in mass %, C: 0.10% or more and 0.50% or less, Si: 0.70% or more and 2.50% or less, and Mn: 1.00% or more. Contains 0.00% or less, P: 0.100% or less, S: 0.0200% or less, Al: 0.005% or more and 2.500% or less, N: 0.0100% or less, and O: 0.0100% or less. Optionally, Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, Ta: 0.10% or less, W: 0.10% or less, B : 0.0100% or less, Cr: 1.00% or less, Mo: 1.00% or less, Co: 1.00% or less, Ni: 1.00% or less, Cu: 1.00% or less, Sn: 0 .200% or less, Sb: 0.200% or less, Ca: 0.0100% or less, Mg: 0.0100% or less, REM: 0.0100% or less, Zr: 0.100% or less, Te: 0.100 % or less, Hf: 0.10% or less, and Bi: 0.200% or less, and has a component composition of which the remainder is Fe and inevitable impurities. Slabs for high-strength steel plates.
[4] Cool the high-strength steel plate slab having the composition described in 2 above so that the residence time at 1200 ° C. or more and 1450 ° C. or less at the center of the slab width and 10 mm below the surface layer is 130 s or less, and then , the average cooling rate is 25°C/hr or more when the surface temperature at the center of the slab width is 700°C or more and 850°C or less, and then the average cooling rate is 20°C/hr or more when the surface temperature is 550°C or more and less than 700°C. Then, the average cooling rate is 15°C/hr or more at a temperature of 400°C or more and less than 550°C, and then the average cooling rate is 10°C/hr or more until the cooling stop temperature is 250°C or more and less than 400°C. Then, it is heated to a reheating temperature exceeding the cooling stop temperature and 450°C or less, and then heated so that the average cooling rate at 200°C or more and below the reheating temperature is 30°C/hr or less. A method for cooling a slab for high-strength steel plate, which is characterized by cooling.
[5] The high-strength steel plate slab having the composition described in 3 above is cooled so that the residence time at 1200 ° C. or more and 1450 ° C. or less at the center of the slab width and 10 mm below the surface layer is 130 s or less, and then , the average cooling rate is 25°C/hr or more when the surface temperature at the center of the slab width is 700°C or more and 850°C or less, and then the average cooling rate is 20°C/hr or more when the surface temperature is 550°C or more and less than 700°C. Cooled so that the average cooling rate at 400°C or higher and lower than 550°C is 10°C/hr or higher, and then cooled so that the average cooling rate at 200°C or higher and lower than 400°C is 30°C/hr or lower. A method for cooling a slab for high-strength steel plate, which is characterized by cooling.
[6] The high-strength steel plate slab according to any one of 1 to 3 above is heated so that the slab heating temperature is in the range of 1000°C or more and 1300°C or less, and after rough rolling, the finishing rolling temperature is 750°C. A method for producing a high-strength hot-rolled steel sheet, characterized in that finish rolling is carried out so that the temperature is above 1000°C and winding is carried out so that the coiling temperature is above room temperature and below 750°C.
[7] After pickling the high-strength hot rolled steel sheet manufactured by the manufacturing method described in 6 above, cold rolling is performed so that the rolling reduction is 30% or more and 80% or less, and optionally, a) The high-strength cold-rolled steel sheet obtained by the cold rolling is heated to an annealing temperature of 750°C or higher and 950°C or lower, cooled to a cooling stop temperature of 300°C or higher and 600°C or lower, and then heated to 100°C. b) heating the high-strength cold-rolled steel sheet obtained by the cold rolling to an annealing temperature of 750°C or more and 950°C or less until a cooling stop temperature of 130°C or more and 400°C or less; cooling, then reheating to 200°C or higher and 450°C or lower, and then cooling to 100°C or lower; and c) the high-strength cold rolled steel sheet obtained by the cold rolling is annealed at an annealing temperature of 750°C or higher and 950°C or lower. ℃ or less, water quenching is started at 500℃ or higher, water cooling to 100℃ or lower, and then one treatment selected from the following is performed: reheating at 100℃ or higher and 300℃ or lower. A method for manufacturing high-strength cold-rolled steel sheets.
[8] The high-strength cold-rolled steel sheet obtained by the cold rolling described in 7 above is heated so that the annealing temperature is 750°C or more and 950°C or less, and then molten metal is added to the high-strength cold-rolled steel sheet. The plated steel sheet is subjected to a plating treatment, and then the plated steel sheet is cooled at a cooling stop temperature of 150° C. or lower, and optionally, the hot-dip metal plating treatment is applied to zinc plating, zinc-based alloy plating, or zinc-based plating. A method for producing a high-strength plated steel sheet, characterized by plating with one type selected from Al alloy plating and Al plating.
[9] The method for producing a high-strength plated steel sheet according to item 8, characterized in that the plated steel sheet that has been subjected to the hot-dip metal plating treatment is subjected to an alloying treatment.
[10] Using the high-strength cold-rolled steel sheet manufactured by the manufacturing method described in 7 above, the surface is subjected to electroplating treatment, and optionally, the electroplating treatment is applied to zinc plating, zinc-based alloy plating, or zinc plating. - A method for producing a high-strength plated steel sheet, characterized in that it is coated with one type selected from Al alloy plating and Al plating.
 本発明によれば、高合金である高強度鋼板用成分系であっても、冷却過程で割れが発生しないスラブを提供することができる。また、当該スラブを用いた表面欠陥の少ない、高強度熱延鋼板、高強度冷延鋼板および高強度めっき鋼板の製造方法を提供することができる。 According to the present invention, it is possible to provide a slab that does not crack during the cooling process even if it is made of a high-alloy component system for high-strength steel sheets. Furthermore, it is possible to provide a method for producing a high-strength hot-rolled steel sheet, a high-strength cold-rolled steel sheet, and a high-strength plated steel sheet with few surface defects using the slab.
 以下、本発明の実施の形態について具体的に説明する。また、以下の実施形態は、本発明の技術的思想を具体化するための鋼組織や方法を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be specifically described. Further, the following embodiments are intended to illustrate the steel structure and method for embodying the technical idea of the present invention, and the configuration is not limited to the following. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.
 まず、スラブのミクロ組織の適性範囲および限定理由について説明する。なお、以下の説明において、ミクロ組織の構成率を示す「%」は、特に明記しない限り「面積%」を意味する。 First, the appropriate range of the slab microstructure and the reason for its limitation will be explained. In the following description, "%" indicating the composition ratio of the microstructure means "area %" unless otherwise specified.
[平均旧オーステナイト粒径:2.0mm以下]
 平均旧オーステナイト粒径は破壊の単位を決める因子であり、大きいほどスラブの靭性は低下し、粒界破面を呈するスラブ割れが生じる。このスラブ割れを抑制するためには、スラブ表層から10mm位置の平均旧オーステナイト粒径を2.0mm以下とする必要がある。好ましくは1.8mm以下とし、より好ましくは1.5mm以下とする。なお、平均旧オーステナイト粒径は、後述する実施例に記載の方法で測定することができる。
[Average prior austenite grain size: 2.0 mm or less]
The average prior austenite grain size is a factor that determines the unit of fracture; the larger it is, the lower the toughness of the slab is, and slab cracks exhibiting intergranular fracture surfaces occur. In order to suppress this slab cracking, the average prior austenite grain size at a position 10 mm from the surface layer of the slab needs to be 2.0 mm or less. Preferably it is 1.8 mm or less, more preferably 1.5 mm or less. Incidentally, the average prior austenite grain size can be measured by the method described in Examples described later.
[ベイニティックフェライトおよび焼戻しマルテンサイトの面積率の合計:50%以上97%以下]
 本実施形態において重要な構成要件である、ベイニティックフェライトと焼戻しマルテンサイトは、パーライトや焼入れマルテンサイトと比較して靭性が高く、鋼の靭性を高くすることができ、スラブ割れを抑制することができる。この効果を得るためには、スラブ表層から10mm位置のベイニティックフェライトおよび焼戻しマルテンサイトの面積率の合計を50%以上とする必要がある。好ましくは60%以上とし、より好ましくは70%以上とし、さらに好ましくは80%以上とする。97%を超えると、残留オーステナイトによる靭性の向上効果が得られないおそれがあり、97%以下とする。なお、ベイニティックフェライトおよび焼戻しマルテンサイトの面積率は、後述する実施例に記載の方法で測定することができる。
[Total area ratio of bainitic ferrite and tempered martensite: 50% or more and 97% or less]
Bainitic ferrite and tempered martensite, which are important constituent elements in this embodiment, have higher toughness than pearlite and hardened martensite, can increase the toughness of steel, and suppress slab cracking. I can do it. In order to obtain this effect, the total area ratio of bainitic ferrite and tempered martensite at a position 10 mm from the slab surface layer needs to be 50% or more. Preferably it is 60% or more, more preferably 70% or more, and still more preferably 80% or more. If it exceeds 97%, there is a risk that the effect of improving toughness due to retained austenite cannot be obtained, so it is set to 97% or less. Incidentally, the area ratio of bainitic ferrite and tempered martensite can be measured by the method described in Examples described below.
[残留オーステナイトの面積率:3%以上30%以下]
 本実施形態において、極めて重要な構成要件である、残留オーステナイトは、結晶構造が面心立方格子(FCC)であり、へき開面が存在しないため、鋼の靭性を飛躍的に向上させることができる。また、残留オーステナイトは高い応力を受けるとマルテンサイト変態を生じる。スラブ割れによるき裂が生じても、き裂先端の応力集中部にマルテンサイトが生成することにより、応力集中が緩和され、き裂の進展を止めることができる。そのため、熱間圧延後、冷間圧延後、焼鈍後あるいはめっき後の鋼板の表面欠陥を抑制することができる。上記の効果を得るためにはスラブ表層から10mm位置の残留オーステナイトの面積率を3%以上とする必要がある。好ましくは5%以上とし、より好ましくは7%以上とする。残留オーステナイトが30%を超えると、不安定な残留オーステナイトが増加し、小さい応力でマルテンサイト変態を生じて、靭性を低下させるおそれがあるため、30%以下とする。好ましくは25%以下とし、より好ましくは20%以下とする。なお、残留オーステナイトの面積率は、後述する実施例に記載の方法で測定することができる。
[Area ratio of retained austenite: 3% or more and 30% or less]
In this embodiment, retained austenite, which is an extremely important constituent element, has a face-centered cubic lattice (FCC) crystal structure and no cleavage planes, so it can dramatically improve the toughness of the steel. In addition, retained austenite undergoes martensitic transformation when subjected to high stress. Even if a crack occurs due to slab cracking, martensite is generated at the stress concentration area at the tip of the crack, which alleviates the stress concentration and stops the crack from propagating. Therefore, surface defects of the steel sheet after hot rolling, cold rolling, annealing, or plating can be suppressed. In order to obtain the above effect, the area ratio of retained austenite at a position 10 mm from the slab surface layer needs to be 3% or more. Preferably it is 5% or more, more preferably 7% or more. If the retained austenite exceeds 30%, the unstable retained austenite increases, causing martensitic transformation under small stress, which may reduce toughness, so it is set to 30% or less. Preferably it is 25% or less, more preferably 20% or less. In addition, the area ratio of retained austenite can be measured by the method described in Examples described later.
[フェライトの面積率:20%以下]
 フェライトは、ベイニティックフェライトや焼戻しマルテンサイト、焼入れマルテンサイト、残留オーステナイト、パーライトと比較して粒径が大きく、また、強度が低い。そのため、応力がかかった場合、フェライトに応力集中が生じて、フェライトを起点とした割れが生じることがある。上記のような割れを抑制するためにはスラブ表層から10mm位置のフェライトの面積率を20%以下とする必要がある。好ましくは15%以下とし、より好ましくは10%以下とし、さらに好ましくは0%とする。なお、フェライトの面積率は、後述する実施例に記載の方法で測定することができる。
[Ferrite area ratio: 20% or less]
Ferrite has a larger grain size and lower strength than bainitic ferrite, tempered martensite, hardened martensite, retained austenite, and pearlite. Therefore, when stress is applied, stress concentration occurs in the ferrite, and cracks may occur starting from the ferrite. In order to suppress the above cracks, the area ratio of ferrite at a position 10 mm from the surface layer of the slab needs to be 20% or less. Preferably it is 15% or less, more preferably 10% or less, and still more preferably 0%. Note that the area ratio of ferrite can be measured by the method described in Examples described later.
[パーライトおよび焼入れマルテンサイトの面積率の合計:20%以下]
 パーライトと焼入れマルテンサイトは、残留オーステナイトやベイニティックフェライト、焼戻しマルテンサイトと比較して靭性が劣位であり、多量に存在するとこれらの組織を起点に割れが生じることがある。上記のような割れを抑制するためにはスラブ表層から10mm位置のパーライトおよび焼入れマルテンサイトの面積率の合計を20%以下とする必要がある。好ましくは15%以下とし、より好ましくは10%以下とし、さらに好ましくは0%とする。なお、パーライトと焼入れマルテンサイトの面積率は、後述する実施例に記載の方法で測定することができる。
[Total area ratio of pearlite and hardened martensite: 20% or less]
Pearlite and hardened martensite have inferior toughness compared to retained austenite, bainitic ferrite, and tempered martensite, and when present in large amounts, cracks may occur starting from these structures. In order to suppress the above cracks, the total area ratio of pearlite and hardened martensite at a position 10 mm from the slab surface layer must be 20% or less. Preferably it is 15% or less, more preferably 10% or less, and even more preferably 0%. Incidentally, the area ratio of pearlite and hardened martensite can be measured by the method described in Examples described later.
 次に、成分組成の適正範囲およびその限定理由について説明する。なお、以下の説明において、鋼の成分元素の含有量を表す「%」は、特に明記しない限り「質量%」を意味する。 Next, the appropriate range of component composition and the reason for its limitation will be explained. In the following description, "%" representing the content of component elements of steel means "mass %" unless otherwise specified.
[C:0.10%以上0.50%以下]
 Cは、スラブの残留オーステナイト分率に影響し、鋼板の強度を高める重要な元素である。Cの含有量が0.10%未満では、スラブに十分な残留オーステナイトを確保できないおそれがある。あるいは、鋼板に必要な引張強度(TS)を実現することが困難になるおそれがある。一方、Cの含有量が0.50%を超えると、スラブの焼入れマルテンサイト分率が過剰になるおそれがある。したがって、Cの含有量は、0.10%以上0.50%以下とすることが好ましい。より好ましくは0.12%以上とする。より好ましくは0.45%以下とする。さらに好ましくは0.15%以上とする。さらに好ましくは0.40%以下とする。
[C: 0.10% or more and 0.50% or less]
C is an important element that affects the retained austenite fraction of the slab and increases the strength of the steel sheet. If the C content is less than 0.10%, there is a risk that sufficient retained austenite cannot be ensured in the slab. Alternatively, it may become difficult to achieve the tensile strength (TS) required for the steel plate. On the other hand, if the C content exceeds 0.50%, the quenched martensite fraction of the slab may become excessive. Therefore, the content of C is preferably 0.10% or more and 0.50% or less. More preferably, it is 0.12% or more. More preferably, it is 0.45% or less. More preferably, it is 0.15% or more. More preferably, it is 0.40% or less.
[Si:0.10%以上2.50%以下または0.70%以上2.50%以下]
 Siは、スラブ冷却中の炭化物生成を抑制し、残留オーステナイトの生成を促進することから、残留オーステナイトの分率に影響する元素である。
 後述するスラブの冷却方法が再加熱を伴う場合には、Siの含有量を0.10%以上とすることが好ましい。Siの含有量が0.10%未満では、残留オーステナイトの分率が減少し、スラブ割れが生じるおそれがある。より好ましくは0.15%以上とする。さらに好ましくは0.20%以上とする。
 後述するスラブの冷却方法が再加熱を伴わず、一様に温度降下する場合には、Siの含有量を0.70%以上とすることが好ましい。Siの含有量が0.70%未満では、残留オーステナイトの分率が減少し、スラブ割れが生じるおそれがある。より好ましくは0.90%以上とする。さらに好ましくは1.00%以上とする。
 一方、Siの含有量が2.50%を超えると、熱延鋼板に強固なスケールが発生し、表面欠陥が生じるおそれがある。したがって、Siの含有量は、2.50%以下とすることが好ましい。より好ましくは2.00%以下とする。さらに好ましくは1.80%以下とする。
[Si: 0.10% or more and 2.50% or less or 0.70% or more and 2.50% or less]
Si is an element that affects the fraction of retained austenite because it suppresses the generation of carbides during slab cooling and promotes the generation of retained austenite.
When the slab cooling method described below involves reheating, the Si content is preferably 0.10% or more. If the Si content is less than 0.10%, the fraction of retained austenite decreases and slab cracking may occur. More preferably, it is 0.15% or more. More preferably, it is 0.20% or more.
When the slab cooling method described below uniformly lowers the temperature without reheating, the Si content is preferably 0.70% or more. If the Si content is less than 0.70%, the fraction of retained austenite decreases and slab cracking may occur. More preferably, it is 0.90% or more. More preferably, it is 1.00% or more.
On the other hand, if the Si content exceeds 2.50%, strong scale may occur in the hot-rolled steel sheet, which may cause surface defects. Therefore, the Si content is preferably 2.50% or less. More preferably, it is 2.00% or less. More preferably, it is 1.80% or less.
[Mn:1.00%以上5.00%以下]
 Mnは、残留オーステナイトの分率に影響し、鋼板の強度を高める重要な元素である。Mnの含有量が1.00%未満では、スラブに十分な残留オーステナイトを確保できないおそれがある。あるいは、鋼板に必要な引張強度(TS)を実現することが困難になるおそれがある。一方、Mnの含有量が5.00%を超えると、スラブの焼入れマルテンサイト分率が過剰になるおそれがある。したがって、Mnの含有量は、1.00%以上5.00%以下とすることが好ましい。より好ましくは1.20%以上とする。より好ましくは4.50%以下とする。さらに好ましくは1.40%以上とする。さらに好ましくは4.00%以下とする。
[Mn: 1.00% or more and 5.00% or less]
Mn is an important element that affects the fraction of retained austenite and increases the strength of steel sheets. If the Mn content is less than 1.00%, there is a risk that sufficient retained austenite cannot be ensured in the slab. Alternatively, it may become difficult to achieve the tensile strength (TS) required for the steel plate. On the other hand, if the Mn content exceeds 5.00%, the quenched martensite fraction of the slab may become excessive. Therefore, the Mn content is preferably 1.00% or more and 5.00% or less. More preferably, it is 1.20% or more. More preferably, it is 4.50% or less. More preferably, it is 1.40% or more. More preferably, it is 4.00% or less.
[P:0.100%以下]
 Pは、旧オーステナイト粒界に偏析して粒界を脆化させるため、スラブ割れを生じさせるおそれがある。そのため、Pの含有量は0.100%以下にすることが好ましい。なお、Pの含有量の下限は特に規定しないが、Pは固溶強化元素であり、鋼板の強度を上昇させることができることから、0.001%以上とすることがより好ましい。より好ましくは0.070%以下とする。
[P: 0.100% or less]
P segregates at prior austenite grain boundaries and embrittles the grain boundaries, so there is a risk of slab cracking. Therefore, the content of P is preferably 0.100% or less. Although the lower limit of the P content is not particularly specified, it is more preferably 0.001% or more since P is a solid solution strengthening element and can increase the strength of the steel sheet. More preferably, it is 0.070% or less.
[S:0.0200%以下]
 Sは、硫化物として存在し、スラブ脆化をもたらす元素である。そのため、Sの含有量は0.0200%以下にすることが好ましい。なお、Sの含有量の下限は特に規定しないが、生産技術上の制約から、0.0001%以上とすることがより好ましい。より好ましくは0.0050%以下とする。
[S: 0.0200% or less]
S is an element that exists as a sulfide and causes slab embrittlement. Therefore, the S content is preferably 0.0200% or less. Although the lower limit of the S content is not particularly defined, it is more preferably 0.0001% or more due to production technology constraints. More preferably, it is 0.0050% or less.
[Al:0.005%以上2.500%以下]
 Alは、スラブ冷却中の炭化物生成を抑制し、残留オーステナイトの生成を促進することから、スラブの残留オーステナイトの分率に影響する元素である。また、脱酸のため0.005%以上添加することが好ましい。一方、Alの含有量が2.500%を超えると、スラブ脆化をもたらすおそれがある。したがって、Alの含有量は0.005%以上2.500%以下とすることが好ましい。より好ましくは0.010%以上とする。より好ましくは1.000%以下とする。さらに好ましくは0.100%以下とする。
[Al: 0.005% or more and 2.500% or less]
Al is an element that affects the fraction of retained austenite in the slab because it suppresses the generation of carbides during cooling of the slab and promotes the generation of retained austenite. Further, it is preferable to add 0.005% or more for deoxidation. On the other hand, if the Al content exceeds 2.500%, there is a risk of slab embrittlement. Therefore, the Al content is preferably 0.005% or more and 2.500% or less. More preferably, it is 0.010% or more. More preferably, it is 1.000% or less. More preferably, it is 0.100% or less.
[N:0.0100%以下]
 Nは、窒化物として存在し、スラブの脆化をもたらす元素である。そのため、Nの含有量は0.0100%以下にすることが好ましい。なお、Nの含有量の下限は特に規定しないが、生産技術上の制約から、Nの含有量は0.0001%以上とすることがより好ましい。より好ましくは0.0050%以下とする。
[N: 0.0100% or less]
N is an element that exists as a nitride and causes embrittlement of the slab. Therefore, the N content is preferably 0.0100% or less. Note that although the lower limit of the N content is not particularly specified, it is more preferable that the N content is 0.0001% or more due to constraints on production technology. More preferably, it is 0.0050% or less.
[O:0.0100%以下]
 Oは、酸化物として存在し、スラブの脆化をもたらす元素である。そのため、Oの含有量は0.0100%以下にすることが好ましい。なお、Oの含有量の下限は特に規定しないが、生産技術上の制約から、Oの含有量は0.0001%以上とすることがより好ましい。より好ましくは0.0050%以下とする。
[O: 0.0100% or less]
O is an element that exists as an oxide and causes embrittlement of the slab. Therefore, the content of O is preferably 0.0100% or less. Although the lower limit of the O content is not particularly defined, it is more preferable that the O content is 0.0001% or more due to production technology constraints. More preferably, it is 0.0050% or less.
 本発明の一実施形態にかかる高強度鋼板用スラブは、上記の成分を含有し、残部がFeおよび不可避的不純物を含む成分組成を有することが好ましい。また、好適には、本発明の一実施形態に従う高強度鋼板用スラブは、上記の成分を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する。ここで不可避的不純物として、Zn、PbおよびAsが挙げられる。これら不純物の合計で0.100%以下の含有は許容される。 It is preferable that the high-strength steel plate slab according to an embodiment of the present invention has a composition containing the above-mentioned components, with the remainder containing Fe and inevitable impurities. Preferably, the high-strength steel plate slab according to an embodiment of the present invention contains the above-mentioned components, with the remainder consisting of Fe and unavoidable impurities. Here, unavoidable impurities include Zn, Pb, and As. The total content of these impurities is allowed to be 0.100% or less.
 本発明の高強度鋼板は、上記の成分組成に加えて、さらに、質量%で、Ti:0.200%以下、Nb:0.200%以下、V:0.200%以下、Ta:0.10%以下、W:0.10%以下、B:0.0100%以下、Cr:1.00%以下、Mo:1.00%以下、Ni:1.00%以下、Co:1.00%以下、Cu:1.00%以下、Sn:0.200%以下、Sb:0.200%以下、Ca:0.0100%以下、Mg:0.0100%以下、REM:0.0100%以下、Zr:0.100%以下、Te:0.100%以下、Hf:0.10%以下、およびBi:0.200%以下から選ばれる少なくとも1種の元素を、単独で、あるいは組み合わせて含有してもよい。 In addition to the above-mentioned composition, the high-strength steel plate of the present invention further includes, in mass %, Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, Ta: 0. 10% or less, W: 0.10% or less, B: 0.0100% or less, Cr: 1.00% or less, Mo: 1.00% or less, Ni: 1.00% or less, Co: 1.00% Below, Cu: 1.00% or less, Sn: 0.200% or less, Sb: 0.200% or less, Ca: 0.0100% or less, Mg: 0.0100% or less, REM: 0.0100% or less, Contains at least one element selected from Zr: 0.100% or less, Te: 0.100% or less, Hf: 0.10% or less, and Bi: 0.200% or less, singly or in combination. It's okay.
 Ti、NbおよびVは、それぞれ0.200%以下の含有量であれば粗大な析出物や介在物が多量に生成せず、スラブの靭性を低下させない。そのため、Ti、NbおよびVの含有量はそれぞれ0.200%以下にすることが好ましい。なお、Ti、NbおよびVの含有量の下限は特に規定しないが、熱間圧延時あるいは連続焼鈍時に、微細な炭化物、窒化物もしくは炭窒化物を形成することによって、鋼板の強度を上昇させることから、Ti、NbおよびVの含有量はそれぞれ0.001%以上とすることがより好ましい。したがって、Ti、NbおよびVを含有する場合には、その含有量はそれぞれ0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If the content of Ti, Nb, and V is 0.200% or less, large amounts of coarse precipitates and inclusions will not be generated and the toughness of the slab will not be reduced. Therefore, it is preferable that the contents of Ti, Nb, and V are each 0.200% or less. Note that the lower limits of the content of Ti, Nb, and V are not particularly specified, but the strength of the steel sheet can be increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. Therefore, it is more preferable that the contents of Ti, Nb, and V are each 0.001% or more. Therefore, when Ti, Nb, and V are contained, their contents are each 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 TaおよびWは、それぞれ0.10%以下の含有量であれば粗大な析出物や介在物が多量に生成せず、スラブの靭性を低下させない。そのため、TaおよびWの含有量はそれぞれ0.10%以下にすることが好ましい。なお、TaおよびWの含有量の下限は特に規定しないが、熱間圧延時あるいは連続焼鈍時に、微細な炭化物、窒化物もしくは炭窒化物を形成することによって、鋼板の強度を上昇させることから、TaおよびWの含有量はそれぞれ0.01%以上とすることがより好ましい。したがって、TaおよびWを含有する場合には、その含有量はそれぞれ0.10%以下とする。より好ましくは0.01%以上とする。さらに好ましくは0.08%以下とする。 If the content of Ta and W is 0.10% or less, large amounts of coarse precipitates and inclusions will not be generated and the toughness of the slab will not be reduced. Therefore, it is preferable that the contents of Ta and W are each 0.10% or less. Note that there is no particular lower limit to the content of Ta and W, but the strength of the steel sheet is increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. It is more preferable that the contents of Ta and W are each 0.01% or more. Therefore, when Ta and W are contained, their contents are each 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
 Bは、0.0100%以下であればスラブの靭性に影響をしない。そのため、Bの含有量は0.0100%以下にすることが好ましい。なお、Bの含有量の下限は特に規定しないが、熱間圧延や焼鈍中にオーステナイト粒界に偏析し、焼入れ性を向上させる元素であることから、Bの含有量は0.0003%以上とすることがより好ましい。したがって、Bを含有する場合には、その含有量は0.0100%以下とする。より好ましくは0.0003%以上とする。さらに好ましくは0.0080%以下とする。 If B is 0.0100% or less, it does not affect the toughness of the slab. Therefore, the content of B is preferably 0.0100% or less. Note that the lower limit of the B content is not particularly specified, but since it is an element that segregates at austenite grain boundaries during hot rolling and annealing and improves hardenability, the B content should be 0.0003% or more. It is more preferable to do so. Therefore, when B is contained, its content should be 0.0100% or less. More preferably, it is 0.0003% or more. More preferably, it is 0.0080% or less.
 Cr、MoおよびNiは、それぞれ1.00%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Cr、MoおよびNiの含有量はそれぞれ1.00%以下にすることが好ましい。なお、Cr、MoおよびNiの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Cr、MoおよびNiの含有量はそれぞれ0.01%以上とすることがより好ましい。したがって、Cr、MoおよびNiを含有する場合には、その含有量はそれぞれ1.00%以下とする。より好ましくは0.01%以上とする。さらに好ましくは0.80%以下とする。 If each of Cr, Mo, and Ni is 1.00% or less, coarse precipitates and inclusions do not increase and the toughness of the slab does not deteriorate. Therefore, it is preferable that the contents of Cr, Mo, and Ni are each 1.00% or less. Note that the lower limit of the content of Cr, Mo, and Ni is not particularly specified, but since they are elements that improve hardenability, it is more preferable that the content of Cr, Mo, and Ni is each 0.01% or more. . Therefore, when Cr, Mo, and Ni are contained, their contents are each 1.00% or less. More preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
 Coは、1.00%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Coの含有量は1.00%以下にすることが好ましい。なお、Coの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Coの含有量は0.001%以上とすることがより好ましい。したがって、Coを含有する場合には、その含有量は1.00%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.80%以下とする。 If Co is 1.00% or less, coarse precipitates and inclusions do not increase and the toughness of the slab does not deteriorate. Therefore, the Co content is preferably 1.00% or less. Although the lower limit of the Co content is not particularly specified, since it is an element that improves hardenability, the Co content is more preferably 0.001% or more. Therefore, when Co is contained, the content should be 1.00% or less. More preferably, it is 0.001% or more. More preferably, it is 0.80% or less.
 Cuは、1.00%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Cuの含有量は1.00%以下にすることが好ましい。なお、Cuの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Cuの含有量は0.01%以上とすることよりが好ましい。したがって、Cuを含有する場合には、その含有量は1.00%以下とする。より好ましくは、0.01%以上とする。さらに好ましくは0.80%以下とする。 If Cu is 1.00% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the Cu content is preferably 1.00% or less. Although the lower limit of the Cu content is not particularly specified, since it is an element that improves hardenability, the Cu content is preferably 0.01% or more. Therefore, if Cu is contained, the content should be 1.00% or less. More preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
 Snは、0.200%以下であればスラブの靭性に影響をしない。そのため、Snの含有量は0.200%以下にすることが好ましい。なお、Snの含有量の下限は特に規定しないが、Snは焼入れ性を向上させる元素であることから、Snの含有量は0.001%以上とすることがより好ましい。したがって、Snを含有する場合には、その含有量は0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If Sn is 0.200% or less, it does not affect the toughness of the slab. Therefore, the content of Sn is preferably 0.200% or less. Although the lower limit of the Sn content is not particularly defined, since Sn is an element that improves hardenability, the Sn content is more preferably 0.001% or more. Therefore, if Sn is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 Sbは、0.200%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Sbの含有量は0.200%以下にすることが好ましい。なお、Sbの含有量の下限は特に規定しないが、脱炭を抑制し、鋼板の強度調整を可能にする元素であることから、Sbの含有量は0.001%以上とすることがより好ましい。したがって、Sbを含有する場合には、その含有量は0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If Sb is 0.200% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the content of Sb is preferably 0.200% or less. Although the lower limit of the Sb content is not particularly defined, it is more preferable that the Sb content is 0.001% or more, since it is an element that suppresses decarburization and enables the strength adjustment of steel sheets. . Therefore, if Sb is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 Ca、MgおよびREMは、それぞれ0.0100%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Ca、MgおよびREMの含有量は0.0100%以下にすることが好ましい。なお、Ca、MgおよびREMの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、スラブの靭性を向上する元素であることから、Ca、MgおよびREMの含有量はそれぞれ0.0005%以上とすることがより好ましい。したがって、Ca、MgおよびREMを含有する場合には、その含有量はそれぞれ0.0100%以下とする。より好ましくは0.0005%以上とする。さらに好ましくは0.0050%以下とする。 If each of Ca, Mg and REM is 0.0100% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the content of Ca, Mg and REM is preferably 0.0100% or less. Note that the lower limits of the contents of Ca, Mg, and REM are not particularly stipulated, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the toughness of slabs, the contents of Ca, Mg, and REM are More preferably, each content is 0.0005% or more. Therefore, when Ca, Mg and REM are contained, their contents are each 0.0100% or less. More preferably, it is 0.0005% or more. More preferably, it is 0.0050% or less.
 ZrおよびTeは、それぞれ0.100%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、ZrおよびTeの含有量は0.100%以下にすることが好ましい。なお、ZrおよびTeの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、スラブの靭性を向上する元素であることから、ZrおよびTeの含有量はそれぞれ0.001%以上とすることがより好ましい。したがって、ZrおよびTeを含有する場合には、その含有量はそれぞれ0.100%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.080%以下とする。 If Zr and Te are each 0.100% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the contents of Zr and Te are preferably 0.100% or less. Note that the lower limits of the contents of Zr and Te are not particularly specified, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the toughness of the slab, the contents of Zr and Te are each 0.001. % or more is more preferable. Therefore, when Zr and Te are contained, their contents are each 0.100% or less. More preferably, it is 0.001% or more. More preferably, it is 0.080% or less.
 Hfは、0.10%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Hfの含有量は0.10%以下にすることが好ましい。なお、Hfの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、鋼板の極限変形能を向上する元素であることから、Hfの含有量は0.01%以上とすることがより好ましい。したがって、Hfを含有する場合には、その含有量は0.10%以下とする。より好ましくは0.01%以上とする。さらに好ましくは0.08%以下とする。 If Hf is 0.10% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the Hf content is preferably 0.10% or less. Note that there is no particular lower limit to the Hf content, but since it is an element that spheroidizes the shape of nitrides and sulfides and improves the ultimate deformability of steel sheets, the Hf content should be 0.01% or more. It is more preferable to do so. Therefore, if Hf is contained, the content should be 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
 Biは、0.200%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Biの含有量は0.200%以下にすることが好ましい。なお、Biの含有量の下限は特に規定しないが、偏析を軽減する元素であることから、Biの含有量は0.001%以上とすることがより好ましい。したがって、Biを含有する場合には、その含有量は0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If Bi is 0.200% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the Bi content is preferably 0.200% or less. Although the lower limit of the Bi content is not particularly defined, since it is an element that reduces segregation, the Bi content is more preferably 0.001% or more. Therefore, when Bi is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 なお、上記したTi、Nb、V、Ta、W、B、Cr、Mo、Ni、Co、Cu、Sn、Sb、Ca、Mg、REM、Zr、Te、HfおよびBiについて、各含有量が好ましい下限値未満の場合には本発明の効果を害することがないため、不可避的不純物として含むものとする。 In addition, each content of Ti, Nb, V, Ta, W, B, Cr, Mo, Ni, Co, Cu, Sn, Sb, Ca, Mg, REM, Zr, Te, Hf and Bi is preferable. If it is less than the lower limit, the effect of the present invention will not be impaired, and therefore it is included as an unavoidable impurity.
<第1の実施形態にかかる高強度鋼板用スラブの冷却方法>
 つぎに、上記ミクロ組織を達成する好適なスラブの冷却方法について説明する。第1の実施形態にかかる高強度鋼板用スラブの冷却方法は、冷却中に再加熱を伴うものである。上述した成分組成のうち、スラブの冷却中に再加熱を伴う場合を選択し、その成分組成を有する鋼素材を溶製して鋼スラブを製造する。本実施形態において、鋼素材の溶製方法は特に限定されず、転炉や電気炉等、公知の溶製方法いずれもが適合する。また、鋼スラブ(スラブ)は、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましいが、薄スラブ鋳造法などにより製造することも可能である。
<Method for cooling high-strength steel plate slab according to the first embodiment>
Next, a suitable slab cooling method for achieving the above-mentioned microstructure will be explained. The method for cooling a high-strength steel plate slab according to the first embodiment involves reheating during cooling. Among the above-mentioned component compositions, a case involving reheating during cooling of the slab is selected, and a steel material having the selected component composition is melted to produce a steel slab. In this embodiment, the method of melting the steel material is not particularly limited, and any known melting method such as a converter or an electric furnace is suitable. Moreover, in order to prevent macro segregation, the steel slab (slab) is preferably manufactured by a continuous casting method, but it can also be manufactured by a thin slab casting method or the like.
[スラブ幅中央かつ表層下10mm位置における鋳造完了から1200℃以上1450℃以下での滞留時間:130s以下]
 旧オーステナイト粒径は破壊の単位を決める因子であり、大きいほど靭性は低下する。オーステナイト粒径を決定する因子は1200℃以上1450℃以下での滞留時間であり、滞留時間が長いほど旧オーステナイト粒径が粗大化する。1200℃以上1450℃以下での滞留時間が130sを超えると、平均旧オーステナイト粒径が2.0mmを超えることがあり、スラブ割れが発生するおそれがある。したがって、1200℃以上1450℃以下での滞留時間を130s以下とする。好ましくは120s以下とする。より好ましくは110s以下とする。さらに好ましくは100s以下とする。なお、1200℃以上1450℃以下での滞留時間の下限は特に規定しないが、滞留時間が短すぎると不均一凝固による連続鋳造でのブレイクアウトのリスクが高くなるため、40s以上とする。より好ましくは50s以上とする。上述の温度は実測することが困難なため、伝熱解析によってスラブ表層下10mm位置での温度履歴を計算した。解析位置はスラブ内部でも最も上記温度域の滞在時間が長くなるスラブ幅中央とした。
[Residence time from 1200°C to 1450°C from completion of casting at the center of the slab width and 10mm below the surface layer: 130s or less]
The prior austenite grain size is a factor that determines the unit of fracture, and the larger it is, the lower the toughness is. The factor that determines the austenite grain size is the residence time at 1200° C. or more and 1450° C. or less, and the longer the residence time, the coarser the prior austenite grain size. If the residence time at 1200° C. or higher and 1450° C. or lower exceeds 130 seconds, the average prior austenite grain size may exceed 2.0 mm, and slab cracking may occur. Therefore, the residence time at 1200° C. or higher and 1450° C. or lower is set to 130 seconds or less. Preferably it is 120 seconds or less. More preferably, it is 110 seconds or less. More preferably, the time is 100 seconds or less. Note that the lower limit of the residence time at 1200° C. or higher and 1450° C. or lower is not particularly specified, but if the residence time is too short, there is a high risk of breakout during continuous casting due to uneven solidification, so it is set to 40 seconds or more. More preferably, the time is 50 seconds or more. Since it is difficult to actually measure the above temperature, the temperature history at a position 10 mm below the surface of the slab was calculated by heat transfer analysis. The analysis position was set at the center of the slab width, where the residence time in the above temperature range is the longest within the slab.
[スラブ幅中央の表面温度が700℃以上850℃以下における平均冷却速度:25℃/hr以上]
 700℃以上850℃以下はフェライト変態が生じる温度域であり、この温度域での冷却速度が低いとスラブのフェライトの面積率が高くなり、スラブの靭性が低下する。フェライトの面積率を低く制御するためには冷却速度を高くする必要がある。こうした効果を得るために、700℃以上850℃以下における平均冷却速度を25℃/hr以上とする。好ましくは30℃/hr以上とし、より好ましくは40℃/hr以上とし、さらに好ましくは50℃/hr以上とする。平均冷却速度の上限は特に規定しないが、250℃以上400℃未満の冷却停止の制御が困難となるため、1000℃/hr以下とする。好ましくは500℃/hr以下とし、より好ましくは200℃/hr以下とする。冷却速度の測定は熱電対で行った。連鋳機からスラブが出てきた後にスラブの広い面(長辺)の上面中央部に熱電対を設置して測定した温度から冷却速度を求めた。後述するスラブの冷却速度は、全て上述の方法で求めた冷却速度である。
[Average cooling rate when the surface temperature at the center of the slab width is 700°C or more and 850°C or less: 25°C/hr or more]
A temperature range of 700° C. or more and 850° C. or less is a temperature range in which ferrite transformation occurs, and if the cooling rate in this temperature range is low, the area ratio of ferrite in the slab increases and the toughness of the slab decreases. In order to control the area ratio of ferrite to a low level, it is necessary to increase the cooling rate. In order to obtain such an effect, the average cooling rate at 700° C. or higher and 850° C. or lower is set to 25° C./hr or higher. Preferably it is 30°C/hr or more, more preferably 40°C/hr or more, and still more preferably 50°C/hr or more. Although the upper limit of the average cooling rate is not particularly specified, it is set to 1000° C./hr or less since it becomes difficult to control the cooling stop at 250° C. or more and less than 400° C. Preferably it is 500°C/hr or less, more preferably 200°C/hr or less. The cooling rate was measured using a thermocouple. After the slab came out of the continuous casting machine, a thermocouple was installed at the center of the upper surface of the wide side (long side) of the slab, and the cooling rate was determined from the measured temperature. All cooling rates of the slab described below are cooling rates determined by the method described above.
[550℃以上700℃未満における平均冷却速度:20℃/hr以上]
 550℃以上700℃未満の温度域は、フェライト変態、パーライト変態が生じる温度域であり、この温度域での冷却速度が低いとスラブのフェライトおよび/またはパーライト分率が高くなり、スラブの靭性が低下する。したがって、550℃以上700℃未満における平均冷却速度を20℃/hr以上とする。好ましくは30℃/hr以上とし、より好ましくは40℃/hr以上とし、さらに好ましくは50℃/hr以上とする。平均冷却速度の上限は特に規定しないが、250℃以上400℃未満の冷却停止の制御が困難となるため、1000℃/hr以下とする。好ましくは500℃/hr以下とし、より好ましくは200℃/hr以下とする。
[Average cooling rate at 550°C or higher and lower than 700°C: 20°C/hr or higher]
The temperature range of 550°C or more and less than 700°C is the temperature range where ferrite transformation and pearlite transformation occur, and if the cooling rate in this temperature range is low, the ferrite and/or pearlite fraction of the slab will increase, and the toughness of the slab will decrease. descend. Therefore, the average cooling rate at 550°C or higher and lower than 700°C is set to 20°C/hr or higher. Preferably it is 30°C/hr or more, more preferably 40°C/hr or more, and still more preferably 50°C/hr or more. Although the upper limit of the average cooling rate is not particularly specified, it is set to 1000° C./hr or less since it becomes difficult to control the cooling stop at 250° C. or more and less than 400° C. Preferably it is 500°C/hr or less, more preferably 200°C/hr or less.
[400℃以上550℃未満における平均冷却速度:15℃/hr以上]
 400℃以上550℃未満の温度域は、パーライト変態、ベイナイト変態が生じる温度域であり、この温度域での冷却速度が低いとスラブのパーライト分率が高くなり、スラブの靭性が低下する。したがって400℃以上550℃未満における平均冷却速度を15℃/hr以上とする。好ましくは20℃/hr以上とし、より好ましくは30℃/hr以上とし、さらに好ましくは50℃/hr以上とする。平均冷却速度の上限は特に規定しないが、250℃以上400℃未満の冷却停止の制御が困難となるため、500℃/hr以下とする。好ましくは300℃/hr以下とし、より好ましくは100℃/hr以下とする。
[Average cooling rate at 400°C or higher and lower than 550°C: 15°C/hr or higher]
The temperature range of 400°C or more and less than 550°C is the temperature range where pearlite transformation and bainite transformation occur, and if the cooling rate in this temperature range is low, the pearlite fraction of the slab will increase and the toughness of the slab will decrease. Therefore, the average cooling rate at 400°C or higher and lower than 550°C is set to 15°C/hr or higher. Preferably it is 20°C/hr or more, more preferably 30°C/hr or more, and still more preferably 50°C/hr or more. Although the upper limit of the average cooling rate is not particularly specified, it is set to 500° C./hr or less since it becomes difficult to control the cooling stop at 250° C. or more and less than 400° C. Preferably it is 300°C/hr or less, more preferably 100°C/hr or less.
[250℃以上400℃未満の冷却停止温度まで平均冷却速度:10℃/hr以上]
 250℃以上400℃未満の温度域は、ベイナイト変態、マルテンサイト変態が生じる温度域である。続く再加熱で未変態オーステナイト中に炭素を濃化させ、残留オーステナイトを生成させるためには、冷却停止温度までの冷却の間に変態を完了させずに未変態オーステナイトを残す必要がある。したがって、冷却停止温度までの冷却速度を10℃/hr以上とする。好ましくは15℃/hr以上とし、より好ましくは20℃/hr以上とし、さらに好ましくは30℃/hr以上とする。平均冷却速度の上限は特に規定しないが、冷却停止温度の制御が困難となるため、500℃/hr以下とする。好ましくは300℃/hr以下とし、より好ましくは100℃/hr以下とする。また、冷却停止温度が250℃を下回ると変態が完了してしまい、残留オーステナイトの確保ができない。したがって、冷却停止温度を250℃以上とする。好ましくは270℃以上とし、より好ましくは300℃以上とする。冷却停止温度が400℃以上となると、パーライト変態が進んでしまい、残留オーステナイトの確保ができない。したがって、冷却停止温度は400℃未満とする。好ましくは380℃以下とし、より好ましくは350℃以下とする。
[Average cooling rate until cooling stop temperature of 250°C or more and less than 400°C: 10°C/hr or more]
The temperature range of 250°C or more and less than 400°C is a temperature range in which bainite transformation and martensitic transformation occur. In order to concentrate carbon in the untransformed austenite and generate residual austenite in the subsequent reheating, it is necessary to leave the untransformed austenite without completing the transformation during cooling to the cooling stop temperature. Therefore, the cooling rate to the cooling stop temperature is set to 10° C./hr or more. Preferably it is 15°C/hr or more, more preferably 20°C/hr or more, and still more preferably 30°C/hr or more. Although the upper limit of the average cooling rate is not particularly specified, it is set to 500° C./hr or less since it becomes difficult to control the cooling stop temperature. Preferably it is 300°C/hr or less, more preferably 100°C/hr or less. Furthermore, if the cooling stop temperature is lower than 250°C, the transformation will be completed, making it impossible to ensure residual austenite. Therefore, the cooling stop temperature is set to 250°C or higher. The temperature is preferably 270°C or higher, more preferably 300°C or higher. If the cooling stop temperature is 400° C. or higher, pearlite transformation will proceed, making it impossible to ensure retained austenite. Therefore, the cooling stop temperature is set to less than 400°C. The temperature is preferably 380°C or lower, more preferably 350°C or lower.
[冷却停止温度超450℃以下の再加熱温度になるように加熱]
 冷却停止温度から再加熱をすることで、ベイナイト変態が促進し、ベイニティックフェライト生成時に未変態オーステナイト中に炭素が濃化し、残留オーステナイトの生成を促進する。また、冷却停止までにマルテンサイト変態が生じていた場合、再加熱によりマルテンサイトから未変態オーステナイト中に炭素が分配、濃化し、残留オーステナイトの生成を促進する。冷却停止温度以下では未変態オーステナイトへの炭素の濃化が不十分となり、残留オーステナイトの確保ができない。したがって、再加熱温度を冷却停止温度超えとする。好ましくは冷却停止温度+20℃以上とし、より好ましくは冷却停止温度+40℃以上とする。再加熱温度が450℃を超えると、未変態オーステナイトの分解が生じて残留オーステナイトの確保ができない。したがって、再加熱温度は450℃以下とする。好ましくは430℃以下とし、より好ましくは410℃以下とする。
[Heating to a reheating temperature exceeding the cooling stop temperature and below 450°C]
Reheating from the cooling stop temperature promotes bainitic transformation, and when bainitic ferrite is formed, carbon is concentrated in untransformed austenite, promoting the formation of retained austenite. Furthermore, if martensitic transformation has occurred before cooling is stopped, reheating causes carbon to be distributed and concentrated from martensite to untransformed austenite, promoting the formation of retained austenite. Below the cooling stop temperature, carbon concentration in untransformed austenite becomes insufficient and residual austenite cannot be secured. Therefore, the reheating temperature is set to exceed the cooling stop temperature. Preferably, the cooling stop temperature is +20°C or higher, more preferably the cooling stop temperature +40°C or higher. If the reheating temperature exceeds 450° C., decomposition of untransformed austenite occurs and residual austenite cannot be secured. Therefore, the reheating temperature is set to 450°C or less. The temperature is preferably 430°C or lower, more preferably 410°C or lower.
[200℃以上再加熱温度以下における平均冷却速度が30℃/hr以下]
 200℃以上再加熱温度以下の温度域は、ベイナイト変態、マルテンサイト変態が生じる温度域であり、ベイナイト変態はマルテンサイト変態よりも高温で生じる。この温度域での冷却速度が高いと、焼入れマルテンサイトが生成し、スラブの靭性が低下する。また、ベイナイト変態では、ベイニティックフェライト生成時に未変態オーステナイト中に炭素が濃化し、残留オーステナイトの生成を促進する。スラブの残留オーステナイト分率とベイナイト分率を確保するためには十分な時間ベイナイト変態を生じさせる必要がある。また、前記冷却停止までにマルテンサイト変態が生じていた場合、マルテンサイトから未変態オーステナイト中に炭素が分配、濃化し、残留オーステナイトの生成を促進する。したがって、200℃以上再加熱温度以下における平均冷却速度を30℃/hr以下とする。好ましくは25℃/hr以下とし、より好ましくは20℃/hr以下とする。平均冷却速度の下限は特に規定しないが、生産性の観点から5℃/hr以上とすることが好ましい。
[Average cooling rate at 200°C or higher and below reheating temperature is 30°C/hr or less]
The temperature range of 200° C. or higher and lower than the reheating temperature is a temperature range in which bainite transformation and martensitic transformation occur, and bainite transformation occurs at a higher temperature than martensitic transformation. If the cooling rate is high in this temperature range, quenched martensite will be generated and the toughness of the slab will be reduced. Furthermore, in bainitic transformation, carbon is concentrated in untransformed austenite during the formation of bainitic ferrite, promoting the formation of retained austenite. In order to ensure the residual austenite fraction and bainite fraction of the slab, it is necessary to allow bainite transformation to occur for a sufficient period of time. Furthermore, if martensitic transformation has occurred before the cooling is stopped, carbon is distributed and concentrated from martensite to untransformed austenite, promoting the formation of retained austenite. Therefore, the average cooling rate at 200° C. or higher and lower than the reheating temperature is set to 30° C./hr or lower. Preferably it is 25°C/hr or less, more preferably 20°C/hr or less. Although the lower limit of the average cooling rate is not particularly specified, it is preferably 5° C./hr or more from the viewpoint of productivity.
<第2の実施形態にかかる高強度鋼板用スラブの冷却方法>
 第2の実施形態にかかる高強度鋼板用スラブの冷却方法は、冷却中に再加熱を伴わず、一様に温度降下するものである。第1の実施形態との共通部分を省略し、異なる部分を説明する。上述した成分組成のうち、スラブの冷却中に再加熱を伴わない場合を選択し、その成分組成を有する鋼素材を溶製して第1の実施形態と同様に鋼スラブを製造する。
<Method for cooling high-strength steel plate slab according to second embodiment>
The method for cooling a high-strength steel plate slab according to the second embodiment uniformly lowers the temperature without reheating during cooling. Common parts with the first embodiment will be omitted, and different parts will be explained. Among the above-mentioned component compositions, a case without reheating during cooling of the slab is selected, and a steel material having the selected component composition is melted to produce a steel slab in the same manner as in the first embodiment.
[スラブ幅中央かつ表層下10mm位置における1200℃以上1450℃以下での滞留時間が130s以下]
 第1の実施形態と共通する。
[Residence time at 1200°C or more and 1450°C or less at the center of the slab width and 10mm below the surface layer] 130s or less]
This is common to the first embodiment.
[スラブ幅中央の表面温度が700℃以上850℃以下における平均冷却速度:25℃/hr以上]
 第1の実施形態と共通する。
[Average cooling rate when the surface temperature at the center of the slab width is 700°C or more and 850°C or less: 25°C/hr or more]
This is common to the first embodiment.
[550℃以上700℃未満における平均冷却速度が20℃/hr以上]
 第1の実施形態と共通する。
[Average cooling rate at 550°C or higher and lower than 700°C is 20°C/hr or higher]
This is common to the first embodiment.
[400℃以上550℃未満における平均冷却速度が10℃/hr以上]
 400℃以上550℃未満の温度域は、パーライト変態、ベイナイト変態が生じる温度域であり、この温度域での冷却速度が低いとスラブのパーライト分率が高くなり、スラブの靭性が低下する。したがって400℃以上550℃未満における平均冷却速度を10℃/hr以上とする。好ましくは15℃/hr以上とし、より好ましくは20℃/hr以上とし、さらに好ましくは30℃/hr以上とする。平均冷却速度の上限は特に規定しないが、200℃以上400℃未満における冷却速度の制御が困難となるため、500℃/hr以下とする。好ましくは300℃/hr以下とし、より好ましくは100℃/hr以下とする。
[Average cooling rate at 400°C or higher and lower than 550°C is 10°C/hr or more]
The temperature range of 400°C or more and less than 550°C is the temperature range where pearlite transformation and bainite transformation occur, and if the cooling rate in this temperature range is low, the pearlite fraction of the slab will increase and the toughness of the slab will decrease. Therefore, the average cooling rate at 400°C or higher and lower than 550°C is set to 10°C/hr or higher. Preferably it is 15°C/hr or more, more preferably 20°C/hr or more, and still more preferably 30°C/hr or more. Although the upper limit of the average cooling rate is not particularly specified, it is set to be 500°C/hr or less since it becomes difficult to control the cooling rate at 200°C or more and less than 400°C. Preferably it is 300°C/hr or less, more preferably 100°C/hr or less.
[200℃以上400℃未満における平均冷却速度が30℃/hr以下]
 200℃以上400℃未満の温度域は、ベイナイト変態、マルテンサイト変態が生じる温度域であり、ベイナイト変態はマルテンサイト変態よりも高温で生じる。この温度域での冷却速度が高いと、焼入れマルテンサイトが生成し、スラブの靭性が低下する。また、ベイナイト変態では、ベイニティックフェライト生成時に未変態オーステナイト中に炭素が濃化し、残留オーステナイトの生成を促進する。スラブの残留オーステナイト分率とベイナイト分率を確保するためには十分な時間ベイナイト変態を生じさせる必要がある。したがって、200℃以上400℃未満における平均冷却速度を30℃/hr以下とする。好ましくは25℃/hr以下とし、より好ましくは20℃/hr以下とする。平均冷却速度の下限は特に規定しないが、生産性の観点から5℃/hr以上とすることが好ましい。
[Average cooling rate at 200°C or higher and lower than 400°C is 30°C/hr or less]
The temperature range of 200°C or higher and lower than 400°C is a temperature range in which bainite transformation and martensitic transformation occur, and bainite transformation occurs at a higher temperature than martensitic transformation. If the cooling rate is high in this temperature range, quenched martensite will be generated and the toughness of the slab will be reduced. Furthermore, in bainitic transformation, carbon is concentrated in untransformed austenite during the formation of bainitic ferrite, promoting the formation of retained austenite. In order to ensure the residual austenite fraction and bainite fraction of the slab, it is necessary to allow bainite transformation to occur for a sufficient period of time. Therefore, the average cooling rate at 200°C or higher and lower than 400°C is set to 30°C/hr or less. Preferably it is 25°C/hr or less, more preferably 20°C/hr or less. Although the lower limit of the average cooling rate is not particularly specified, it is preferably 5° C./hr or more from the viewpoint of productivity.
<高強度鋼板の製造方法>
 上記実施形態の高強度鋼板用スラブであれば、連続鋳造後にスラブ割れを発生することなく、熱間圧延後や冷間圧延後、焼鈍後あるいはめっき後の鋼板にヘゲ疵やスリバー疵などの表面欠陥を発生することなく、高強度熱延鋼板や高強度冷延鋼板、高強度めっき鋼板の製造が可能となる。これらの製造方法は以下のとおりである。
<Manufacturing method of high strength steel plate>
With the high-strength steel plate slab of the above embodiment, there will be no slab cracking after continuous casting, and there will be no sludge or sliver scratches on the steel plate after hot rolling, cold rolling, annealing, or plating. It becomes possible to manufacture high-strength hot-rolled steel sheets, high-strength cold-rolled steel sheets, and high-strength plated steel sheets without generating surface defects. The manufacturing method for these is as follows.
 まず、上記いずれかの高強度鋼板用スラブを用いる。高強度熱延鋼板においては、スラブ加熱温度1000℃以上1300℃以下の範囲で加熱し、粗圧延後に仕上げ圧延終了温度750℃以上1000℃以下で仕上げ圧延を行い、巻取り温度室温以上750℃以下で巻取りを行う。仕上げ圧延完了から巻取りまでの間で急速冷却や板温の保持・保温、空冷を行っても構わない。巻取り後に0.05%以上1.00%以下の伸長率で圧延してもよい。また、酸洗を行ってもよい。酸洗は、一回でもよいし、複数回に分けてもよい。このようにして高強度熱延鋼板を製造する。 First, one of the above-mentioned high-strength steel plate slabs is used. For high-strength hot rolled steel sheets, the slab heating temperature is 1000°C or higher and 1300°C or lower, and after rough rolling, finish rolling is performed at a finish rolling temperature of 750°C or higher and 1000°C or lower, and the coiling temperature is room temperature or higher and 750°C or lower. Take up the winding. From the completion of finish rolling to the time of winding, rapid cooling, maintaining/insulating sheet temperature, or air cooling may be performed. After winding, it may be rolled at an elongation rate of 0.05% or more and 1.00% or less. In addition, pickling may be performed. Pickling may be carried out once or in multiple steps. In this way, a high-strength hot-rolled steel sheet is manufactured.
 高強度冷延鋼板の場合は、前記高強度熱延鋼板を用い、これを酸洗後に圧下率30%以上80%以下の冷間圧延を行う。酸洗は鋼板表面の酸化物の除去が可能であることから、最終製品の高強度鋼板における良好な化成処理性やめっき品質の確保のために重要である。また、酸洗は、一回でもよいし、複数回に分けてもよい。冷間圧延は、歪が均一に効率的に導入され、均一な組織が得られることから、タンデム式の多スタンド圧延またはリバース圧延等の、2パス以上のパス数を要する多パス圧延により冷間圧延を施すことが好ましい。このようにして高強度冷延鋼板1を製造する。 In the case of a high-strength cold-rolled steel sheet, the above-mentioned high-strength hot-rolled steel sheet is used, and after pickling, cold rolling is performed at a rolling reduction of 30% or more and 80% or less. Since pickling can remove oxides on the surface of the steel sheet, it is important for ensuring good chemical conversion treatability and plating quality in the final high-strength steel sheet. Further, the pickling may be carried out once or in multiple steps. Cold rolling introduces strain uniformly and efficiently, resulting in a uniform structure. It is preferable to perform rolling. In this way, the high-strength cold-rolled steel sheet 1 is manufactured.
 前記高強度冷延鋼板1を用い、焼鈍温度750℃以上950℃以下で加熱し、300℃以上600℃以下の冷却停止温度まで冷却し、次いで100℃以下まで冷却する。前記冷却後に0.05%以上1.00%以下の伸長率で圧延してもよい。このようにして高強度冷延鋼板2を製造する。 The high-strength cold-rolled steel sheet 1 is heated at an annealing temperature of 750°C or higher and 950°C or lower, cooled to a cooling stop temperature of 300°C or higher and 600°C or lower, and then cooled to 100°C or lower. After the cooling, it may be rolled at an elongation rate of 0.05% or more and 1.00% or less. In this way, high-strength cold-rolled steel sheet 2 is manufactured.
 前記高強度冷延鋼板1を用い、焼鈍温度750℃以上950℃以下で加熱し、130℃以上400℃以下の冷却停止温度まで冷却し、次いで200℃以上450℃以下の再加熱し、その後100℃以下まで冷却する。前記冷却後に0.05%以上1.00%以下の伸長率で圧延してもよい。このようにして高強度冷延鋼板3を製造する。  Using the high-strength cold-rolled steel sheet 1, the annealing temperature is heated at 750°C or higher and 950°C or lower, cooled to a cooling stop temperature of 130°C or higher and 400°C or lower, then reheated at 200°C or higher and 450°C or lower, and then heated to 100°C or higher and 450°C or lower. Cool to below ℃. After the cooling, it may be rolled at an elongation rate of 0.05% or more and 1.00% or less. In this way, the high-strength cold-rolled steel sheet 3 is manufactured. 
 前記高強度冷延鋼板1を用い、焼鈍温度750℃以上950℃以下で加熱し、500℃以上で水焼入れを開始し、100℃以下まで水冷後、100℃以上300℃以下で再加熱する。前記再加熱後に0.05%以上1.00%以下の伸長率で圧延してもよい。このようにして。このようにして高強度冷延鋼板4を製造する。 Using the high-strength cold-rolled steel sheet 1, heat at an annealing temperature of 750°C or higher and 950°C or lower, start water quenching at 500°C or higher, water cool to 100°C or lower, and then reheat at 100°C or higher and 300°C or lower. After the reheating, rolling may be performed at an elongation rate of 0.05% or more and 1.00% or less. In this way. In this way, high-strength cold-rolled steel sheet 4 is manufactured.
 前記高強度冷延鋼板1を用い、焼鈍温度750℃以上950℃以下で加熱し、ついで、前記高強度冷延鋼板に、溶融金属めっき処理を施してめっき鋼板とし、ついで、前記めっき鋼板を、冷却停止温度150℃以下の条件で冷却する。溶融金属めっき処理では、例えば、冷延鋼板を440℃以上500℃以下の溶融亜鉛めっき浴中に浸漬させる。また、Al量が0.10質量%以上0.23質量%以下であり、残部がZnおよび不可避的不純物である組成の溶融亜鉛めっき浴を用いることが好ましい。また、めっき付着量は片面あたり20~80g/m(両面めっき)が好ましい。なお、めっきの付着量は、溶融亜鉛めっき処理後にガスワイピング等を行うことにより調節することが可能である。前記冷却後に0.05%以上1.00%以下の伸長率で圧延してもよい。このようにして高強度溶融亜鉛めっき鋼板を製造する。亜鉛めっきのほか、亜鉛系合金めっき、亜鉛-Al合金めっき、Alめっきなどにも適用できる。 The high-strength cold-rolled steel sheet 1 is heated at an annealing temperature of 750° C. or higher and 950° C. or lower, and then the high-strength cold-rolled steel sheet is subjected to a hot-dip metal plating treatment to obtain a plated steel sheet, and then the plated steel sheet is Cooling is performed at a cooling stop temperature of 150°C or less. In the hot-dip metal plating process, for example, a cold-rolled steel sheet is immersed in a hot-dip galvanizing bath at a temperature of 440° C. or higher and 500° C. or lower. Further, it is preferable to use a hot-dip galvanizing bath having a composition in which the amount of Al is 0.10% by mass or more and 0.23% by mass or less, and the balance is Zn and unavoidable impurities. Further, the amount of plating deposited is preferably 20 to 80 g/m 2 per side (both sides plated). Note that the amount of plating deposited can be adjusted by performing gas wiping or the like after the hot-dip galvanizing process. After the cooling, it may be rolled at an elongation rate of 0.05% or more and 1.00% or less. In this way, a high-strength hot-dip galvanized steel sheet is manufactured. In addition to zinc plating, it can also be applied to zinc-based alloy plating, zinc-Al alloy plating, Al plating, etc.
 前記溶融金属めっき処理後、前記めっき鋼板に合金化処理を施す。たとえば、溶融亜鉛めっきの場合には、合金化処理は460℃以上600℃以下の温度域での合金化処理が好ましい。このようにして高強度合金化溶融亜鉛めっき鋼板を製造する。 After the hot-dip metal plating process, the plated steel sheet is subjected to an alloying process. For example, in the case of hot-dip galvanizing, alloying treatment is preferably carried out in a temperature range of 460° C. or higher and 600° C. or lower. In this way, a high strength alloyed galvanized steel sheet is produced.
 前記高強度冷延鋼板1~4を用い、表面に電気めっき処理を施し、高強度めっき鋼板を製造する。電気めっきとして、亜鉛めっきのほか、亜鉛系合金めっき、亜鉛-Al合金めっき、Alめっきなどにも適用できる。 Using the high-strength cold-rolled steel sheets 1 to 4, electroplating is performed on the surface to produce a high-strength plated steel sheet. In addition to zinc plating, electroplating can also be applied to zinc-based alloy plating, zinc-Al alloy plating, Al plating, etc.
 上記以外の製造条件については特に限定されず、常法に従えばよい。 Manufacturing conditions other than those mentioned above are not particularly limited and may be according to conventional methods.
[平均旧オーステナイト粒径の測定]
 ここで、平均旧オーステナイト粒径の測定方法は、以下の通りである。冷却後のスラブの幅中央位置からサンプルを切り出し、スラブ幅方向に平行なスラブ厚断面が観察面となるようにした。次いで、観察面はダイヤモンドペーストを用いて鏡面研磨し、その後、コロイダルシリカを用い仕上げ研磨を施し、さらに、3vol.%ナイタールでエッチングして観察面に組織を現出させる。光学顕微鏡を用いて、スラブ表層下10mm位置において、10倍の倍率で、5視野観察し、組織画像を得る。得られた組織画像をJIS G 0551:2020に準拠した切断法により、旧オーステナイト粒径を5視野分求め、それらの値を平均して、平均旧オーステナイト粒径として求めた。
[Measurement of average prior austenite grain size]
Here, the method for measuring the average prior austenite grain size is as follows. A sample was cut out from the width center position of the slab after cooling, so that the slab thickness cross section parallel to the slab width direction served as the observation surface. Next, the observation surface was mirror polished using diamond paste, then finished polished using colloidal silica, and further polished using 3vol. % nital to reveal the structure on the observation surface. Using an optical microscope, 5 fields of view are observed at 10x magnification at a position 10 mm below the surface layer of the slab to obtain a tissue image. The prior austenite grain size was determined for five fields of view by cutting the obtained structure image in accordance with JIS G 0551:2020, and the values were averaged to determine the average prior austenite grain size.
[フェライトの面積率の測定方法]
 フェライト面積率の測定方法は、上記平均旧オーステナイト粒径の測定方法と同様にスラブの観察面を用意する。次いで、観察面はダイヤモンドペーストを用いて鏡面研磨し、その後、コロイダルシリカを用い仕上げ研磨を施し、さらに、3vol.%ナイタールでエッチングして組織を現出させる。加速電圧が15kVの条件で、SEM(Scanning Electron Microscope;走査電子顕微鏡)を用いて、スラブ表層下10mm位置において、50倍の倍率で10視野観察し、得られた組織画像を、Adobe社のPHOTOSHOP(登録商標)を用いて、フェライトの面積率を10視野分算出し、それらの値を平均してフェライトの面積率として求めた。なお、フェライトはその他の組織(パーライト、ベイニティックフェライト、焼戻しマルテンサイト、焼入れマルテンサイト、残留オーステナイト)と比較して粒径が大きく、かつ、平滑な表面でコントラストが暗いため、50倍の倍率で容易に区別ができる。
[Measurement method of area ratio of ferrite]
To measure the ferrite area ratio, prepare the observation surface of the slab in the same manner as the above-mentioned method for measuring the average prior austenite grain size. Next, the observation surface was mirror polished using diamond paste, then finished polished using colloidal silica, and further polished using 3vol. Etch with % nital to reveal the tissue. Using an SEM (Scanning Electron Microscope) at an accelerating voltage of 15 kV, 10 fields of view were observed at a magnification of 50 times at a position 10 mm below the slab surface layer, and the obtained tissue images were displayed on Adobe's PHOTOSHOP. (registered trademark), the area ratio of ferrite was calculated for 10 fields of view, and the values were averaged to determine the area ratio of ferrite. In addition, ferrite has a larger grain size than other structures (pearlite, bainitic ferrite, tempered martensite, hardened martensite, retained austenite), has a smooth surface, and has a dark contrast, so the magnification is 50x. can be easily distinguished.
[ベイニティックフェライト、焼戻しマルテンサイト、焼入れマルテンサイト、残留オーステナイトおよびパーライトの面積率の測定方法]
 これらの組織の面積率の測定方法は、上記フェライトの測定方法と同様にスラブの観察面に組織を現出させる。加速電圧が15kVの条件で、SEMを用いて、スラブ表層下10mm位置において、フェライトを視野から外して10000倍の倍率で10視野観察し、得られた組織画像を、Adobe社のPHOTOSHOP(登録商標)を用いて、ベイニティックフェライト、焼戻しマルテンサイト、焼入れマルテンサイト、残留オーステナイトおよびパーライトの面積率を10視野分算出し、それらの値を平均し、前述の方法で測定したフェライトの面積率と合わせて合計で100%になるように計算し、各組織の面積率として求めた。ベイニティックフェライトは凹部の組織、焼戻しマルテンサイトは凹部の組織で微細な炭化物を含む組織、焼入れマルテンサイトは凸部でかつ組織内部が微細な凹凸を有した組織、残留オーステナイトは凸部でかつ組織内部が平坦な組織、また、パーライトは凹部の組織でラメラ状の炭化物を含む組織である。なお、ベイニティックフェライトと焼戻しマルテンサイトとは、ベイニティックフェライトおよび焼戻しマルテンサイトの合計の面積率を求めることから、互いに識別可能でなくてよい。
[Method for measuring the area ratio of bainitic ferrite, tempered martensite, quenched martensite, retained austenite and pearlite]
The method for measuring the area ratio of these structures causes the structure to appear on the observation surface of the slab, similar to the method for measuring ferrite described above. Using an SEM, 10 fields of view were observed at a magnification of 10,000 times with the ferrite removed from the field of view at a position 10 mm below the surface layer of the slab under the condition of an accelerating voltage of 15 kV. ), calculate the area ratio of bainitic ferrite, tempered martensite, hardened martensite, retained austenite, and pearlite for 10 fields, average those values, and calculate the area ratio of ferrite measured using the method described above. The total was calculated to be 100%, and the area ratio of each tissue was determined. Bainitic ferrite is a concave structure, tempered martensite is a concave structure that contains fine carbides, hardened martensite is a convex structure with fine irregularities inside, and retained austenite is a convex structure with fine irregularities inside. Pearlite is a structure with a flat interior, and pearlite is a structure with concave portions and contains lamellar carbides. Note that bainitic ferrite and tempered martensite do not need to be distinguishable from each other since the total area ratio of bainitic ferrite and tempered martensite is determined.
[スラブ割れの評価方法]
 スラブ割れの評価方法はJIS Z 2343:2017に規定された浸透探傷試験に基づいて試験を行い、スラブの広面および狭面部の割れの有無を評価した。現像液を塗布後に浸透液の表出を目視することにより、目視で表面の割れや疵をチェックした。
[Evaluation method of slab cracking]
The evaluation method for slab cracking was based on the penetrant test specified in JIS Z 2343:2017, and the presence or absence of cracks on the wide and narrow sides of the slab was evaluated. After applying the developer, the appearance of the penetrating solution was visually observed to visually check for cracks and flaws on the surface.
[鋼板の表面欠陥の評価方法]
 熱間圧延後や冷間圧延後、焼鈍後あるいはめっき後の鋼板の表面欠陥の評価方法は外観検査により目視評価した。鋼板の全長、全幅にヘゲ疵やスリバー疵、不めっきが全くないものを表面欠陥「無」とし、一部ヘゲ疵やスリバー疵、不めっきが観察されたものを表面欠陥「有」とした。
[Method for evaluating surface defects in steel sheets]
The surface defects of the steel sheet after hot rolling, cold rolling, annealing, or plating were evaluated visually by visual inspection. A steel plate with no sludge defects, sliver defects, or unplated surfaces over the entire length and width of the steel sheet is considered to be ``no'' surface defects, and a steel sheet with some sludge defects, sliver defects, or unplated surfaces observed as ``presence'' of surface defects. did.
[機械特性]
 機械特性(引張強さTS)の測定方法は、以下の通りである。引張試験は、引張試験片の長手が、鋼板の圧延方向に対して直角方向(C方向)となるように採取したJIS5号試験片を用いて、JIS Z 2241:2011に準拠して行い、TS(引張強さ)を測定した。なお、本発明では、TSが590MPa以上の場合を高強度と定義し、合格とした。
[Mechanical properties]
The method for measuring mechanical properties (tensile strength TS) is as follows. The tensile test was conducted in accordance with JIS Z 2241:2011 using a JIS No. 5 test piece taken so that the length of the tensile test piece was perpendicular to the rolling direction of the steel plate (direction C). (Tensile strength) was measured. In the present invention, a case where the TS is 590 MPa or more is defined as high strength and passed.
(実施例1)
 表1に試験に供した鋼スラブの成分組成を記載した。それらの鋼スラブを表2-1および2-2に示す、再加熱を含む冷却条件で鋼スラブの冷却を行った。表2-1および2-2中の、t1はスラブ幅中央かつ表層下10mm位置における1200℃以上1450℃以下での滞留時間であり(s)、v1はスラブ幅中央の表面温度が700℃以上850℃以下における平均冷却速度(℃/hr)であり、v2は550℃以上700℃未満における平均冷却速度(℃/hr)であり、v3は400℃以上550℃未満における平均冷却速度(℃/hr)であり、v4は250℃以上400℃未満の冷却停止温度まで平均冷却速度(℃/hr)であり、Tfはその冷却停止温度(℃)であり、Thは再加熱温度(℃)であり、v5は200℃以上再加熱温度以下における平均冷却速度(℃/hr)である。また、「割れ」の欄には、スラブ冷却時の割れの有無を記載した。d(γ)は平均旧オーステナイト粒径(mm)であり、BF+TMはベイニティックフェライトおよび焼戻しマルテンサイトの面積率の合計(%)であり、Rγは残留オーステナイトの面積率(%)であり、Fはフェライトの面積率(%)であり、P+FMはパーライトおよび焼入れマルテンサイトの面積率の合計(%)である。実験に供した組成の鋼スラブは再加熱を含む適切な冷却条件とすることで、本発明にかかる旧オーステナイト粒径およびミクロ組織を満足することができ、鋼スラブに割れが見られなかった。本発明の範囲を外れる条件では鋼スラブに割れが観察された。
(Example 1)
Table 1 shows the composition of the steel slabs used in the test. The steel slabs were cooled under the cooling conditions including reheating shown in Tables 2-1 and 2-2. In Tables 2-1 and 2-2, t1 is the residence time (s) at 1200°C or more and 1450°C or less at the center of the slab width and 10 mm below the surface layer, and v1 is the residence time at the center of the slab width of 700°C or more. It is the average cooling rate (°C/hr) at 850°C or lower, v2 is the average cooling rate (°C/hr) at 550°C or higher and lower than 700°C, and v3 is the average cooling rate (°C/hr) at 400°C or higher and lower than 550°C. hr), v4 is the average cooling rate (°C/hr) to a cooling stop temperature of 250°C or more and less than 400°C, Tf is the cooling stop temperature (°C), and Th is the reheating temperature (°C). and v5 is the average cooling rate (°C/hr) at 200°C or higher and lower than the reheating temperature. In addition, in the "Cracks" column, the presence or absence of cracks during cooling of the slab was recorded. d (γ) is the average prior austenite grain size (mm), BF + TM is the total area ratio (%) of bainitic ferrite and tempered martensite, Rγ is the area ratio (%) of retained austenite, F is the area ratio (%) of ferrite, and P+FM is the total area ratio (%) of pearlite and hardened martensite. By subjecting the steel slab composition used in the experiment to appropriate cooling conditions including reheating, it was possible to satisfy the prior austenite grain size and microstructure according to the present invention, and no cracks were observed in the steel slab. Cracks were observed in the steel slab under conditions outside the scope of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例2)
 表3-1および3-2に試験に供した鋼スラブの成分組成を記載した。それらの鋼スラブを表4-1および4-2に示す、一様に温度降下する冷却条件で鋼スラブの冷却を行った。表4-1および4-2中の、t1はスラブ幅中央かつ表層下10mm位置における1200℃以上1450℃以下での滞留時間であり(s)、v1はスラブ幅中央の表面温度が700℃以上850℃未満における平均冷却速度(℃/hr)であり、v2は550℃以上700℃以下における平均冷却速度(℃/hr)であり、v3は400℃以上550℃未満における平均冷却速度(℃/hr)であり、v6は200℃以上400℃未満における平均冷却速度(℃/hr)である。また、「割れ」の欄には、スラブ冷却時の割れの有無を記載した。d(γ)は平均旧オーステナイト粒径(mm)であり、BF+TMはベイニティックフェライトおよび焼戻しマルテンサイトの面積率の合計(%)であり、Rγは残留オーステナイトの面積率(%)であり、Fはフェライトの面積率(%)であり、P+FMはパーライトおよび焼入れマルテンサイトの面積率の合計(%)である。実験に供した組成の鋼スラブは一様に温度降下する適切な冷却条件とすることで、本発明にかかる旧オーステナイト粒径およびミクロ組織を満足することができ、鋼スラブに割れが見られなかった。本発明の範囲を外れる条件では鋼スラブに割れが観察された。
(Example 2)
Tables 3-1 and 3-2 list the compositions of the steel slabs used in the test. The steel slabs were cooled under the cooling conditions shown in Tables 4-1 and 4-2, in which the temperature decreased uniformly. In Tables 4-1 and 4-2, t1 is the residence time (s) at 1200°C or higher and 1450°C or lower at the center of the slab width and 10 mm below the surface layer, and v1 is the residence time at the center of the slab width of 700°C or higher. It is the average cooling rate (°C/hr) at temperatures below 850°C, v2 is the average cooling rate (°C/hr) at temperatures above 550°C and below 700°C, and v3 is the average cooling rate (°C/hr) at temperatures above 400°C and below 550°C. hr), and v6 is the average cooling rate (°C/hr) at 200°C or higher and lower than 400°C. In addition, in the "Cracks" column, the presence or absence of cracks during cooling of the slab was recorded. d (γ) is the average prior austenite grain size (mm), BF + TM is the total area ratio (%) of bainitic ferrite and tempered martensite, Rγ is the area ratio (%) of retained austenite, F is the area ratio (%) of ferrite, and P+FM is the total area ratio (%) of pearlite and hardened martensite. The steel slab with the composition used in the experiment was able to satisfy the prior austenite grain size and microstructure according to the present invention by applying appropriate cooling conditions that uniformly lowered the temperature, and no cracks were observed in the steel slab. Ta. Cracks were observed in the steel slab under conditions outside the scope of the present invention.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 ついで、冷却した鋼スラブを表5-1および5-2に記載する条件で熱間圧延し、その後冷間圧延、焼鈍およびめっき処理に供した。表5-1および5-2中の、THsはスラブ加熱温度(℃)であり、THfは熱間圧延の仕上げ圧延終了温度(℃)であり、THrは熱間圧延鋼帯の巻取温度(℃)である。CRは冷間圧延の圧延率(%)であり、圧延までの板厚に対する圧延後の板厚の百分率を表す。TAは冷間圧延鋼板の焼鈍温度(℃)であり、TWは水焼き入れ開始温度(℃)であり、TAfは焼鈍後の冷却停止温度(℃)であり、TAhはその後の再加熱温度(℃)である。品種欄のCRは冷間圧延鋼板であり、GIは溶融亜鉛めっき鋼板であり、GAは合金化溶融亜鉛めっき鋼板であり、EGは電気亜鉛めっき鋼板であり、Alは溶融アルミめっき鋼板であり、HRは熱間圧延鋼板である。鋼スラブに割れが観察されなかった本発明にかかる鋼スラブを素材として熱間圧延した場合には、鋼板に表面欠陥は見られず、引張強度(TS)は590MPa以上が達成された。 The cooled steel slabs were then hot rolled under the conditions listed in Tables 5-1 and 5-2, and then subjected to cold rolling, annealing, and plating. In Tables 5-1 and 5-2, THs is the slab heating temperature (°C), THf is the finish rolling temperature of hot rolling (°C), and THr is the coiling temperature of the hot rolled steel strip (°C). ℃). CR is the rolling ratio (%) of cold rolling, and represents the percentage of the plate thickness after rolling with respect to the plate thickness before rolling. TA is the annealing temperature (°C) of the cold rolled steel plate, TW is the water quenching start temperature (°C), TAf is the cooling stop temperature after annealing (°C), and TAh is the subsequent reheating temperature (°C). ℃). In the product type column, CR is cold-rolled steel sheet, GI is hot-dip galvanized steel sheet, GA is alloyed hot-dip galvanized steel sheet, EG is electrogalvanized steel sheet, Al is hot-dip aluminized steel sheet, HR is a hot rolled steel plate. When the steel slab according to the present invention, in which no cracks were observed in the steel slab, was hot rolled, no surface defects were observed in the steel plate, and a tensile strength (TS) of 590 MPa or more was achieved.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明のスラブの冷却方法を用いることで、靭性の低い高合金スラブであっても鋳造後のスラブ割れが生じることがなく、製造時の歩留まりを大きく向上させることができる。また、本発明の高強度鋼板用スラブを用いることで、高合金であっても表面欠陥の無い高強度熱延鋼板、高強度冷延鋼板および高強度めっき鋼板を得ることができ、これらの鋼板を自動車足回り部品、構造部品、骨格部品に適用した場合、自動車の信頼性を担保しつつ車体重量を低減できるため産業上有用である。 By using the method for cooling slabs of the present invention, even high-alloy slabs with low toughness do not suffer from slab cracking after casting, and the yield during manufacturing can be greatly improved. In addition, by using the high-strength steel plate slab of the present invention, it is possible to obtain high-strength hot-rolled steel plates, high-strength cold-rolled steel plates, and high-strength plated steel plates that have no surface defects even if they are made of a high alloy, and these steel plates When applied to automobile suspension parts, structural parts, and frame parts, it is industrially useful because the weight of the car can be reduced while ensuring the reliability of the car.

Claims (10)

  1. 高強度鋼板用に連続鋳造したスラブであって、スラブ表層から10mm位置における、平均旧オーステナイト粒径が2.0mm以下であり、かつ、ミクロ組織は、ベイニティックフェライトおよび焼戻しマルテンサイトが面積率の合計で50%以上97%以下であり、残留オーステナイトが面積率で3%以上30%以下であり、フェライトが面積率で20%以下であり、パーライトおよび焼入れマルテンサイトが面積率の合計で20%以下であることを特徴とする高強度鋼板用スラブ。 A continuously cast slab for high-strength steel plate, in which the average prior austenite grain size at a position 10 mm from the slab surface layer is 2.0 mm or less, and the microstructure has an area ratio of bainitic ferrite and tempered martensite. The total area ratio of retained austenite is 3% or more and 30% or less, the area ratio of ferrite is 20% or less, and the total area ratio of pearlite and hardened martensite is 20% or less. % or less.
  2. 前記高強度鋼板用スラブは、
    質量%で、
    C:0.10%以上0.50%以下、
    Si:0.10%以上2.50%以下、
    Mn:1.00%以上5.00%以下、
    P:0.100%以下、
    S:0.0200%以下、
    Al:0.005%以上2.500%以下、
    N:0.0100%以下および
    O:0.0100%以下を含有し、
    さらに、任意選択的に、
    Ti:0.200%以下、
    Nb:0.200%以下、
    V:0.200%以下、
    Ta:0.10%以下、
    W:0.10%以下、
    B:0.0100%以下、
    Cr:1.00%以下、
    Mo:1.00%以下、
    Co:1.00%以下、
    Ni:1.00%以下、
    Cu:1.00%以下、
    Sn:0.200%以下、
    Sb:0.200%以下、
    Ca:0.0100%以下、
    Mg:0.0100%以下、
    REM:0.0100%以下、
    Zr:0.100%以下、
    Te:0.100%以下、
    Hf:0.10%以下および
    Bi:0.200%以下
    のうちから選ばれる少なくとも1種の元素を含有し、
    残部がFeおよび不可避的不純物からなる成分組成を有する、請求項1に記載の高強度鋼板用スラブ。
    The above-mentioned slab for high-strength steel plate is
    In mass%,
    C: 0.10% or more and 0.50% or less,
    Si: 0.10% or more and 2.50% or less,
    Mn: 1.00% or more and 5.00% or less,
    P: 0.100% or less,
    S: 0.0200% or less,
    Al: 0.005% or more and 2.500% or less,
    Contains N: 0.0100% or less and O: 0.0100% or less,
    Additionally, optionally,
    Ti: 0.200% or less,
    Nb: 0.200% or less,
    V: 0.200% or less,
    Ta: 0.10% or less,
    W: 0.10% or less,
    B: 0.0100% or less,
    Cr: 1.00% or less,
    Mo: 1.00% or less,
    Co: 1.00% or less,
    Ni: 1.00% or less,
    Cu: 1.00% or less,
    Sn: 0.200% or less,
    Sb: 0.200% or less,
    Ca: 0.0100% or less,
    Mg: 0.0100% or less,
    REM: 0.0100% or less,
    Zr: 0.100% or less,
    Te: 0.100% or less,
    Contains at least one element selected from Hf: 0.10% or less and Bi: 0.200% or less,
    The high-strength steel plate slab according to claim 1, having a composition in which the remainder is Fe and unavoidable impurities.
  3. 前記高強度鋼板用スラブは、
    質量%で、
    C:0.10%以上0.50%以下、
    Si:0.70%以上2.50%以下、
    Mn:1.00%以上5.00%以下、
    P:0.100%以下、
    S:0.0200%以下、
    Al:0.005%以上2.500%以下、
    N:0.0100%以下および
    O:0.0100%以下を含有し、
    さらに、任意選択的に、
    Ti:0.200%以下、
    Nb:0.200%以下、
    V:0.200%以下、
    Ta:0.10%以下、
    W:0.10%以下、
    B:0.0100%以下、
    Cr:1.00%以下、
    Mo:1.00%以下、
    Co:1.00%以下、
    Ni:1.00%以下、
    Cu:1.00%以下、
    Sn:0.200%以下、
    Sb:0.200%以下、
    Ca:0.0100%以下、
    Mg:0.0100%以下、
    REM:0.0100%以下、
    Zr:0.100%以下、
    Te:0.100%以下、
    Hf:0.10%以下および
    Bi:0.200%以下
    のうちから選ばれる少なくとも1種の元素を含有し、
    残部がFeおよび不可避的不純物からなる成分組成を有する、請求項1に記載の高強度鋼板用スラブ。
    The above-mentioned slab for high-strength steel plate is
    In mass%,
    C: 0.10% or more and 0.50% or less,
    Si: 0.70% or more and 2.50% or less,
    Mn: 1.00% or more and 5.00% or less,
    P: 0.100% or less,
    S: 0.0200% or less,
    Al: 0.005% or more and 2.500% or less,
    Contains N: 0.0100% or less and O: 0.0100% or less,
    Additionally, optionally,
    Ti: 0.200% or less,
    Nb: 0.200% or less,
    V: 0.200% or less,
    Ta: 0.10% or less,
    W: 0.10% or less,
    B: 0.0100% or less,
    Cr: 1.00% or less,
    Mo: 1.00% or less,
    Co: 1.00% or less,
    Ni: 1.00% or less,
    Cu: 1.00% or less,
    Sn: 0.200% or less,
    Sb: 0.200% or less,
    Ca: 0.0100% or less,
    Mg: 0.0100% or less,
    REM: 0.0100% or less,
    Zr: 0.100% or less,
    Te: 0.100% or less,
    Contains at least one element selected from Hf: 0.10% or less and Bi: 0.200% or less,
    The high-strength steel plate slab according to claim 1, having a composition in which the remainder is Fe and unavoidable impurities.
  4. 請求項2に記載の成分組成の前記高強度鋼板用スラブを、スラブ幅中央かつ表層下10mm位置における1200℃以上1450℃以下での滞留時間が130s以下となるように冷却をし、その後、スラブ幅中央の表面温度が700℃以上850℃以下における平均冷却速度が25℃/hr以上となるように冷却し、次いで550℃以上700℃未満における平均冷却速度が20℃/hr以上となるように冷却し、次いで400℃以上550℃未満における平均冷却速度が15℃/hr以上となるように冷却し、次いで250℃以上400℃未満の冷却停止温度まで平均冷却速度が10℃/hr以上となるように冷却し、次いで前記冷却停止温度超え450℃以下の再加熱温度になるように加熱し、その後200℃以上前記再加熱温度以下における平均冷却速度が30℃/hr以下となるように冷却することを特徴とする高強度鋼板用スラブの冷却方法。 The high-strength steel plate slab having the composition according to claim 2 is cooled so that the residence time at 1200° C. or higher and 1450° C. or lower at the center of the slab width and 10 mm below the surface layer is 130 seconds or less, and then the slab is cooled. Cool so that the average cooling rate is 25°C/hr or more when the surface temperature at the center of the width is 700°C or higher and 850°C or lower, and then cool so that the average cooling rate at 550°C or higher and lower than 700°C is 20°C/hr or higher. Cool, then cool so that the average cooling rate at 400°C or higher and lower than 550°C is 15°C/hr or higher, and then the average cooling rate is 10°C/hr or higher until the cooling stop temperature is 250°C or higher and lower than 400°C. Then, it is heated to a reheating temperature exceeding the cooling stop temperature and 450°C or less, and then cooled so that the average cooling rate at 200°C or more and below the reheating temperature is 30°C/hr or less. A method for cooling a slab for high-strength steel plate, characterized by:
  5. 請求項3に記載の成分組成の前記高強度鋼板用スラブを、スラブ幅中央かつ表層下10mm位置における1200℃以上1450℃以下での滞留時間が130s以下となるように冷却をし、その後、スラブ幅中央の表面温度が700℃以上850℃以下における平均冷却速度が25℃/hr以上となるように冷却し、次いで550℃以上700℃未満における平均冷却速度が20℃/hr以上となるように冷却し、次いで400℃以上550℃未満における平均冷却速度が10℃/hr以上となるように冷却し、次いで200℃以上400℃未満における平均冷却速度が30℃/hr以下となるように冷却することを特徴とする高強度鋼板用スラブの冷却方法。 The high-strength steel plate slab having the composition according to claim 3 is cooled so that the residence time at 1200° C. or higher and 1450° C. or lower at the center of the slab width and 10 mm below the surface layer is 130 seconds or less, and then the slab is cooled. Cool so that the average cooling rate is 25°C/hr or more when the surface temperature at the center of the width is 700°C or higher and 850°C or lower, and then cool so that the average cooling rate at 550°C or higher and lower than 700°C is 20°C/hr or higher. Cool, then cool so that the average cooling rate at 400°C or higher and lower than 550°C is 10°C/hr or higher, and then cool so that the average cooling rate at 200°C or higher and lower than 400°C is 30°C/hr or lower. A method for cooling a slab for high-strength steel plate, characterized by:
  6. 請求項1から3のいずれか1項に記載の高強度鋼板用スラブを、スラブ加熱温度が1000℃以上1300℃以下の範囲となるように加熱し、粗圧延後に仕上げ圧延終了温度が750℃以上1000℃以下となるように仕上げ圧延を行い、巻取り温度が室温以上750℃以下となるように巻取りを行うことを特徴とする高強度熱延鋼板の製造方法。 The slab for high-strength steel plate according to any one of claims 1 to 3 is heated so that the slab heating temperature is in the range of 1000°C or more and 1300°C or less, and after rough rolling, the finish rolling end temperature is 750°C or more. A method for producing a high-strength hot-rolled steel sheet, which comprises performing finish rolling at a temperature of 1000°C or lower, and winding at a coiling temperature of at least room temperature and at most 750°C.
  7. 請求項6に記載の製造方法で製造された高強度熱延鋼板を酸洗後に、圧下率が30%以上80%以下となるように冷間圧延を行い、
    さらに、任意選択的に、
    a)前記冷間圧延により得られた高強度冷延鋼板を、焼鈍温度が750℃以上950℃以下となるように加熱し、300℃以上600℃以下の冷却停止温度まで冷却し、次いで100℃以下まで冷却する処理、
    b)前記冷間圧延により得られた高強度冷延鋼板を、焼鈍温度が750℃以上950℃以下となるように加熱し、130℃以上400℃以下の冷却停止温度まで冷却し、次いで200℃以上450℃以下に再加熱し、その後100℃以下まで冷却する処理、および、
    c)前記冷間圧延により得られた高強度冷延鋼板を、焼鈍温度が750℃以上950℃以下となるように加熱し、500℃以上で水焼入れを開始し、100℃以下まで水冷後、100℃以上300℃以下で再加熱する処理
    から選ばれる1つの処理を行うことを特徴とする高強度冷延鋼板の製造方法。
    After pickling the high-strength hot rolled steel sheet produced by the production method according to claim 6, cold rolling is performed so that the rolling reduction is 30% or more and 80% or less,
    Additionally, optionally,
    a) The high-strength cold-rolled steel sheet obtained by the cold rolling is heated to an annealing temperature of 750°C or higher and 950°C or lower, cooled to a cooling stop temperature of 300°C or higher and 600°C or lower, and then heated to 100°C. The process of cooling down to
    b) The high-strength cold rolled steel sheet obtained by the cold rolling is heated so that the annealing temperature is 750°C or more and 950°C or less, cooled to a cooling stop temperature of 130°C or more and 400°C or less, and then 200°C. A process of reheating above to 450°C or lower and then cooling to 100°C or lower, and
    c) The high-strength cold-rolled steel sheet obtained by the cold rolling is heated so that the annealing temperature is 750°C or higher and 950°C or lower, water quenching is started at 500°C or higher, and after water cooling to 100°C or lower, A method for producing a high-strength cold-rolled steel sheet, the method comprising performing one treatment selected from reheating at a temperature of 100°C or higher and 300°C or lower.
  8. 請求項7に記載の冷間圧延により得られた高強度冷延鋼板を、焼鈍温度が750℃以上950℃以下となるように加熱し、ついで、前記高強度冷延鋼板に、溶融金属めっき処理を施してめっき鋼板とし、ついで、前記めっき鋼板を、冷却停止温度150℃以下の条件で冷却し、
    任意選択的に、前記溶融金属めっき処理を、亜鉛めっき、亜鉛系合金めっき、亜鉛-Al合金めっき、および、Alめっきから選ばれる1種とすることを特徴とする高強度めっき鋼板の製造方法。
    The high-strength cold-rolled steel sheet obtained by the cold rolling according to claim 7 is heated so that the annealing temperature is 750° C. or higher and 950° C. or lower, and then the high-strength cold-rolled steel sheet is subjected to molten metal plating treatment. to obtain a plated steel plate, and then cool the plated steel plate at a cooling stop temperature of 150°C or less,
    Optionally, the hot-dip metal plating treatment is one type selected from zinc plating, zinc-based alloy plating, zinc-Al alloy plating, and Al plating. A method for producing a high-strength plated steel sheet.
  9. 前記溶融金属めっき処理を施しためっき鋼板に合金化処理を施すことを特徴とする請求項8に記載の高強度めっき鋼板の製造方法。 9. The method for manufacturing a high-strength plated steel sheet according to claim 8, wherein the plated steel sheet that has been subjected to the hot-dip metal plating treatment is subjected to an alloying treatment.
  10. 請求項7に記載の製造方法で製造された高強度冷延鋼板を用い、表面に電気めっき処理を施し、
    任意選択的に、前記電気めっき処理を、亜鉛めっき、亜鉛系合金めっき、亜鉛-Al合金めっき、および、Alめっきから選ばれる1種とすることを特徴とする高強度めっき鋼板の製造方法。

     
    Using a high-strength cold-rolled steel sheet manufactured by the manufacturing method according to claim 7, electroplating is applied to the surface,
    Optionally, the electroplating process is one type selected from zinc plating, zinc-based alloy plating, zinc-Al alloy plating, and Al plating. A method for producing a high-strength plated steel sheet.

PCT/JP2023/012741 2022-05-09 2023-03-29 Slab for high-strength steel sheet and cooling method thereof, method for producing high-strength hot-rolled steel sheet, method for producing high-strength cold-rolled steel sheet, and method for producing high-strength plated steel sheet WO2023218785A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023539842A JP7396544B1 (en) 2022-05-09 2023-03-29 Slabs for high-strength steel plates and their cooling methods, methods for producing high-strength hot-rolled steel plates, methods for producing high-strength cold-rolled steel plates, and methods for producing high-strength plated steel plates.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-077128 2022-05-09
JP2022077128 2022-05-09

Publications (1)

Publication Number Publication Date
WO2023218785A1 true WO2023218785A1 (en) 2023-11-16

Family

ID=88730002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012741 WO2023218785A1 (en) 2022-05-09 2023-03-29 Slab for high-strength steel sheet and cooling method thereof, method for producing high-strength hot-rolled steel sheet, method for producing high-strength cold-rolled steel sheet, and method for producing high-strength plated steel sheet

Country Status (2)

Country Link
JP (1) JP7396544B1 (en)
WO (1) WO2023218785A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181861A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Ind Ltd Continuously cast slab
JP2019167559A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2019167560A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2020139210A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Cooling method of slab of high tensile steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181861A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Ind Ltd Continuously cast slab
JP2019167559A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2019167560A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2020139210A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Cooling method of slab of high tensile steel

Also Published As

Publication number Publication date
JP7396544B1 (en) 2023-12-12
JPWO2023218785A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
EP3309273B1 (en) Galvannealed steel sheet and method for manufacturing same
US20220251676A1 (en) High-strength steel sheet and method for manufacturing same
JP6729835B1 (en) High-strength steel sheet and method for manufacturing the same
US10662495B2 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
US10329638B2 (en) High strength galvanized steel sheet and production method therefor
KR102654714B1 (en) High-strength member, method of manufacturing high-strength member, and method of manufacturing steel plate for high-strength member
KR102547459B1 (en) Steel plate, member and manufacturing method thereof
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
KR20140099544A (en) High-strength steel sheet and method for manufacturing same
JP6787535B1 (en) High-strength steel sheet and its manufacturing method
JP5070947B2 (en) Hardened steel plate member, hardened steel plate and manufacturing method thereof
EP3901293B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method therefor
CN113227415B (en) Steel sheet, member, and method for producing same
JP6769576B1 (en) High-strength galvanized steel sheet and its manufacturing method
CN115461482A (en) Steel sheet, component and method for producing same
JP7195501B1 (en) Hot-dip galvanized steel sheet, manufacturing method thereof, and member
JP7396544B1 (en) Slabs for high-strength steel plates and their cooling methods, methods for producing high-strength hot-rolled steel plates, methods for producing high-strength cold-rolled steel plates, and methods for producing high-strength plated steel plates.
JP4826694B2 (en) Method for improving fatigue resistance of thin steel sheet
JP7215647B1 (en) High-strength steel plate and its manufacturing method
JP7193044B1 (en) High-strength steel plate, manufacturing method thereof, and member
WO2024090011A1 (en) High-strength steel sheet, member, and manufacturing methods therefor
WO2023218786A1 (en) Continuous casting slab and method for manufacturing same
WO2023189183A1 (en) Hot-stamp-formed article
JP2024069381A (en) Manufacturing method of continuous casting slab
JP2022024998A (en) High strength steel sheet and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023539842

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803268

Country of ref document: EP

Kind code of ref document: A1