WO2023218784A1 - Continuous cast slab - Google Patents

Continuous cast slab Download PDF

Info

Publication number
WO2023218784A1
WO2023218784A1 PCT/JP2023/012738 JP2023012738W WO2023218784A1 WO 2023218784 A1 WO2023218784 A1 WO 2023218784A1 JP 2023012738 W JP2023012738 W JP 2023012738W WO 2023218784 A1 WO2023218784 A1 WO 2023218784A1
Authority
WO
WIPO (PCT)
Prior art keywords
slab
less
content
toughness
ferrite
Prior art date
Application number
PCT/JP2023/012738
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 川▲崎▼
智也 小田垣
健二 鼓
和彦 山崎
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023541323A priority Critical patent/JPWO2023218784A1/ja
Publication of WO2023218784A1 publication Critical patent/WO2023218784A1/en
Priority to JP2024037206A priority patent/JP2024069381A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a continuously cast slab that prevents cracking during cooling.
  • cracking With the decrease in toughness due to high alloying, cracking during cooling of the slab, so-called cracking, has become more frequent. If cracks occur, the slab will break during slab transportation, making it impossible to use it for hot rolling. Further, even if the slab does not break, cracks open during hot rolling and the hot rolled steel plate breaks. Alternatively, if the cracks are small, they appear as surface defects such as sludge marks and sliver marks on the steel plate after hot rolling, cold rolling, annealing, or plating. Usually, cracks on the slab surface are removed using a grinder. However, the toughness of the slab decreases due to high alloying, and cracks may propagate due to the stress of the grinder, making it impossible to completely remove them. Small cracks may be overlooked and may appear as surface defects on the steel sheet after hot rolling, cold rolling, annealing, or plating. For this reason, it is necessary to suppress cracking of the slab.
  • Figure 1 is an observation image of the fracture surface of a crack in a continuously cast slab using a scanning electron microscope (SEM).
  • the fracture surface had the appearance of a grain boundary fracture surface along prior austenite grain boundaries.
  • Figure 2 shows a photograph of the cross section of the crack.
  • the depth of the cracks was mainly about 20 mm from the surface layer of the slab.
  • the crack propagated near the prior austenite grain boundary, and grain boundary ferrite was present at the crack tip.
  • pearlite or pearlite and bainite were observed within the prior austenite grains.
  • Grain boundary fracture occurs when the prior austenite grains are coarse and the grain boundaries become brittle. Precipitates and ferrite are more likely to form at grain boundaries than inside grains. Precipitates at grain boundaries reduce grain boundary strength and become a factor in reducing toughness. If the prior austenite grains are coarse, the proportion occupied by the grain boundaries will decrease, and the density of precipitates will increase, making the grain boundaries even more brittle. Further, when grain boundary ferrite is generated, there is a difference in strength between pearlite and bainite within the grain, so stress concentration occurs in the grain boundary ferrite portion, which has low strength, and even a lower stress develops into cracks.
  • Patent Document 1 discloses a method of suppressing bainite/martensite transformation and reducing stress caused by the transformation expansion by slowly cooling the material to 700 to 500°C, which is the temperature range at which austenite transforms to ferrite.
  • Patent Document 2 discloses that slow cooling is started immediately after casting, and further slow cooling is carried out at a temperature of 700 to 500 °C for 10 hours or more at a temperature of 700 °C or higher to reduce temperature differences and stress during transformation. A method is disclosed.
  • Patent Documents 1 and 2 for cooling a high-strength steel slab after casting control the internal stress generated in the slab to be small.
  • the toughness of slabs in recent high-alloyed high-strength steels is low, the state of prior austenite grain boundaries, where cracks propagate, is also extremely important.
  • the prior austenite grain size and grain boundary ferrite are not controlled, and the microstructure of the slab is not limited in any way.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a continuously cast slab that does not cause slab cracking during cooling, even if it is a high alloy slab with low toughness. .
  • the inventors have made extensive studies to achieve the above objective. As a result, we analyzed the fracture morphology of slab cracks, and found that the fracture surface was at least one of the following: intergranular fracture surfaces along prior austenite grain boundaries, and intragranular fracture surfaces (cleavage fracture surfaces) that cross prior austenite grain boundaries. discovered that seeds exist. Furthermore, the inventors conducted detailed studies and found that cracking in slabs cannot be suppressed by stress reduction alone by controlling the cooling rate and reducing temperature unevenness, and that the morphology of the microstructure has a large effect. I made it. Specifically, the inventors discovered that by controlling the average prior austenite grain size and microstructure of continuously cast slabs and improving their toughness, slab cracking during the cooling process of continuously cast slabs can be suppressed, and this led to the invention. did.
  • the present invention was completed based on the above findings and further studies. That is, the gist of the present invention is as follows. 1. A continuously cast slab for high-strength steel, wherein the average prior austenite grain size at a position 10 mm from the surface of the continuous cast slab is 100 ⁇ m or more and 0.5 mm or less, and the microstructure is 10% or more of ferrite in terms of area ratio. , a continuously cast slab characterized by containing 10% or more of pearlite and 1% or more and 30% or less of bainite. 2. 1. The continuous casting slab contains, in mass %, C: 0.10 to 0.40%, Si: 0.10 to 2.50%, and Mn: 1.00 to 5.00%. Continuous casting slab.
  • the present invention it is possible to provide a continuously cast slab that does not generate cracks during the cooling process even if the component system is a high-alloy high-strength steel plate.
  • % indicating the composition ratio of the microstructure means “area %” unless otherwise specified.
  • tissue was observed at room temperature.
  • Average prior austenite grain size 100 ⁇ m or more and 0.5 mm or less
  • the average prior austenite grain size is a factor that determines the unit of fracture, and the larger it is, the lower the toughness of the slab is, and slab cracks exhibiting intergranular fracture surfaces occur.
  • the average prior austenite grain size is very large, several mm in size. For this reason, the toughness of the continuously cast slab is greatly reduced. This did not pose a problem with conventional low-alloy steels due to their high inherent toughness, but it can become a very serious problem with high-alloy high-strength steels.
  • the average prior austenite grain size at a position 10 mm from the surface layer of the continuous casting slab is set to 100 ⁇ m or more and 0.5 mm or less.
  • the factor that determines the austenite grain size is the cooling temperature. For example, after rapidly cooling the slab surface to below the Bs point in a temperature range of 1200 to 900°C at the center of the slab width, cooling is stopped and the temperature returns to the Ac3 point or above. By heating, it is possible to refine the average prior austenite grain size at a depth of 10 mm from the surface layer of the continuous casting slab. In addition, it is preferable to perform cooling so that the residence time at 1450 to 1200° C. is 40 seconds or more and 130 seconds or less.
  • the temperature history at a position 10 mm below the surface layer of the continuous casting slab was calculated by heat transfer analysis.
  • the analysis position was set at the center of the slab width, where the residence time in the above temperature range is the longest within the slab. Note that the average prior austenite grain size is preferably 0.4 mm or less.
  • the ratio of internal structures such as ferrite, pearlite, and bainite below the austenite grains is also a factor that determines the unit of fracture, and it is known that toughness can be improved with an appropriate ratio.
  • the microstructure of the slab is greatly influenced by the cooling rate below the temperature at which austenite transforms into ferrite (Ar 3 temperature).
  • the inventors improved the toughness of the steel slab by controlling the cooling rate and controlling the microstructure so that the area ratio was 10% or more ferrite, 10% or more pearlite, and 1% or more and 30% or less bainite. I found out what to do.
  • the bainite content is 5% or more and 30% or less.
  • the cooling rate for controlling the microstructure described above varies greatly depending on the steel composition. Therefore, a continuous cooling transformation diagram (CCT diagram) of steel with the above components was prepared, and a cooling rate at which the microstructure becomes suitable was determined.
  • CCT diagram continuous cooling transformation diagram
  • This cooling condition can be controlled by changing conditions such as the temperature of the slabs at the exit side of the continuous casting machine, the time it takes to stack the slabs, the number of slabs to be stacked, or water toughness treatment.
  • the cooling rate was measured using a thermocouple. After the slab came out of the continuous casting machine, a thermocouple was installed at the center of the upper surface (longitudinal center and widthwise center) of the wide surface (long side x width) of the slab.
  • Continuously cast slabs containing a large amount of C, Si, and Mn have extremely low toughness, and by controlling only the average prior austenite grain size and microstructure type to meet the requirements, sufficient toughness is ensured to prevent placement cracks. I was unable to do so, and a crack occurred. Therefore, it is important that the continuous casting slab for high-strength steel according to this embodiment simultaneously satisfies the requirements for the average prior austenite grain size and the microstructure.
  • C is an important element that increases the strength of steel sheets. If the C content is less than 0.10%, it becomes difficult to achieve the tensile strength required for the steel plate. On the other hand, if the C content exceeds 0.40%, the microstructure in which ferrite, pearlite, and bainite are mixed cannot be obtained as described above. Therefore, the C content is set in the range of 0.10 to 0.40%. Preferably it is 0.12% or more. Preferably it is 0.35% or less. More preferably, it is 0.15% or more. More preferably, it is 0.30% or less.
  • Si 0.10-2.50%
  • Si needs to be added in order to ensure retained austenite in the annealing process.
  • it is an essential additive element because it contributes to increasing strength through solid solution strengthening. From this, it is necessary to add 0.10% or more.
  • addition of more than 2.50% not only saturates the effect, but also causes strong scale to occur in the hot rolled sheet. Since this deteriorates the appearance and pickling properties, the upper limit is set at 2.50%. Therefore, the Si content is set in the range of 0.10 to 2.50%.
  • it is 0.50% or more.
  • it is 2.0% or less. More preferably, it is 1.00% or more. More preferably, it is 1.80% or less.
  • Mn is an element added to increase the strength of the steel sheet. Specifically, it is an element added to control steel sheet strength through transformation control during hot rolling. If it is less than 1.00%, sufficient reinforcement cannot be achieved, so it is necessary to add 1.00% or more. On the other hand, if it is added in excess of 5.00%, the effect will be saturated and it will be uneconomical. Therefore, the Mn content is set in the range of 1.00 to 5.00%. Preferably it is 1.50% or more. Preferably it is 4.50% or less. More preferably, it is 1.80% or more. More preferably, it is 4.00% or less.
  • the continuous casting slab of the present embodiment has the above-mentioned component composition, with the remainder consisting of Fe and unavoidable impurities, and has an average prior austenite grain size and microstructure within an appropriate range.
  • P is 0.100% or less
  • S is 0.0200% or less
  • N is 0.0100% or less
  • sol. It may contain 0.100% or less of Al and 0.0100% or less of O.
  • impurities include Zn, Pb, and As. The total content of these unavoidable impurities is allowed to be 0.100% or less.
  • the content of P is preferably 0.100% or less.
  • the lower limit of the P content is not particularly defined, it is preferably 0.001% or more since P is a solid solution strengthening element and can increase the strength of the steel sheet. Therefore, the content of P is preferably 0.100% or less. Preferably it is 0.001% or more. More preferably, it is 0.070% or less.
  • the S content is an element that exists as a sulfide and causes slab embrittlement. Therefore, the S content is preferably 0.0200% or less. Although the lower limit of the S content is not particularly specified, it is preferably 0.0001% or more due to production technology constraints. Therefore, the S content is preferably 0.0200% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
  • Al is an element that affects the fraction of retained austenite in the slab because it suppresses the generation of carbides during cooling of the slab and promotes the generation of retained austenite. Further, it is preferable to add 0.005% or more for deoxidation. If the Al content exceeds 0.100%, there is a risk of slab embrittlement. Therefore, the Al content is preferably 0.100% or less. More preferably, it is 0.010% or more. More preferably, it is 0.080% or less.
  • the N content is an element that exists as a nitride and causes slab embrittlement. Therefore, the N content is preferably 0.0100% or less. Although the lower limit of the N content is not particularly specified, it is preferable that the N content is 0.0001% or more due to constraints on production technology. Therefore, the N content is preferably 0.0100% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
  • O is an element that exists as an oxide and causes embrittlement of the slab. Therefore, the content of O is preferably 0.0100% or less. Although the lower limit of the O content is not particularly defined, it is preferable that the O content is 0.0001% or more due to production technology constraints. Therefore, the O content is preferably 0.0100% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
  • the continuous casting slab of this embodiment is for high-strength steel, and in addition to the above-mentioned composition, Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, Ta: 0.10% or less, W: 0.10% or less, B: 0.0100% or less, Cr: 1.00% or less, Mo: 1.00% or less, Ni: 1.00% or less, Co: 1.
  • At least one element selected from Zr: 0.020% or less, Te: 0.020% or less, Hf: 0.10% or less, and Bi: 0.200% or less is used alone or in combination. A combination of the above may be contained.
  • the contents of Ti, Nb, and V are each 0.200% or less.
  • the lower limits of the content of Ti, Nb, and V are not particularly specified, but the strength of the steel sheet can be increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. Therefore, it is more preferable that the contents of Ti, Nb, and V are each 0.001% or more. Therefore, when Ti, Nb, and V are contained, their contents are each 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • the contents of Ta and W are each 0.10% or less. Note that there is no particular lower limit to the content of Ta and W, but the strength of the steel sheet is increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. It is more preferable that the contents of Ta and W are each 0.01% or more. Therefore, when Ta and W are contained, their contents are each 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
  • the content of B is preferably 0.0100% or less.
  • the lower limit of the B content is not particularly specified, but since it is an element that segregates at austenite grain boundaries during hot rolling and annealing and improves hardenability, the B content should be 0.0003% or more. It is more preferable to do so. Therefore, when B is contained, its content should be 0.0100% or less. More preferably, it is 0.0003% or more. More preferably, it is 0.0080% or less.
  • each of Cr, Mo, and Ni is 1.00% or less, coarse precipitates and inclusions do not increase and the toughness of the slab does not deteriorate. Therefore, it is preferable that the contents of Cr, Mo, and Ni are each 1.00% or less.
  • the lower limit of the content of Cr, Mo, and Ni is not particularly specified, but since they are elements that improve hardenability, it is more preferable that the content of Cr, Mo, and Ni is each 0.01% or more. . Therefore, when Cr, Mo, and Ni are contained, their contents are each 1.00% or less. More preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
  • the Co content is preferably 1.00% or less.
  • the lower limit of the Co content is not particularly specified, since it is an element that improves hardenability, the Co content is more preferably 0.001% or more. Therefore, when Co is contained, the content should be 1.00% or less. More preferably, it is 0.001% or more. More preferably, it is 0.80% or less.
  • the Cu content is preferably 1.00% or less.
  • the lower limit of the Cu content is not particularly specified, since it is an element that improves hardenability, the Cu content is preferably 0.01% or more. Therefore, if Cu is contained, the content should be 1.00% or less. More preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
  • the content of Sn is preferably 0.200% or less.
  • the lower limit of the Sn content is not particularly specified, but since Sn is an element that improves hardenability (generally an element that improves corrosion resistance), the Sn content should be 0.001% or more. It is more preferable. Therefore, if Sn is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • the content of Sb is preferably 0.200% or less.
  • the lower limit of the Sb content is not particularly defined, it is more preferable that the Sb content is 0.001% or more, since it is an element that suppresses decarburization and enables the strength adjustment of steel sheets. . Therefore, if Sb is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • the content of Ca, Mg and REM is preferably 0.0100% or less.
  • the lower limits of the contents of Ca, Mg, and REM are not particularly stipulated, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the toughness of slabs, the contents of Ca, Mg, and REM are More preferably, each content is 0.0005% or more. Therefore, when Ca, Mg and REM are contained, their contents are each 0.0100% or less. More preferably, it is 0.0005% or more. More preferably, it is 0.0050% or less.
  • the contents of Zr and Te are preferably 0.100% or less.
  • the lower limits of the contents of Zr and Te are not particularly specified, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the toughness of the slab, the contents of Zr and Te are each 0.001. % or more is more preferable. Therefore, when Zr and Te are contained, their contents are each 0.100% or less. More preferably, it is 0.001% or more. More preferably, it is 0.080% or less.
  • the Hf content is preferably 0.10% or less. Note that there is no particular lower limit to the Hf content, but since it is an element that spheroidizes the shape of nitrides and sulfides and improves the ultimate deformability of steel sheets, the Hf content should be 0.01% or more. It is more preferable to do so. Therefore, if Hf is contained, the content should be 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
  • the Bi content is preferably 0.200% or less.
  • the lower limit of the Bi content is not particularly defined, since it is an element that reduces segregation, the Bi content is more preferably 0.001% or more. Therefore, when Bi is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
  • each content of Ti, Nb, V, Ta, W, B, Cr, Mo, Ni, Co, Cu, Sn, Sb, Ca, Mg, REM, Zr, Te, Hf and Bi is preferable. If it is less than the lower limit, the effect of the present invention will not be impaired, and therefore it is included as an unavoidable impurity.
  • the method for measuring the average prior austenite grain size is as follows. A sample was cut out from the width center position of the slab after cooling, so that the slab thickness cross section parallel to the slab width direction served as the observation surface. Next, the observation surface is mirror-polished using diamond paste, then finish-polished using colloidal silica, and further etched with 3 vol % nital to reveal the structure on the observation surface. Using an optical microscope, 5 fields of view are observed at 10x magnification at a position 10 mm below the surface layer of the continuous casting slab to obtain a tissue image. The obtained structure image was cut according to JIS G 0551:2020 to determine the average value of the prior austenite grain size.
  • PHOTOSHOP registered trademark
  • the area ratio of ferrite was calculated for 10 fields of view, and the values were averaged to determine the area ratio of ferrite.
  • ferrite has a larger grain size than other structures (pearlite, bainite, tempered martensite, hardened martensite, retained austenite), has a smooth surface, and has a dark contrast, so it can be easily seen at 50x magnification. I can tell the difference.
  • the evaluation method for slab cracks is based on the penetrant test specified in JIS Z 2343:2017, and cracks on wide areas (length x width) and narrow areas (length x thickness) other than the cut surface of the slab are evaluated. The presence or absence was evaluated. After applying the developer, the appearance of the penetrating solution was visually observed to visually check for cracks and flaws on the surface.
  • Table 1 shows the chemical composition of the steel used in the study
  • Table 2 shows the slab cooling conditions, slab microstructure, and slab cracking mode.
  • F, P, and B in the microstructure column represent ferrite, pearlite, and bainite, respectively.
  • Test No. Conditions 1 to 4 are conditions in which the average prior austenite grain size at a position 10 mm below the surface layer of the continuous casting slab is larger than 0.5 mm. In these cases, slab cracking could not be suppressed even if various changes were made to the conditions for cooling the slab after it exited the continuous casting machine.
  • Test No. Examples 5 to 9 are examples in which the average prior austenite grain size at a position 10 mm below the surface of the continuously cast slab is 0.5 mm or less, but the microstructure types or their ratios were not compatible and slab cracking could not be suppressed.
  • Test No. Nos. 10 to 23 are invention examples in which the average prior austenite grain size at a position 10 mm below the surface layer of the continuous casting slab is 0.5 mm or less, and the microstructure has an area ratio of 10% or more of ferrite and 10% of pearlite. % or more, and the bainite content was 1% or more and 30% or less. No slab cracking occurred in these after cooling.
  • the continuously cast slab according to the present invention may be transshipped depending on various conditions.
  • the cooling rate of the continuously cast slab may temporarily exceed the predetermined cooling rate.
  • the average cooling rate is defined instead of the maximum cooling rate.
  • the slab surface is rapidly cooled to below the Bs point, and then the cooling is stopped and the AC 3 points
  • This can be achieved by recuperating the heat above and then setting the average cooling rate at a temperature of 850° C. to 700° C. and a temperature of 700° C. to 500° C. within a predetermined range, respectively.
  • the manufacturing method is not limited to this method.
  • FIG. 3 is a continuous cooling transformation diagram (CCT diagram) of Steel C in Table 1.
  • CCT diagram continuous cooling transformation diagram
  • the transformation start lines of ferrite, pearlite, bainite, and martensite, and the transformation end lines of martensite are indicated by symbols F, P, B, Ms, and Mf.
  • the cooling rate lines are indicated by symbols X, Y, Z, and W in descending order of cooling rate. Since the three phases of ferrite, pearlite, and bainite precipitate in the range Y to Z on the cooling rate line, it can be seen that a suitable cooling rate is within this range.
  • the cooling rate of a cast slab is generally not always constant, it is preferable to treat it as a guideline.
  • the method of creating the continuous cooling transformation diagram to be used is not particularly specified. It may be calculated using general commercial software or created through experiments.
  • the continuous casting slab has a microstructure that conforms to the present invention, it is possible to provide a continuous casting slab for high-alloy high-strength steel plates without slab cracking after casting, and it is also possible to prevent problems such as holes during rolling. Therefore, it is industrially useful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is a continuous cast slab that, even if the slab is highly alloyed and has low ductility, is configured not to cause slab fracture during cooling of the slab. The continuous cast slab for high-strength steel that, at a 10 mm position from the surface of the continuous cast slab, has an average former austenite grain size of 100 μm-0.5 mm, and has a micro structure in which, in terms of area ratio, ferrite is at least 10%, pearlite is at least 10%, and bainite is 1-30%. Preferably, the continuous cast slab contains, in terms of mass%, 0.10 to 0.40% of C, 0.10 to 2.50% of Si and 1.00 to 5.00% of Mn.

Description

連続鋳造スラブContinuous casting slab
 本発明は、冷却時の割れを防止した連続鋳造スラブに関する。 The present invention relates to a continuously cast slab that prevents cracking during cooling.
 近年、自動車の分野では、車体のさらなる薄肉化と衝突安全性の確保の両立のため、高強度鋼のさらなる高強度化、そのための高合金化が進行している。高合金化によりスラブの靭性を大きく低下させている。 In recent years, in the field of automobiles, in order to achieve both further thinning of car bodies and ensuring collision safety, progress has been made in increasing the strength of high-strength steels and using higher alloys for this purpose. High alloying greatly reduces the toughness of the slab.
 高合金化による靭性の低下に伴い、スラブ冷却時の割れ、いわゆる、置き割れが頻発するようになってきた。置き割れが生じると、スラブ搬送時にスラブが破断し、熱間圧延に供することができなくなる。また、スラブが破断しなくとも、熱間圧延中にき裂が開口して、熱間圧延鋼板が破断する。あるいは、き裂が小さいものについては、熱間圧延後や冷間圧延後、焼鈍後あるいはめっき後の鋼板にヘゲ疵やスリバー疵などの表面欠陥となって表れる。通常、スラブ表面のき裂はグラインダーで除去している。ところが、高合金化によってスラブの靭性が低下し、グラインダーの応力によりき裂が進展してしまい、完全に除去することができないことがある。き裂が小さいものについては、見逃される場合があり、熱間圧延後、冷間圧延後、焼鈍後あるいはめっき後の鋼板に表面欠陥として現れる場合がある。このことから、スラブの割れは抑制する必要がある。 With the decrease in toughness due to high alloying, cracking during cooling of the slab, so-called cracking, has become more frequent. If cracks occur, the slab will break during slab transportation, making it impossible to use it for hot rolling. Further, even if the slab does not break, cracks open during hot rolling and the hot rolled steel plate breaks. Alternatively, if the cracks are small, they appear as surface defects such as sludge marks and sliver marks on the steel plate after hot rolling, cold rolling, annealing, or plating. Usually, cracks on the slab surface are removed using a grinder. However, the toughness of the slab decreases due to high alloying, and cracks may propagate due to the stress of the grinder, making it impossible to completely remove them. Small cracks may be overlooked and may appear as surface defects on the steel sheet after hot rolling, cold rolling, annealing, or plating. For this reason, it is necessary to suppress cracking of the slab.
 図1は走査電子顕微鏡(SEM)による連続鋳造スラブの亀裂部破面の観察像である。破面は旧オーステナイト粒界に沿った粒界破面の様相を呈していた。図2に亀裂部の断面を組織写真で示す。亀裂の深さは主にスラブ表層から20mm程度であった。亀裂は旧オーステナイト粒界近傍を伝播しており、亀裂先端には粒界フェライトが存在していた。また、旧オーステナイト粒内には、パーライト、あるいは、パーライトとベイナイトが観察された。 Figure 1 is an observation image of the fracture surface of a crack in a continuously cast slab using a scanning electron microscope (SEM). The fracture surface had the appearance of a grain boundary fracture surface along prior austenite grain boundaries. Figure 2 shows a photograph of the cross section of the crack. The depth of the cracks was mainly about 20 mm from the surface layer of the slab. The crack propagated near the prior austenite grain boundary, and grain boundary ferrite was present at the crack tip. In addition, pearlite or pearlite and bainite were observed within the prior austenite grains.
 粒界破壊は、旧オーステナイト粒が粗大であり、粒界が脆化した場合に発生する。粒界は粒内に比べて析出物やフェライトが生成しやすい。粒界の析出物は粒界強度を下げ、靭性を低下させる要因となる。旧オーステナイト粒が粗大であると、粒界の占める割合が少なくなり、析出物密度が大きくなるため粒界はさらに脆化する。また、粒界フェライトが生じた場合、粒内のパーライトおよびベイナイトとの強度差が生じるため、強度の低い粒界フェライト部に応力集中が起こり、より低い応力でも亀裂へと進展する。こちらも旧オーステナイト粒が粗大であると、直線的に薄く伸びた粒界フェライトが析出してしまうため、割れの伸展を止めることができず被害が拡大する。一方、スラブを冷却すると、スラブ表面と内部の熱収縮差や変態膨張差に起因した応力が発生する。この応力が高いとスラブを室温まで冷却する際にスラブ割れが発生する。近年の高合金高強度鋼ではスラブの靭性が低いため、このように発生した亀裂が深く、グラインダー等の手入れによって除去することが困難であり、スラブの歩留まりを大きく下げる問題となっていた。 Grain boundary fracture occurs when the prior austenite grains are coarse and the grain boundaries become brittle. Precipitates and ferrite are more likely to form at grain boundaries than inside grains. Precipitates at grain boundaries reduce grain boundary strength and become a factor in reducing toughness. If the prior austenite grains are coarse, the proportion occupied by the grain boundaries will decrease, and the density of precipitates will increase, making the grain boundaries even more brittle. Further, when grain boundary ferrite is generated, there is a difference in strength between pearlite and bainite within the grain, so stress concentration occurs in the grain boundary ferrite portion, which has low strength, and even a lower stress develops into cracks. Again, if the prior austenite grains are coarse, grain boundary ferrite that stretches thinly in a straight line will precipitate, making it impossible to stop the crack from spreading and causing more damage. On the other hand, when the slab is cooled, stress is generated due to differences in thermal contraction and transformation expansion between the surface and the inside of the slab. If this stress is high, slab cracking will occur when the slab is cooled to room temperature. Due to the low toughness of the slabs of recent high-alloy high-strength steels, the cracks that occur are deep and difficult to remove by cleaning with a grinder, etc., and this has been a problem that greatly reduces the yield of slabs.
 この点について、たとえば、特許文献1や2に記載されているような、スラブの割れに対する対策が検討されている。特許文献1には、オーステナイトからフェライトに変態する温度域である700~500℃を徐冷することで、ベイナイト/マルテンサイト変態を抑制し、その変態膨張によって生じる応力を低減させる方法が開示されている。特許文献2には、鋳造後すぐに徐冷を開始し、700℃以上の温度で10時間以上、700~500℃までの温度をさらに徐冷することで温度差や変態時の応力を低減する方法が開示されている。 Regarding this point, countermeasures against slab cracking are being considered, for example, as described in Patent Documents 1 and 2. Patent Document 1 discloses a method of suppressing bainite/martensite transformation and reducing stress caused by the transformation expansion by slowly cooling the material to 700 to 500°C, which is the temperature range at which austenite transforms to ferrite. There is. Patent Document 2 discloses that slow cooling is started immediately after casting, and further slow cooling is carried out at a temperature of 700 to 500 °C for 10 hours or more at a temperature of 700 °C or higher to reduce temperature differences and stress during transformation. A method is disclosed.
特開2020-139209号公報Japanese Patent Application Publication No. 2020-139209 特開2019-167560号公報Japanese Patent Application Publication No. 2019-167560
 しかしながら、従来技術には以下のような課題があった。特許文献1や2に記載された高張力鋼のスラブを鋳造後に冷却する方法は、スラブに発生する内部応力が小さくなるように制御している。しかし、近年の高合金化された高強度鋼ではスラブの靭性が低いため、置き割れが伝播する旧オーステナイト粒界の状態も非常に重要になってくる。特許文献1や2に記載の方法では、旧オーステナイト粒径や粒界フェライトの制御を行っておらず、スラブのミクロ組織について何ら限定していない。また、発明者らが鋭意検討した結果、従来技術にて製造したC、Si、Mnを多く含んだスラブは靭性がかなり低く、スラブの置き割れ発生を十分に抑制することができないことがわかった。 However, the conventional technology had the following problems. The methods described in Patent Documents 1 and 2 for cooling a high-strength steel slab after casting control the internal stress generated in the slab to be small. However, because the toughness of slabs in recent high-alloyed high-strength steels is low, the state of prior austenite grain boundaries, where cracks propagate, is also extremely important. In the methods described in Patent Documents 1 and 2, the prior austenite grain size and grain boundary ferrite are not controlled, and the microstructure of the slab is not limited in any way. In addition, as a result of intensive studies by the inventors, it was found that slabs containing a large amount of C, Si, and Mn produced using conventional techniques had considerably low toughness and could not sufficiently suppress the occurrence of cracking in slabs. .
 本発明は、上記の事情を鑑みてなされたものであって、靭性の低い高合金スラブであっても、当該スラブの冷却中のスラブ割れを発生させない連続鋳造スラブを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a continuously cast slab that does not cause slab cracking during cooling, even if it is a high alloy slab with low toughness. .
 発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。その結果、スラブ割れの破壊形態を解析し、その破面が旧オーステナイト粒界に沿った粒界破面、旧オーステナイト粒界を横切る粒内破面(へき開破面)の破面のうち少なくとも1種が存在していることを見出した。さらに、発明者らは、詳細な検討を重ね、スラブの置き割れは、冷却速度の制御および温度ムラの低減による応力低下だけでは抑制できず、ミクロ組織の形態が大きく影響していることを明らかにした。具体的には、連続鋳造スラブの平均旧オーステナイト粒径およびミクロ組織を制御し、その靭性を向上させることにより、連続鋳造スラブの冷却過程でのスラブ置き割れを抑制できることを見出し、本発明に想到した。 The inventors have made extensive studies to achieve the above objective. As a result, we analyzed the fracture morphology of slab cracks, and found that the fracture surface was at least one of the following: intergranular fracture surfaces along prior austenite grain boundaries, and intragranular fracture surfaces (cleavage fracture surfaces) that cross prior austenite grain boundaries. discovered that seeds exist. Furthermore, the inventors conducted detailed studies and found that cracking in slabs cannot be suppressed by stress reduction alone by controlling the cooling rate and reducing temperature unevenness, and that the morphology of the microstructure has a large effect. I made it. Specifically, the inventors discovered that by controlling the average prior austenite grain size and microstructure of continuously cast slabs and improving their toughness, slab cracking during the cooling process of continuously cast slabs can be suppressed, and this led to the invention. did.
 本発明は、上記の知見に基づき、さらに検討を加えて完成されたものである。
すなわち、本発明の要旨構成は次のとおりである。
1.高強度鋼用の連続鋳造スラブであって、連続鋳造スラブ表層から10mm位置における平均旧オーステナイト粒径が100μm以上0.5mm以下であり、かつ、ミクロ組織は、面積率で、フェライトが10%以上、パーライトが10%以上、ベイナイトが1%以上30%以下であることを特徴とする連続鋳造スラブ。
2.前記連続鋳造スラブは、質量%で、C:0.10~0.40%、Si:0.10~2.50%、Mn:1.00~5.00%を含有する、1に記載の連続鋳造スラブ。
The present invention was completed based on the above findings and further studies.
That is, the gist of the present invention is as follows.
1. A continuously cast slab for high-strength steel, wherein the average prior austenite grain size at a position 10 mm from the surface of the continuous cast slab is 100 μm or more and 0.5 mm or less, and the microstructure is 10% or more of ferrite in terms of area ratio. , a continuously cast slab characterized by containing 10% or more of pearlite and 1% or more and 30% or less of bainite.
2. 1. The continuous casting slab contains, in mass %, C: 0.10 to 0.40%, Si: 0.10 to 2.50%, and Mn: 1.00 to 5.00%. Continuous casting slab.
 本発明によれば、高合金である高強度鋼板用成分系であっても、冷却過程で割れが発生しない連続鋳造スラブを提供することができる。 According to the present invention, it is possible to provide a continuously cast slab that does not generate cracks during the cooling process even if the component system is a high-alloy high-strength steel plate.
連続鋳造スラブの亀裂部破面の走査電子顕微鏡による観察像である。This is a scanning electron microscope image of the fracture surface of a crack in a continuously cast slab. 上記亀裂部の断面組織写真である。It is a photograph of the cross-sectional structure of the above-mentioned cracked part. 連続鋳造スラブの冷却速度とミクロ組織の関係を連続冷却変態図(CCT図)上に示すグラフである。It is a graph showing the relationship between the cooling rate and the microstructure of a continuously cast slab on a continuous cooling transformation diagram (CCT diagram).
 以下、本発明の実施の形態について具体的に説明する。また、以下の実施形態は、本発明の技術的思想を具体化するための鋼組成や組織を例示するものであり、構成を下記のものに特定するものでない。すなわち、本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be specifically described. Furthermore, the following embodiments are intended to illustrate the steel composition and structure for embodying the technical idea of the present invention, and the structure is not limited to the following. That is, the technical idea of the present invention can be modified in various ways within the technical scope described in the claims.
 まず、連続鋳造スラブのミクロ組織の適性範囲および限定理由について説明する。なお、以下の説明において、ミクロ組織の構成率を示す「%」は、特に明記しない限り「面積%」を意味する。また、組織の観察は常温で行った。 First, the appropriate range of the microstructure of a continuously cast slab and the reason for its limitation will be explained. In the following description, "%" indicating the composition ratio of the microstructure means "area %" unless otherwise specified. In addition, the tissue was observed at room temperature.
[平均旧オーステナイト粒径:100μm以上0.5mm以下]
 平均旧オーステナイト粒径は破壊の単位を決める因子であり、大きいほど スラブの靭性は低下し、粒界破面を呈するスラブ割れが生じる。従来の連続鋳造スラブでは、平均旧オーステナイト粒径が数mmサイズと非常に大きい。このため、当該連続鋳造スラブの靭性を大きく低下させている。従来の低合金鋼ではもともとの靭性も高いため問題とならなかったが、高合金高強度鋼においては非常に重大な問題となりうる。そこで、本実施形態では連続鋳造スラブ表層から10mm位置における平均旧オーステナイト粒径を100μm以上0.5mm以下とする。オーステナイト粒径を決定する因子は冷却温度であり、たとえば、スラブ幅中央の表面温度が1200~900℃の温度範囲でスラブ表面をBs点以下に急冷後、冷却を停止し、Ac3点以上に復熱させることで、連続鋳造スラブ表層から深さ10mmにおける平均旧オーステナイト粒径を微細化することができる。加えて、1450~1200℃の滞留時間を40s以上130s以下となるように冷却することが好ましい。上述の温度は実測することが困難なため、伝熱解析によって連続鋳造スラブ表層下10mm位置での温度履歴を計算した。解析位置はスラブ内部でも最も上記温度域の滞在時間が長くなるスラブ幅中央とした。なお、平均旧オーステナイト粒径は0.4mm以下であることが好ましい。
[Average prior austenite grain size: 100 μm or more and 0.5 mm or less]
The average prior austenite grain size is a factor that determines the unit of fracture, and the larger it is, the lower the toughness of the slab is, and slab cracks exhibiting intergranular fracture surfaces occur. In conventional continuously cast slabs, the average prior austenite grain size is very large, several mm in size. For this reason, the toughness of the continuously cast slab is greatly reduced. This did not pose a problem with conventional low-alloy steels due to their high inherent toughness, but it can become a very serious problem with high-alloy high-strength steels. Therefore, in this embodiment, the average prior austenite grain size at a position 10 mm from the surface layer of the continuous casting slab is set to 100 μm or more and 0.5 mm or less. The factor that determines the austenite grain size is the cooling temperature. For example, after rapidly cooling the slab surface to below the Bs point in a temperature range of 1200 to 900°C at the center of the slab width, cooling is stopped and the temperature returns to the Ac3 point or above. By heating, it is possible to refine the average prior austenite grain size at a depth of 10 mm from the surface layer of the continuous casting slab. In addition, it is preferable to perform cooling so that the residence time at 1450 to 1200° C. is 40 seconds or more and 130 seconds or less. Since it is difficult to actually measure the above-mentioned temperature, the temperature history at a position 10 mm below the surface layer of the continuous casting slab was calculated by heat transfer analysis. The analysis position was set at the center of the slab width, where the residence time in the above temperature range is the longest within the slab. Note that the average prior austenite grain size is preferably 0.4 mm or less.
[ミクロ組織種]
 オーステナイト粒以下のフェライト、パーライト、ベイナイトなどの内部組織の比率も破壊の単位を決める因子であり、適切な比率で靭性が向上することが知られている。スラブのミクロ組織はオーステナイトからフェライトに変態する温度(Ar温度)以下での冷却速度が大きく影響する。発明者らは、冷却速度を制御し、ミクロ組織として、面積率で、フェライトが10%以上、パーライトが10%以上、ベイナイトが1%以上30%以下であることで、鋼スラブの靭性が向上することを見出した。好ましくはベイナイトが5%以上30%以下である。
[Microstructure type]
The ratio of internal structures such as ferrite, pearlite, and bainite below the austenite grains is also a factor that determines the unit of fracture, and it is known that toughness can be improved with an appropriate ratio. The microstructure of the slab is greatly influenced by the cooling rate below the temperature at which austenite transforms into ferrite (Ar 3 temperature). The inventors improved the toughness of the steel slab by controlling the cooling rate and controlling the microstructure so that the area ratio was 10% or more ferrite, 10% or more pearlite, and 1% or more and 30% or less bainite. I found out what to do. Preferably, the bainite content is 5% or more and 30% or less.
 上述のミクロ組織に制御するための冷却速度は鋼成分によって大きく異なる。そこでその成分の鋼の連続冷却変態図(CCT図)を作製し、ミクロ組織が好適となる冷却速度を決定した。 The cooling rate for controlling the microstructure described above varies greatly depending on the steel composition. Therefore, a continuous cooling transformation diagram (CCT diagram) of steel with the above components was prepared, and a cooling rate at which the microstructure becomes suitable was determined.
 この冷却条件は、連続鋳造機出側のスラブ温度、スラブを積重ねるまでの時間、積重ねる枚数または水靭処理等の条件を変更することで制御可能である。冷却速度の測定は熱電対で行った。連続鋳造機からスラブが出てきた後にスラブの広い面(長辺×幅)の上面中央部(長手方向中央かつ幅方向中央)に熱電対を設置した。 This cooling condition can be controlled by changing conditions such as the temperature of the slabs at the exit side of the continuous casting machine, the time it takes to stack the slabs, the number of slabs to be stacked, or water toughness treatment. The cooling rate was measured using a thermocouple. After the slab came out of the continuous casting machine, a thermocouple was installed at the center of the upper surface (longitudinal center and widthwise center) of the wide surface (long side x width) of the slab.
 C、Si、Mnを多く含んだ連続鋳造スラブは、靭性が極めて低く、平均旧オーステナイト粒径のみ、ミクロ組織種のみの要件を満たす、といった制御では置き割れが発生しないほどの十分な靭性を確保することができず、置き割れが発生してしまった。したがって、本実施形態に係る高強度鋼用連続鋳造スラブは平均旧オーステナイト粒径とミクロ組織の要件を同時に満足することが重要である。 Continuously cast slabs containing a large amount of C, Si, and Mn have extremely low toughness, and by controlling only the average prior austenite grain size and microstructure type to meet the requirements, sufficient toughness is ensured to prevent placement cracks. I was unable to do so, and a crack occurred. Therefore, it is important that the continuous casting slab for high-strength steel according to this embodiment simultaneously satisfies the requirements for the average prior austenite grain size and the microstructure.
 次に、成分組成の適正範囲およびその限定理由について説明する。なお、以下の説明において、鋼の成分元素の含有量を表す「%」は、特に明記しない限り「質量%」を意味する。 Next, the appropriate range of component composition and the reason for its limitation will be explained. In the following description, "%" representing the content of component elements of steel means "mass %" unless otherwise specified.
[C:0.10~0.40%]
 Cは、鋼板の強度を高める重要な元素である。Cの含有量が0.10%未満では、鋼板に必要な引張強度を実現することが困難になる。一方、Cの含有量が0.40%を超えると、前述のようなフェライト、パーライトおよびベイナイトが混在するミクロ組織を得ることが出来ない。したがって、Cの含有量は、0.10~0.40%の範囲とする。好ましくは0.12%以上とする。好ましくは0.35%以下とする。より好ましくは0.15%以上とする。より好ましくは0.30%以下とする。
[C: 0.10-0.40%]
C is an important element that increases the strength of steel sheets. If the C content is less than 0.10%, it becomes difficult to achieve the tensile strength required for the steel plate. On the other hand, if the C content exceeds 0.40%, the microstructure in which ferrite, pearlite, and bainite are mixed cannot be obtained as described above. Therefore, the C content is set in the range of 0.10 to 0.40%. Preferably it is 0.12% or more. Preferably it is 0.35% or less. More preferably, it is 0.15% or more. More preferably, it is 0.30% or less.
[Si:0.10~2.50%]
 Siは、焼鈍工程で残留オーステナイトを確保するために添加する必要がある。加えて、固溶強化により高強度化にも寄与するため必須の添加元素である。このことから、0.10%以上添加する必要がある。一方、2.50%超の添加は効果が飽和するだけでなく、熱延板に強固なスケールが発生する。これにより、外観や酸洗性を劣化させることから、上限は2.50%とする。したがって、Siの含有量は、0.10~2.50%の範囲とする。好ましくは0.50%以上とする。好ましくは2.0%以下とする。より好ましくは1.00%以上とする。より好ましくは1.80%以下とする。
[Si: 0.10-2.50%]
Si needs to be added in order to ensure retained austenite in the annealing process. In addition, it is an essential additive element because it contributes to increasing strength through solid solution strengthening. From this, it is necessary to add 0.10% or more. On the other hand, addition of more than 2.50% not only saturates the effect, but also causes strong scale to occur in the hot rolled sheet. Since this deteriorates the appearance and pickling properties, the upper limit is set at 2.50%. Therefore, the Si content is set in the range of 0.10 to 2.50%. Preferably it is 0.50% or more. Preferably it is 2.0% or less. More preferably, it is 1.00% or more. More preferably, it is 1.80% or less.
[Mn:1.00~5.00%]
 Mnは、鋼板の強度を高めるために添加する元素である。具体的には、熱延での変態制御を通じて鋼板強度を制御するために添加する元素である。1.00%未満では、十分な強化が出来ないことから1.00%以上添加する必要がある。一方、5.00%超の添加は、その効果が飽和するとともに、経済性に欠ける。したがって、Mnの含有量は、1.00~5.00%の範囲とする。好ましくは1.50%以上とする。好ましくは4.50%以下とする。より好ましくは1.80%以上とする。より好ましくは4.00%以下とする。
[Mn: 1.00-5.00%]
Mn is an element added to increase the strength of the steel sheet. Specifically, it is an element added to control steel sheet strength through transformation control during hot rolling. If it is less than 1.00%, sufficient reinforcement cannot be achieved, so it is necessary to add 1.00% or more. On the other hand, if it is added in excess of 5.00%, the effect will be saturated and it will be uneconomical. Therefore, the Mn content is set in the range of 1.00 to 5.00%. Preferably it is 1.50% or more. Preferably it is 4.50% or less. More preferably, it is 1.80% or more. More preferably, it is 4.00% or less.
 本実施形態の連続鋳造スラブは、上記成分組成を有し、残部がFeおよび不可避不純物からなり、適切な範囲の平均旧オーステナイト粒径およびミクロ組織を有するものである。その限りにおいて、他の特性を考慮し、Pを0.100%以下、Sを0.0200%以下、Nを0.0100%以下、sol.Alを0.100%以下およびOを0.0100%以下、含有していてもよい。ここで不純物として、Zn、PbおよびAsが挙げられる。これら不可避的不純物の合計で0.100%以下の含有は許容される。 The continuous casting slab of the present embodiment has the above-mentioned component composition, with the remainder consisting of Fe and unavoidable impurities, and has an average prior austenite grain size and microstructure within an appropriate range. To that extent, considering other characteristics, P is 0.100% or less, S is 0.0200% or less, N is 0.0100% or less, sol. It may contain 0.100% or less of Al and 0.0100% or less of O. Here, examples of impurities include Zn, Pb, and As. The total content of these unavoidable impurities is allowed to be 0.100% or less.
 Pは、旧オーステナイト粒界に偏析して粒界を脆化させるため、スラブ割れを生じさせることがある。そのため、Pの含有量は0.100%以下にすることが好ましい。なお、Pの含有量の下限は特に規定しないが、Pは固溶強化元素であり、鋼板の強度を上昇させることができることから、0.001%以上とすることが好ましい。したがって、Pの含有量は、好ましくは、0.100%以下とする。好ましくは0.001%以上とする。さらに好ましくは0.070%以下とする。 Since P segregates at prior austenite grain boundaries and embrittles the grain boundaries, it may cause slab cracking. Therefore, the content of P is preferably 0.100% or less. Although the lower limit of the P content is not particularly defined, it is preferably 0.001% or more since P is a solid solution strengthening element and can increase the strength of the steel sheet. Therefore, the content of P is preferably 0.100% or less. Preferably it is 0.001% or more. More preferably, it is 0.070% or less.
 Sは、硫化物として存在し、スラブ脆化をもたらす元素である。そのため、Sの含有量は0.0200%以下にすることが好ましい。なお、Sの含有量の下限は特に規定しないが、生産技術上の制約から、0.0001%以上とすることが好ましい。したがって、Sの含有量は、好ましくは0.0200%以下とする。好ましくは0.0001%以上とする。さらに好ましくは0.0050%以下とする。 S is an element that exists as a sulfide and causes slab embrittlement. Therefore, the S content is preferably 0.0200% or less. Although the lower limit of the S content is not particularly specified, it is preferably 0.0001% or more due to production technology constraints. Therefore, the S content is preferably 0.0200% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
 Alは、スラブ冷却中の炭化物生成を抑制し、残留オーステナイトの生成を促進することから、スラブの残留オーステナイトの分率に影響する元素である。また、脱酸のため0.005%以上添加することが好ましい。Alの含有量が0.100%を超えると、スラブ脆化をもたらすおそれがある。したがって、Alの含有量は、0.100%以下とすることが好ましい。さらに好ましくは0.010%以上とする。さらに好ましくは0.080%以下とする。 Al is an element that affects the fraction of retained austenite in the slab because it suppresses the generation of carbides during cooling of the slab and promotes the generation of retained austenite. Further, it is preferable to add 0.005% or more for deoxidation. If the Al content exceeds 0.100%, there is a risk of slab embrittlement. Therefore, the Al content is preferably 0.100% or less. More preferably, it is 0.010% or more. More preferably, it is 0.080% or less.
 Nは、窒化物として存在し、スラブの脆化をもたらす元素である。そのため、Nの含有量は0.0100%以下にすることが好ましい。なお、Nの含有量の下限は特に規定しないが、生産技術上の制約から、Nの含有量は0.0001%以上とすることが好ましい。したがって、Nの含有量は、好ましくは0.0100%以下とする。好ましくは0.0001%以上とする。さらに好ましくは0.0050%以下とする。 N is an element that exists as a nitride and causes slab embrittlement. Therefore, the N content is preferably 0.0100% or less. Although the lower limit of the N content is not particularly specified, it is preferable that the N content is 0.0001% or more due to constraints on production technology. Therefore, the N content is preferably 0.0100% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
 Oは、酸化物として存在し、スラブの脆化をもたらす元素である。そのため、Oの含有量は0.0100%以下にすることが好ましい。なお、Oの含有量の下限は特に規定しないが、生産技術上の制約から、Oの含有量は0.0001%以上とすることが好ましい。したがって、Oの含有量は、好ましくは0.0100%以下とする。好ましくは0.0001%以上とする。さらに好ましくは0.0050%以下とする。 O is an element that exists as an oxide and causes embrittlement of the slab. Therefore, the content of O is preferably 0.0100% or less. Although the lower limit of the O content is not particularly defined, it is preferable that the O content is 0.0001% or more due to production technology constraints. Therefore, the O content is preferably 0.0100% or less. Preferably it is 0.0001% or more. More preferably, it is 0.0050% or less.
 本実施形態の連続鋳造スラブは、高強度鋼用として、上記成分組成に加えて、さらに、Ti:0.200%以下、Nb:0.200%以下、V:0.200%以下、Ta:0.10%以下、W:0.10%以下、B:0.0100%以下、Cr:1.00%以下、Mo:1.00%以下、Ni:1.00%以下、Co:1.00%以下、Cu:1.00%以下、Sn:0.200%以下、Sb:0.200%以下、Ca:0.0100%以下、Mg:0.0100%以下、REM:0.0100%以下、Zr:0.020%以下、Te:0.020%以下、Hf:0.10%以下、およびBi:0.200%以下から選ばれる少なくとも1種の元素を単独で、あるいは、2種以上を組み合わせて含有しても良い。 The continuous casting slab of this embodiment is for high-strength steel, and in addition to the above-mentioned composition, Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, Ta: 0.10% or less, W: 0.10% or less, B: 0.0100% or less, Cr: 1.00% or less, Mo: 1.00% or less, Ni: 1.00% or less, Co: 1. 00% or less, Cu: 1.00% or less, Sn: 0.200% or less, Sb: 0.200% or less, Ca: 0.0100% or less, Mg: 0.0100% or less, REM: 0.0100% Below, at least one element selected from Zr: 0.020% or less, Te: 0.020% or less, Hf: 0.10% or less, and Bi: 0.200% or less is used alone or in combination. A combination of the above may be contained.
 Ti、NbおよびVは、それぞれ0.200%以下の含有量であれば粗大な析出物や介在物が多量に生成せず、スラブの靭性を低下させない。そのため、Ti、NbおよびVの含有量はそれぞれ0.200%以下にすることが好ましい。なお、Ti、NbおよびVの含有量の下限は特に規定しないが、熱間圧延時あるいは連続焼鈍時に、微細な炭化物、窒化物もしくは炭窒化物を形成することによって、鋼板の強度を上昇させることから、Ti、NbおよびVの含有量はそれぞれ0.001%以上とすることがより好ましい。したがって、Ti、NbおよびVを含有する場合には、その含有量はそれぞれ0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If the content of Ti, Nb, and V is 0.200% or less, large amounts of coarse precipitates and inclusions will not be generated and the toughness of the slab will not be reduced. Therefore, it is preferable that the contents of Ti, Nb, and V are each 0.200% or less. Note that the lower limits of the content of Ti, Nb, and V are not particularly specified, but the strength of the steel sheet can be increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. Therefore, it is more preferable that the contents of Ti, Nb, and V are each 0.001% or more. Therefore, when Ti, Nb, and V are contained, their contents are each 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 TaおよびWは、それぞれ0.10%以下の含有量であれば粗大な析出物や介在物が多量に生成せず、スラブの靭性を低下させない。そのため、TaおよびWの含有量はそれぞれ0.10%以下にすることが好ましい。なお、TaおよびWの含有量の下限は特に規定しないが、熱間圧延時あるいは連続焼鈍時に、微細な炭化物、窒化物もしくは炭窒化物を形成することによって、鋼板の強度を上昇させることから、TaおよびWの含有量はそれぞれ0.01%以上とすることがより好ましい。したがって、TaおよびWを含有する場合には、その含有量はそれぞれ0.10%以下とする。より好ましくは0.01%以上とする。さらに好ましくは0.08%以下とする。 If the content of Ta and W is 0.10% or less, large amounts of coarse precipitates and inclusions will not be generated and the toughness of the slab will not be reduced. Therefore, it is preferable that the contents of Ta and W are each 0.10% or less. Note that there is no particular lower limit to the content of Ta and W, but the strength of the steel sheet is increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. It is more preferable that the contents of Ta and W are each 0.01% or more. Therefore, when Ta and W are contained, their contents are each 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
 Bは、0.0100%以下であればスラブの靭性に影響をしない。そのため、Bの含有量は0.0100%以下にすることが好ましい。なお、Bの含有量の下限は特に規定しないが、熱間圧延や焼鈍中にオーステナイト粒界に偏析し、焼入れ性を向上させる元素であることから、Bの含有量は0.0003%以上とすることがより好ましい。したがって、Bを含有する場合には、その含有量は0.0100%以下とする。より好ましくは0.0003%以上とする。さらに好ましくは0.0080%以下とする。 If B is 0.0100% or less, it does not affect the toughness of the slab. Therefore, the content of B is preferably 0.0100% or less. Note that the lower limit of the B content is not particularly specified, but since it is an element that segregates at austenite grain boundaries during hot rolling and annealing and improves hardenability, the B content should be 0.0003% or more. It is more preferable to do so. Therefore, when B is contained, its content should be 0.0100% or less. More preferably, it is 0.0003% or more. More preferably, it is 0.0080% or less.
 Cr、MoおよびNiは、それぞれ1.00%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Cr、MoおよびNiの含有量はそれぞれ1.00%以下にすることが好ましい。なお、Cr、MoおよびNiの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Cr、MoおよびNiの含有量はそれぞれ0.01%以上とすることがより好ましい。したがって、Cr、MoおよびNiを含有する場合には、その含有量はそれぞれ1.00%以下とする。より好ましくは0.01%以上とする。さらに好ましくは0.80%以下とする。 If each of Cr, Mo, and Ni is 1.00% or less, coarse precipitates and inclusions do not increase and the toughness of the slab does not deteriorate. Therefore, it is preferable that the contents of Cr, Mo, and Ni are each 1.00% or less. Note that the lower limit of the content of Cr, Mo, and Ni is not particularly specified, but since they are elements that improve hardenability, it is more preferable that the content of Cr, Mo, and Ni is each 0.01% or more. . Therefore, when Cr, Mo, and Ni are contained, their contents are each 1.00% or less. More preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
 Coは、1.00%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Coの含有量は1.00%以下にすることが好ましい。なお、Coの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Coの含有量は0.001%以上とすることがより好ましい。したがって、Coを含有する場合には、その含有量は1.00%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.80%以下とする。 If Co is 1.00% or less, coarse precipitates and inclusions do not increase and the toughness of the slab does not deteriorate. Therefore, the Co content is preferably 1.00% or less. Although the lower limit of the Co content is not particularly specified, since it is an element that improves hardenability, the Co content is more preferably 0.001% or more. Therefore, when Co is contained, the content should be 1.00% or less. More preferably, it is 0.001% or more. More preferably, it is 0.80% or less.
 Cuは、1.00%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Cuの含有量は1.00%以下にすることが好ましい。なお、Cuの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Cuの含有量は0.01%以上とすることよりが好ましい。したがって、Cuを含有する場合には、その含有量は1.00%以下とする。より好ましくは、0.01%以上とする。さらに好ましくは0.80%以下とする。 If Cu is 1.00% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the Cu content is preferably 1.00% or less. Although the lower limit of the Cu content is not particularly specified, since it is an element that improves hardenability, the Cu content is preferably 0.01% or more. Therefore, if Cu is contained, the content should be 1.00% or less. More preferably, it is 0.01% or more. More preferably, it is 0.80% or less.
 Snは、0.200%以下であればスラブの靭性に影響をしない。そのため、Snの含有量は0.200%以下にすることが好ましい。なお、Snの含有量の下限は特に規定しないが、Snは焼入れ性を向上させる元素(一般的には耐食性を向上させる元素)であることから、Snの含有量は0.001%以上とすることがより好ましい。したがって、Snを含有する場合には、その含有量は0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If Sn is 0.200% or less, it does not affect the toughness of the slab. Therefore, the content of Sn is preferably 0.200% or less. Note that the lower limit of the Sn content is not particularly specified, but since Sn is an element that improves hardenability (generally an element that improves corrosion resistance), the Sn content should be 0.001% or more. It is more preferable. Therefore, if Sn is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 Sbは、0.200%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Sbの含有量は0.200%以下にすることが好ましい。なお、Sbの含有量の下限は特に規定しないが、脱炭を抑制し、鋼板の強度調整を可能にする元素であることから、Sbの含有量は0.001%以上とすることがより好ましい。したがって、Sbを含有する場合には、その含有量は0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If Sb is 0.200% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the content of Sb is preferably 0.200% or less. Although the lower limit of the Sb content is not particularly defined, it is more preferable that the Sb content is 0.001% or more, since it is an element that suppresses decarburization and enables the strength adjustment of steel sheets. . Therefore, if Sb is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 Ca、MgおよびREMは、それぞれ0.0100%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Ca、MgおよびREMの含有量は0.0100%以下にすることが好ましい。なお、Ca、MgおよびREMの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、スラブの靭性を向上する元素であることから、Ca、MgおよびREMの含有量はそれぞれ0.0005%以上とすることがより好ましい。したがって、Ca、MgおよびREMを含有する場合には、その含有量はそれぞれ0.0100%以下とする。より好ましくは0.0005%以上とする。さらに好ましくは0.0050%以下とする。 If each of Ca, Mg and REM is 0.0100% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the content of Ca, Mg and REM is preferably 0.0100% or less. Note that the lower limits of the contents of Ca, Mg, and REM are not particularly stipulated, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the toughness of slabs, the contents of Ca, Mg, and REM are More preferably, each content is 0.0005% or more. Therefore, when Ca, Mg and REM are contained, their contents are each 0.0100% or less. More preferably, it is 0.0005% or more. More preferably, it is 0.0050% or less.
 ZrおよびTeは、それぞれ0.100%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、ZrおよびTeの含有量は0.100%以下にすることが好ましい。なお、ZrおよびTeの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、スラブの靭性を向上する元素であることから、ZrおよびTeの含有量はそれぞれ0.001%以上とすることがより好ましい。したがって、ZrおよびTeを含有する場合には、その含有量はそれぞれ0.100%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.080%以下とする。 If Zr and Te are each 0.100% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the contents of Zr and Te are preferably 0.100% or less. Note that the lower limits of the contents of Zr and Te are not particularly specified, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the toughness of the slab, the contents of Zr and Te are each 0.001. % or more is more preferable. Therefore, when Zr and Te are contained, their contents are each 0.100% or less. More preferably, it is 0.001% or more. More preferably, it is 0.080% or less.
 Hfは、0.10%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Hfの含有量は0.10%以下にすることが好ましい。なお、Hfの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、鋼板の極限変形能を向上する元素であることから、Hfの含有量は0.01%以上とすることがより好ましい。したがって、Hfを含有する場合には、その含有量は0.10%以下とする。より好ましくは0.01%以上とする。さらに好ましくは0.08%以下とする。 If Hf is 0.10% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the Hf content is preferably 0.10% or less. Note that there is no particular lower limit to the Hf content, but since it is an element that spheroidizes the shape of nitrides and sulfides and improves the ultimate deformability of steel sheets, the Hf content should be 0.01% or more. It is more preferable to do so. Therefore, if Hf is contained, the content should be 0.10% or less. More preferably, it is 0.01% or more. More preferably, it is 0.08% or less.
 Biは、0.200%以下であれば粗大な析出物や介在物が増加せず、スラブの靭性を低下させない。そのため、Biの含有量は0.200%以下にすることが好ましい。なお、Biの含有量の下限は特に規定しないが、偏析を軽減する元素であることから、Biの含有量は0.001%以上とすることがより好ましい。したがって、Biを含有する場合には、その含有量は0.200%以下とする。より好ましくは0.001%以上とする。さらに好ましくは0.100%以下とする。 If Bi is 0.200% or less, coarse precipitates and inclusions will not increase and the toughness of the slab will not deteriorate. Therefore, the Bi content is preferably 0.200% or less. Although the lower limit of the Bi content is not particularly defined, since it is an element that reduces segregation, the Bi content is more preferably 0.001% or more. Therefore, when Bi is contained, the content should be 0.200% or less. More preferably, it is 0.001% or more. More preferably, it is 0.100% or less.
 なお、上記したTi、Nb、V、Ta、W、B、Cr、Mo、Ni、Co、Cu、Sn、Sb、Ca、Mg、REM、Zr、Te、HfおよびBiについて、各含有量が好ましい下限値未満の場合には本発明の効果を害することがないため、不可避的不純物として含むものとする。 In addition, each content of Ti, Nb, V, Ta, W, B, Cr, Mo, Ni, Co, Cu, Sn, Sb, Ca, Mg, REM, Zr, Te, Hf and Bi is preferable. If it is less than the lower limit, the effect of the present invention will not be impaired, and therefore it is included as an unavoidable impurity.
[平均旧オーステナイト粒径の測定]
 ここで、平均旧オーステナイト粒径の測定方法は、以下の通りである。冷却後のスラブの幅中央位置からサンプルを切り出し、スラブ幅方向に平行なスラブ厚断面が観察面となるようにした。次いで、観察面はダイヤモンドペーストを用いて鏡面研磨し、その後、コロイダルシリカを用い仕上げ研磨を施し、さらに、3vol%ナイタールでエッチングして観察面に組織を現出させる。光学顕微鏡を用いて、連続鋳造スラブ表層下10mm位置において、10倍の倍率で、5視野観察し、組織画像を得る。得られた組織画像をJIS G 0551:2020に準拠した切断法により、旧オーステナイト粒径の平均値を求めた。
[Measurement of average prior austenite grain size]
Here, the method for measuring the average prior austenite grain size is as follows. A sample was cut out from the width center position of the slab after cooling, so that the slab thickness cross section parallel to the slab width direction served as the observation surface. Next, the observation surface is mirror-polished using diamond paste, then finish-polished using colloidal silica, and further etched with 3 vol % nital to reveal the structure on the observation surface. Using an optical microscope, 5 fields of view are observed at 10x magnification at a position 10 mm below the surface layer of the continuous casting slab to obtain a tissue image. The obtained structure image was cut according to JIS G 0551:2020 to determine the average value of the prior austenite grain size.
[フェライトの面積率の測定方法]
 フェライト面積率の測定方法は、上記平均旧オーステナイト粒径の測定方法と同様にスラブの観察面を用意する。次いで、観察面はダイヤモンドペーストを用いて鏡面研磨し、その後、コロイダルシリカを用い仕上げ研磨を施し、さらに、3vol%ナイタールでエッチングして組織を現出させる。加速電圧が15kVの条件で、SEM(Scanning Electron Microscope;走査電子顕微鏡)を用いて、連続鋳造スラブ表層下10mm位置において、50倍の倍率で10視野観察し、得られた組織画像を、Adobe社のPHOTOSHOP(登録商標)を用いて、フェライトの面積率を10視野分算出し、それらの値を平均してフェライトの面積率として求めた。なお、フェライトはその他の組織(パーライト、ベイナイト、焼戻しマルテンサイト、焼入れマルテンサイト、残留オーステナイト)と比較して粒径が大きく、かつ、平滑な表面でコントラストが暗いため、50倍の倍率で容易に区別ができる。
[Measurement method of area ratio of ferrite]
To measure the ferrite area ratio, prepare the observation surface of the slab in the same manner as the above-mentioned method for measuring the average prior austenite grain size. Next, the observation surface is mirror-polished using diamond paste, then final polished using colloidal silica, and further etched with 3 vol % nital to reveal the structure. Using an SEM (Scanning Electron Microscope) at an accelerating voltage of 15 kV, 10 fields of view were observed at a magnification of 50x at a position 10 mm below the surface layer of the continuous casting slab, and the obtained tissue images were collected using Adobe. Using PHOTOSHOP (registered trademark), the area ratio of ferrite was calculated for 10 fields of view, and the values were averaged to determine the area ratio of ferrite. In addition, ferrite has a larger grain size than other structures (pearlite, bainite, tempered martensite, hardened martensite, retained austenite), has a smooth surface, and has a dark contrast, so it can be easily seen at 50x magnification. I can tell the difference.
[パーライトおよびベイナイトの面積率の測定方法]
 これらの組織の面積率の測定方法は、上記フェライトの測定方法と同様にスラブの観察面に組織を現出させる。加速電圧が15kVの条件で、SEMを用いて、連続鋳造スラブ表層下10mm位置において、フェライトを視野から外して10000倍の倍率で10視野観察し、得られた組織画像を、Adobe社のPHOTOSHOP(登録商標)を用いて、パーライトおよびベイナイトの面積率を10視野分算出し、それらの値を平均し、前述の方法で測定したフェライトの面積率と合わせて合計で100%になるように計算し、各組織の面積率として求めた。ベイナイトは凹部の組織、パーライトは凹部の組織でラメラ状の炭化物を含む組織である。
[Method of measuring area ratio of pearlite and bainite]
The method for measuring the area ratio of these structures causes the structure to appear on the observation surface of the slab, similar to the method for measuring ferrite described above. Using an SEM, 10 fields of view were observed at a magnification of 10,000 times with the ferrite removed from the field of view at a position 10 mm below the surface layer of the continuous casting slab using an SEM at an accelerating voltage of 15 kV. (registered trademark), calculate the area ratio of pearlite and bainite for 10 fields of view, average those values, and calculate the total to 100% when combined with the area ratio of ferrite measured using the method described above. , was calculated as the area ratio of each tissue. Bainite is a concave structure, and pearlite is a concave structure containing lamellar carbides.
[スラブ割れの評価方法]
 スラブ割れの評価方法はJIS Z 2343:2017に規定された浸透探傷試験に基づいて試験を行い、スラブの切断面以外の、広面部(長手×幅)および狭面部(長手×厚み)の割れの有無を評価した。現像液を塗布後に浸透液の表出を目視することにより、目視で表面の割れや疵をチェックした。
[Evaluation method of slab cracking]
The evaluation method for slab cracks is based on the penetrant test specified in JIS Z 2343:2017, and cracks on wide areas (length x width) and narrow areas (length x thickness) other than the cut surface of the slab are evaluated. The presence or absence was evaluated. After applying the developer, the appearance of the penetrating solution was visually observed to visually check for cracks and flaws on the surface.
 検討に用いた鋼の化学組成を表1に示し、表2にスラブ冷却条件とスラブミクロ組織、スラブ割れの態様を示す。ミクロ組織の欄中のF、P、Bはそれぞれフェライト、パーライト、ベイナイトを示す。 Table 1 shows the chemical composition of the steel used in the study, and Table 2 shows the slab cooling conditions, slab microstructure, and slab cracking mode. F, P, and B in the microstructure column represent ferrite, pearlite, and bainite, respectively.
 試験No.1~4は、連続鋳造スラブ表層下10mm位置での平均旧オーステナイト粒径が0.5mmより大きくなってしまった条件である。これらの場合、連続鋳造機を出てからのスラブ冷却の条件を種々変更したとしてもスラブ割れを抑制することができなかった。 Test No. Conditions 1 to 4 are conditions in which the average prior austenite grain size at a position 10 mm below the surface layer of the continuous casting slab is larger than 0.5 mm. In these cases, slab cracking could not be suppressed even if various changes were made to the conditions for cooling the slab after it exited the continuous casting machine.
 試験No.5~9は連続鋳造スラブ表層下10mm位置での平均旧オーステナイト粒径は0.5mm以下であるが、ミクロ組織種あるいはその比率が適合せず、スラブ割れが抑制できなかった例である。 Test No. Examples 5 to 9 are examples in which the average prior austenite grain size at a position 10 mm below the surface of the continuously cast slab is 0.5 mm or less, but the microstructure types or their ratios were not compatible and slab cracking could not be suppressed.
 試験No.10~23は発明例であり、連続鋳造スラブ表層下10mm位置での平均旧オーステナイト粒径が0.5mm以下であり、かつ、ミクロ組織が、面積率で、フェライトを10%以上、パーライトを10%以上、ベイナイトを1%以上30%以下であった。これらは、冷却後にスラブ割れが発生していない。 Test No. Nos. 10 to 23 are invention examples in which the average prior austenite grain size at a position 10 mm below the surface layer of the continuous casting slab is 0.5 mm or less, and the microstructure has an area ratio of 10% or more of ferrite and 10% of pearlite. % or more, and the bainite content was 1% or more and 30% or less. No slab cracking occurred in these after cooling.
 なお、本発明に係る連続鋳造スラブは諸条件により積替えが発生する。積替えが発生した場合、連続鋳造スラブの冷却速度は一時的に既定の冷却速度を超えることがある。しかしながら、変態にかかる時間は10hr以上と非常にゆっくりであるため、積替え程度のハンドリング時間(長くて1~2hr)であれば、置き割れの発生に至らない。そのため本発明では最大冷却速度ではなく平均冷却速度と規定している。 Note that the continuously cast slab according to the present invention may be transshipped depending on various conditions. When transshipment occurs, the cooling rate of the continuously cast slab may temporarily exceed the predetermined cooling rate. However, since the time required for transformation is very slow at 10 hr or more, the handling time required for transshipment (1 to 2 hr at most) will not cause cracking. Therefore, in the present invention, the average cooling rate is defined instead of the maximum cooling rate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 まとめると、連続鋳造スラブ表層下10mm位置の平均旧オーステナイト粒径を100μm以上0.5mm以下とし、同位置でのミクロ組織をフェライト、パーライト、ベイナイトの三相複合組織とすることでスラブの冷却時の割れが抑制可能なことを見出した。 In summary, by setting the average prior austenite grain size at a position 10 mm below the surface layer of a continuous casting slab to 100 μm or more and 0.5 mm or less, and making the microstructure at the same position a three-phase composite structure of ferrite, pearlite, and bainite, it is possible to It has been found that cracking can be suppressed.
 なお、このようなスラブ組織を得るためには、たとえば、スラブ幅中央の表面温度が900℃~1200℃の温度範囲のとき、スラブ表面をBs点以下に急冷後、冷却を停止しAc点以上に復熱させ、その後、スラブ幅中央表面の温度が850℃~700℃および700℃~500℃の平均冷却速度をそれぞれ所定の範囲とすることで得ることができる。しかし、製造方法はこの方法に限らない。 In order to obtain such a slab structure, for example, when the surface temperature at the center of the slab width is in the temperature range of 900°C to 1200°C, the slab surface is rapidly cooled to below the Bs point, and then the cooling is stopped and the AC 3 points This can be achieved by recuperating the heat above and then setting the average cooling rate at a temperature of 850° C. to 700° C. and a temperature of 700° C. to 500° C. within a predetermined range, respectively. However, the manufacturing method is not limited to this method.
 次に、図3にて、ミクロ組織が好適となる冷却速度を決定する方法を示す。図3は、表1の鋼Cの連続冷却変態図(CCT図)である。図3においてフェライト、パーライト、ベイナイト、マルテンサイトの変態開始線、マルテンサイトの変態終了線を符号F、P、B、Ms、Mfで示す。さらに、図3において冷却速度線を冷却速度が速い順に符号X、Y、Z、Wで示す。冷却速度線でY~Zの範囲でフェライト、パーライト、ベイナイトの三相が析出するので、好適な冷却速度はこの範囲の内部にあることがわかる。ただし、連続冷却変態図から、変態後の組織の分率の予測は困難であることと、鋳スラブの冷却速度は一般的に常に一定ではないことから、目安として扱うことが好ましい。なお、使用する連続冷却変態図の作成方法は特に規定しない。一般的な商用ソフトを用いて計算しても、実験により作成してもよい。 Next, in FIG. 3, a method for determining the cooling rate at which the microstructure becomes suitable is shown. FIG. 3 is a continuous cooling transformation diagram (CCT diagram) of Steel C in Table 1. In FIG. 3, the transformation start lines of ferrite, pearlite, bainite, and martensite, and the transformation end lines of martensite are indicated by symbols F, P, B, Ms, and Mf. Furthermore, in FIG. 3, the cooling rate lines are indicated by symbols X, Y, Z, and W in descending order of cooling rate. Since the three phases of ferrite, pearlite, and bainite precipitate in the range Y to Z on the cooling rate line, it can be seen that a suitable cooling rate is within this range. However, since it is difficult to predict the fraction of the structure after transformation from the continuous cooling transformation diagram, and the cooling rate of a cast slab is generally not always constant, it is preferable to treat it as a guideline. Note that the method of creating the continuous cooling transformation diagram to be used is not particularly specified. It may be calculated using general commercial software or created through experiments.
 本発明に適合するミクロ組織を持つ連続鋳造スラブであれば、鋳造後のスラブ割れの無い高合金高強度鋼板用の連続鋳造スラブを提供でき、圧延時の穴あきトラブル等も防ぐことが可能となるので産業上有用である。 If the continuous casting slab has a microstructure that conforms to the present invention, it is possible to provide a continuous casting slab for high-alloy high-strength steel plates without slab cracking after casting, and it is also possible to prevent problems such as holes during rolling. Therefore, it is industrially useful.

Claims (2)

  1. 高強度鋼用の連続鋳造スラブであって、連続鋳造スラブ表層から10mm位置における平均旧オーステナイト粒径が100μm以上0.5mm以下であり、かつ、ミクロ組織は、面積率で、フェライトが10%以上、パーライトが10%以上、ベイナイトが1%以上30%以下であることを特徴とする連続鋳造スラブ。 A continuously cast slab for high-strength steel, wherein the average prior austenite grain size at a position 10 mm from the surface of the continuous cast slab is 100 μm or more and 0.5 mm or less, and the microstructure is 10% or more of ferrite in terms of area ratio. , a continuously cast slab characterized by containing 10% or more of pearlite and 1% or more and 30% or less of bainite.
  2. 前記連続鋳造スラブは、
    質量%で、C:0.10~0.40%、Si:0.10~2.50%、Mn:1.00~5.00%を含有する、請求項1に記載の連続鋳造スラブ。
    The continuous casting slab is
    The continuous casting slab according to claim 1, containing, in mass %, C: 0.10 to 0.40%, Si: 0.10 to 2.50%, and Mn: 1.00 to 5.00%.
PCT/JP2023/012738 2022-05-09 2023-03-29 Continuous cast slab WO2023218784A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023541323A JPWO2023218784A1 (en) 2022-05-09 2023-03-29
JP2024037206A JP2024069381A (en) 2022-05-09 2024-03-11 Production method of continuous casting slab

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022077134 2022-05-09
JP2022-077134 2022-05-09

Publications (1)

Publication Number Publication Date
WO2023218784A1 true WO2023218784A1 (en) 2023-11-16

Family

ID=88730085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012738 WO2023218784A1 (en) 2022-05-09 2023-03-29 Continuous cast slab

Country Status (3)

Country Link
JP (2) JPWO2023218784A1 (en)
TW (1) TW202345994A (en)
WO (1) WO2023218784A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181861A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Ind Ltd Continuously cast slab
JP2019167559A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2019167560A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2020139210A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Cooling method of slab of high tensile steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007181861A (en) * 2006-01-06 2007-07-19 Sumitomo Metal Ind Ltd Continuously cast slab
JP2019167559A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2019167560A (en) * 2018-03-22 2019-10-03 日本製鉄株式会社 Method for cooling slab for high-strength steel sheet, method for producing high-strength hot-rolled steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP2020139210A (en) * 2019-02-28 2020-09-03 株式会社神戸製鋼所 Cooling method of slab of high tensile steel

Also Published As

Publication number Publication date
JPWO2023218784A1 (en) 2023-11-16
TW202345994A (en) 2023-12-01
JP2024069381A (en) 2024-05-21

Similar Documents

Publication Publication Date Title
KR102239637B1 (en) Production method for high-strength steel sheet
JP6409917B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
JP6901050B1 (en) High-strength steel plate and its manufacturing method
RU2583194C2 (en) High-strength dip-galvanised steel sheet and high-strength alloyed and dip-galvanised steel sheet of fine mouldability and low material anisotropy with rupture strength of 980 mpa or higher, and method of their production
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
JP6210175B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
RU2557035C1 (en) High-strength cold-rolled sheet steel and method of its production
EP3412789B1 (en) Steel sheet and coated steel sheet, hot rolled steel sheet manufacturing method, cold rolled full hard steel sheet manufacturing method, heat-treated steel sheet manufacturing method, steel sheet manufacturing method and coated steel sheet manufacturing method
KR20140099544A (en) High-strength steel sheet and method for manufacturing same
EP2796584B1 (en) High-strength steel sheet and process for producing same
EP2617850A1 (en) High-strength hot rolled steel sheet having excellent toughness and method for producing same
KR102148739B1 (en) High-strength galvanized steel sheet, high-strength member, and method of manufacturing high-strength galvanized steel sheet
WO2016148037A1 (en) Steel sheet for carburization having excellent cold workability and toughness after carburizing heat treatment
WO2020184154A1 (en) High-strength steel sheet and method for producing same
EP3875616B1 (en) Steel sheet, member, and methods for producing them
KR20140110994A (en) High carbon hot-rolled steel sheet and method for producing same
CN114402086B (en) Wear-resistant steel sheet and method for producing same
EP4123041A1 (en) High-strength steel sheet and method for manufacturing same
JP4736441B2 (en) High-strength hot-rolled steel sheet excellent in elongation characteristics, stretch flange characteristics and tensile fatigue characteristics, and method for producing the same
WO2020209275A1 (en) Steel sheet and method for manufacturing same
JP6409916B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
CN113692456B (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP2010126808A (en) Cold rolled steel sheet and method for producing the same
WO2023218784A1 (en) Continuous cast slab
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023541323

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803267

Country of ref document: EP

Kind code of ref document: A1