JP7047517B2 - Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets. - Google Patents

Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets. Download PDF

Info

Publication number
JP7047517B2
JP7047517B2 JP2018054188A JP2018054188A JP7047517B2 JP 7047517 B2 JP7047517 B2 JP 7047517B2 JP 2018054188 A JP2018054188 A JP 2018054188A JP 2018054188 A JP2018054188 A JP 2018054188A JP 7047517 B2 JP7047517 B2 JP 7047517B2
Authority
JP
Japan
Prior art keywords
slab
hot
strength
cooling
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018054188A
Other languages
Japanese (ja)
Other versions
JP2019167560A (en
Inventor
昌史 東
政樹 長嶋
大幹 内藤
敏 加藤
拓矢 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018054188A priority Critical patent/JP7047517B2/en
Publication of JP2019167560A publication Critical patent/JP2019167560A/en
Application granted granted Critical
Publication of JP7047517B2 publication Critical patent/JP7047517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、高張力鋼板用スラブの冷却方法、高張力熱延鋼板の製造方法、高張力溶融亜鉛めっき鋼板の製造方法及び高張力合金化溶融亜鉛めっき鋼板の製造方法に関する。 The present invention relates to a method for cooling a slab for a high- strength steel sheet, a method for manufacturing a high- tensile hot-rolled steel sheet, a method for manufacturing a high- strength hot-dip galvanized steel sheet, and a method for manufacturing a high- strength alloyed hot-dip galvanized steel sheet.

車体骨格に適用される冷延、めっき鋼板は、高い張力と延びの両立が要望されることから、残留オーステナイトを分散させたTRIP鋼の適用が進んでいる。Siの多量添加は、スラブを脆化させることが知られている。一般的に、スラブを冷却すると、スラブ表面と内部の温度差に起因して、応力が発生する。この応力が高いとスラブを室温まで冷却する際に亀裂が発生し、最悪は図1及び図2に示すように割れが発生する。あるいは、熱間圧延中に開口し、熱延時のコイルが破断する。あるいは亀裂で極微小なものは、熱延で再加熱する際にヘゲと呼ばれる品質欠陥となって現れる。スラブの微細な割れは、スラブをグラインダーで研削するなどにより除去可能なものの、大きな亀裂は除去できない、あるいは、見逃される場合があり、製品板の欠陥となる場合があることから、スラブ割れは抑制する必要がある。スラブ割れの発生頻度は、特に、Siを多く含む鋼で顕著になることから、Siを多量に添加する鋼にて問題になりやすい。なお、特許文献1に記載されているように、スラブが割れることについての対策については、従来も検討されている。 As cold-rolled and plated steel sheets applied to vehicle body skeletons are required to have both high tension and elongation, TRIP steel in which retained austenite is dispersed is being applied. It is known that the addition of a large amount of Si makes the slab embrittlement. Generally, when the slab is cooled, stress is generated due to the temperature difference between the surface and the inside of the slab. When this stress is high, cracks occur when the slab is cooled to room temperature, and in the worst case, cracks occur as shown in FIGS. 1 and 2. Alternatively, it opens during hot rolling and the coil during hot rolling breaks. Alternatively, cracks that are extremely small appear as quality defects called hege when reheated by hot rolling. Fine cracks in the slab can be removed by grinding the slab with a grinding machine, but large cracks cannot be removed or may be overlooked, which may result in defects in the product plate. There is a need to. Since the frequency of slab cracking is particularly remarkable in steels containing a large amount of Si, it tends to be a problem in steels containing a large amount of Si. As described in Patent Document 1, measures against cracking of the slab have been conventionally studied.

特開2007-832743号公報Japanese Unexamined Patent Publication No. 2007-832743

ところで、Siを含む成分のスラブの割れについての対策を検討する中で、特許文献1に記載の方法についての有効性の確認を試みたが、特許文献1に記載された範囲内で制御しても、鋼の割れが抑制されない場合があることが分かった。 By the way, while studying measures against cracking of slabs of components containing Si, an attempt was made to confirm the effectiveness of the method described in Patent Document 1, but it was controlled within the range described in Patent Document 1. However, it was found that cracking of steel may not be suppressed.

本発明は、このような背景でなされた発明であり、本発明の課題は、Siを含む成分のスラブであっても、当該スラブの冷却中のスラブ割れのみならず、熱延時のヘゲ等の品質欠陥が発生しない高張力鋼板用スラブの冷却方法を提供することである。また、当該冷却方法を利用した高張力熱延鋼板、高張力溶融亜鉛めっき鋼板、高張力合金化溶融亜鉛めっき鋼板の製造方法を提供することである。 The present invention has been made in such a background, and the subject of the present invention is not only cracking of the slab during cooling of the slab, but also shaving during hot spreading, etc., even if the slab contains Si. It is to provide a cooling method for a slab for a high- strength steel plate that does not cause quality defects. Another object of the present invention is to provide a method for manufacturing a high- strength hot-rolled steel sheet, a high-tensile hot -dip galvanized steel sheet, and a high- tensile alloyed hot-dip galvanized steel sheet using the cooling method.

上記課題を解決するため、質量%で、C:0.020~0.600%、Si:0.5~3.00%、Mn:1.00~3.00%、P:0.100%以下、S:0.0001~0.0100%、Al:0.005~1.000%、N:0.0100%以下、を含有し、残部にFe及び不可避的不純物を含有する高張力鋼板の連続鋳造したスラブについて、500℃以上700℃以下におけるスラブの平均冷却速度を20℃/hr以下とすることを特徴とする高張力鋼板用スラブの冷却方法とする。 In order to solve the above problems, in terms of mass %, C: 0.020 to 0.600%, Si: 0.5 to 3.00%, Mn: 1.00 to 3.00%, P: 0.100. % Or less, S: 0.0001 to 0.0100%, Al: 0.005 to 1.000%, N: 0.0100% or less , and the balance contains Fe and unavoidable impurities . A method for cooling a slab for a high- strength steel plate, characterized in that the average cooling rate of the slab at 500 ° C. or higher and 700 ° C. or lower is 20 ° C./hr or lower.

また、前記スラブが、さらに質量%で、Ni:0.01~2.00%、Cu:0.01~2.00%、Cr:0.01~2.00%、Mo:0.01~2.00%、Nb:0.005~0.100%、V:0.005~0.100%、W:0.005~0.100%、B:0.0005~0.0100%、REM:0.0003~0.0300%、Ca:0.0003~0.0300%、Ce:0.0003~0.0300%、Mg:0.0003~0.0300%、の1種又は2種以上を含有すること構成とすることが好ましい。 Further, the slab is further mass%, Ni: 0.01 to 2.00%, Cu: 0.01 to 2.00%, Cr: 0.01 to 2.00%, Mo: 0.01 to 2.00%, Nb: 0.005 to 0.100%, V: 0.005 to 0.100%, W: 0.005 to 0.100%, B: 0.0005 to 0.0100%, REM : 0.0003 to 0.0300%, Ca: 0.0003 to 0.0300%, Ce: 0.0003 to 0.0300%, Mg: 0.0003 to 0.0300%, one or more It is preferable that the composition contains the above.

また、前記成分の高張力鋼板用スラブを、鋳造完了から少なくとも10hr以上は、当該スラブ温度を700℃超に確保し、かつ、その後500℃以上700℃以下における当該スラブの平均冷却速度を20℃/hr以下とすることが好ましい。 Further, for the slab for high-strength steel plate having the above component, the slab temperature is secured to exceed 700 ° C. for at least 10 hr or more after the completion of casting, and then the average cooling rate of the slab at 500 ° C. or higher and 700 ° C. or lower is 20 ° C. It is preferably / hr or less.

また、前記スラブの冷却速度は、前記スラブを他の複数のスラブにより挟むことにより制御することが好ましい。 Further, it is preferable to control the cooling rate of the slab by sandwiching the slab with a plurality of other slabs.

また、前記他の複数のスラブにより、前記スラブを複数同時に挟む構成とすることが好ましい。 Further, it is preferable that the slabs are sandwiched by the other plurality of slabs at the same time.

また、前記高張力鋼板用スラブを冷却するにあたり、カバーをかけることが好ましい。 Further, when cooling the high-strength steel plate slab, it is preferable to cover it.

また、前記冷却方法にて冷却したスラブを用い、当該スラブ加熱温度を1100~1300℃の範囲で加熱し、粗圧延後に仕上げ圧延出側板温を800~1100℃にて仕上げ圧延を行い、室温から700℃の温度域で捲き取りを行って高張力熱延鋼板を製造することが好ましい。 Further, using the slab cooled by the cooling method, the slab heating temperature is heated in the range of 1100 to 1300 ° C., and after rough rolling, finish rolling is performed at a finish rolling output side plate temperature of 800 to 1100 ° C. from room temperature. It is preferable to perform winding in a temperature range of 700 ° C. to produce a high- tensile hot-rolled steel sheet.

また、前記製造方法で製造された高張力熱延鋼板を用い、これを酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30~80%の冷間圧延を行った後、700~900℃の温度範囲に再加熱し、焼鈍を行った後、0.2~2.0%の圧下率での調質圧延を施して高張力冷延鋼板を製造することが好ましい。 Further, using the high- strength hot-rolled steel sheet manufactured by the above-mentioned manufacturing method, after pickling the steel sheet and further thinning the sheet thickness, cold rolling with a reduction ratio of 30 to 80% is performed after pickling, and then 700. It is preferable to reheat to a temperature range of about 900 ° C., perform annealing, and then perform temper rolling at a reduction rate of 0.2 to 2.0% to produce a high- strength cold-rolled steel sheet.

また、前記製造方法で製造された高張力熱延鋼板を用い、これを酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30~80%の冷間圧延を行った後、700~900℃の温度範囲に再加熱し、溶融亜鉛めっきを行った後、0.2~2.0%の圧下率での調質圧延を施して高張力溶融亜鉛めっき鋼板を製造することが好ましい。 Further, using the high- tensile hot-rolled steel sheet manufactured by the above-mentioned manufacturing method, after pickling the steel sheet, and if the plate thickness is to be further reduced, cold rolling with a reduction ratio of 30 to 80% is performed after pickling, and then 700. It is preferable to reheat to a temperature range of about 900 ° C., perform hot-dip galvanizing, and then perform temper rolling at a rolling reduction of 0.2 to 2.0% to produce a high- tensile hot-dip galvanized steel sheet. ..

また、前記溶融亜鉛めっきから調質圧延の間で、470℃以上600℃以下に加熱して溶融亜鉛めっきを合金化させて高張力合金化溶融亜鉛めっき鋼板を製造することが好ましい。 Further, it is preferable to produce a high- tensile alloyed hot-dip galvanized steel sheet by heating the hot-dip galvanizing to 470 ° C. or higher and 600 ° C. or lower to alloy the hot-dip galvanizing between the hot-dip galvanizing and tempering rolling.

本発明を用いると、Siを含む成分のスラブであっても、当該スラブの冷却中のスラブ割れのみならず、熱延時のヘゲ等の品質欠陥が発生しない高張力鋼板用スラブの冷却方法を提供することができる。また、当該冷却方法を利用した高張力熱延鋼板、高張力溶融亜鉛めっき鋼板、高張力合金化溶融亜鉛めっき鋼板の製造方法を提供することができる。 According to the present invention, a method for cooling a slab for a high- strength steel plate, which does not cause not only slab cracking during cooling of the slab but also quality defects such as shavings during hot spreading, even if the slab contains Si. Can be provided. Further, it is possible to provide a method for manufacturing a high- strength hot-rolled steel sheet, a high-tensile hot -dip galvanized steel sheet, and a high- tensile alloyed hot-dip galvanized steel sheet using the cooling method.

スラブの割れを表した図である。It is the figure which showed the crack of a slab. 図1のII領域で表した割れに相当する割れが生じたスラブの写真である。It is a photograph of a slab in which a crack corresponding to the crack shown in the II region of FIG. 1 has occurred. スラブの温度測定位置を表す図である。It is a figure which shows the temperature measurement position of a slab. スラブの冷却態様を表す図である。但し、通常冷却、冷却対象となるスラブを2枚の他の成分のスラブにより挟んだ冷却、冷却対象となるスラブをカバーで覆った状態での冷却の3種類について表している。It is a figure which shows the cooling mode of a slab. However, three types of cooling are described: normal cooling, cooling in which the slab to be cooled is sandwiched between two slabs of other components, and cooling in which the slab to be cooled is covered with a cover. 経過時間とスラブ表面温度に係る冷却履歴を示す図である。ただし、条件C-1、C-4、条件C-5、C-8に関するものである。It is a figure which shows the cooling history which concerns on the elapsed time and the slab surface temperature. However, it relates to conditions C-1, C-4, conditions C-5, and C-8.

以下に発明を実施するための形態を示す。本実施形態の高張力鋼板用スラブ1の冷却方法は、質量%で、C:0.020~0.600%、Si:0.5~3.00%、Mn:1.00~3.00%、P:0.100%以下、S:0.0001~0.0100%、Al:0.005~1.000%、N:0.0100%以下、を含有し、残部にFe及び不可避的不純物を含有する高張力鋼板の連続鋳造したスラブ1に関するものであり、500℃以上700℃以下におけるスラブ1の平均冷却速度を20℃/hr以下とするものである。これにより、Siを含む成分のスラブ1であっても、当該スラブ1の冷却中のスラブ割れのみならず、熱延時のヘゲ等の品質欠陥が発生しない高張力鋼板用スラブ1の冷却方法とすることができる。 The embodiment for carrying out the invention is shown below. The cooling method of the high- strength steel plate slab 1 of the present embodiment is, in terms of mass %, C: 0.020 to 0.600%, Si: 0.5 to 3.00%, Mn: 1.00 to 3. It contains 00%, P: 0.100% or less, S: 0.0001 to 0.0100%, Al: 0.005 to 1.000%, N: 0.0100% or less , and Fe and unavoidable in the balance. It relates to a continuously cast slab 1 of a high-strength steel plate containing target impurities , and has an average cooling rate of 20 ° C./hr or less at 500 ° C. or higher and 700 ° C. or lower. As a result, even if the slab 1 contains Si, not only the slab 1 is cracked during cooling, but also the slab 1 for high- strength steel plate is cooled so that quality defects such as shavings during hot spreading do not occur. can do.

ここで、本発明に至った流れを説明する。本発明者らは、質量%で、C:0.020~0.600%、Si:0.5~3.00%、Mn:1.00~3.00%、P:0.100%以下、S:0.0001~0.0100%、Al:0.005~1.000%、N:0.0100%以下、を含有し、残部にFe及び不可避的不純物を含有する高張力鋼板の連続鋳造したスラブ1の割れを検討する中で、スラブ割れの原因が、鋼中へのSi添加とスラブ1内の温度ムラに起因して発生する熱応力にあることを知見した。当該鋼は、Si添加を利用し、高張力化や延性向上を行っていることから、Si添加が不可欠である。つまり、Si添加は必要であることから、スラブ1の温度ムラ(特に、表面と内部での温度差)に起因した熱応力の低減に着目することで、スラブ1の割れを抑制できないかと考えた。 Here, the flow leading to the present invention will be described. The present inventors, in terms of mass %, C: 0.020 to 0.600%, Si: 0.5 to 3.00%, Mn: 1.00 to 3.00%, P: 0.100%. Hereinafter, a high-strength steel sheet containing S: 0.0001 to 0.0100%, Al: 0.005 to 1.000%, N: 0.0100% or less , and containing Fe and unavoidable impurities in the balance . While examining the cracking of the continuously cast slab 1, it was found that the cause of the slab cracking is the thermal stress generated due to the addition of Si to the steel and the temperature unevenness in the slab 1. Since the steel uses the addition of Si to increase the tension and improve the ductility, the addition of Si is indispensable. In other words, since it is necessary to add Si, we wondered if cracking of the slab 1 could be suppressed by focusing on the reduction of thermal stress caused by the temperature unevenness of the slab 1 (particularly, the temperature difference between the surface and the inside). ..

そこで、図3に示すように、スラブ1の広い面の上面中央部に熱電対を設置し、各種冷却条件とスラブ割れや、その後のスラブ冷却時や熱延での割れやヘゲと呼ばれる表面欠陥の有無を調査した。この位置での温度をスラブ温度とする。熱延での割れは、スラブ冷却時に形成した亀裂が熱延の加熱、あるいは、圧延により開口し、割れに至るものと考えられる。一方、割れに至らずとも、開口した亀裂は、ヘゲといった欠陥として検出される場合もあるので、こちらに関しても評価を実施した。一部のスラブ1に関しては、異なる成分のスラブ2で挟み込み冷却するか、あるいは、スラブ1をカバー3で覆うかして、冷却速度を制御した(図4参照)。なお、これら方法にて、スラブ温度を測定し、冷却速度並びに冷却開始温度を種々変化させた。 Therefore, as shown in FIG. 3, a thermocouple is installed in the center of the upper surface of the wide surface of the slab 1, and various cooling conditions and slab cracking, and subsequent cracking during slab cooling or hot rolling, and a surface called hege. The presence or absence of defects was investigated. The temperature at this position is defined as the slab temperature. It is considered that the cracks formed by hot rolling occur when the cracks formed during cooling of the slab are opened by hot rolling heating or rolling, leading to cracks. On the other hand, even if it does not lead to cracks, open cracks may be detected as defects such as hesitation, so this was also evaluated. For some slabs 1, the cooling rate was controlled by sandwiching and cooling with slabs 2 having different components, or by covering the slabs 1 with a cover 3 (see FIG. 4). In addition, the slab temperature was measured by these methods, and the cooling rate and the cooling start temperature were variously changed.

検討に用いた鋼の化学組成を表1に示し、表2にスラブ冷却条件とスラブ割れ、熱延ヘゲの有無を示す。また各条件の経過時間とスラブ表面温度に係る冷却履歴を図5に示す。なお、経過時間0hrが鋳造終了時点である。 Table 1 shows the chemical composition of the steel used in the study, and Table 2 shows the slab cooling conditions, slab cracking, and the presence or absence of hot-rolled heddle. Further, FIG. 5 shows the elapsed time of each condition and the cooling history related to the slab surface temperature. The elapsed time of 0 hr is the time when the casting is completed.

Figure 0007047517000001
Figure 0007047517000001

Figure 0007047517000002
Figure 0007047517000002
Figure 0007047517000003
Figure 0007047517000003

条件C-1は、鋳造終了から7hrで、前述のようにスラブ1に熱電対を取り付け、カバー3を設置し、冷却を開始した。500℃以上700℃以下での平均冷却速度は20℃/hr以下(図示範囲で10℃/hr以下、9.0℃/hr以下)であるとともに、700℃超での保持時間は10hr以上確保(11hr)されており、室温まで割れなく冷却できた。その後、熱間圧延および捲き取りを行い、室温まで冷却した。その後、酸洗、冷延を行った後、焼鈍温度790℃にて連続焼鈍設備を通板し、冷延鋼板を製造した。製造した冷延鋼板から引張試験片を採取し、引張試験を実施したところ980MPa以上の引張強度を確保していた。 Condition C-1 was 7 hours after the end of casting, a thermocouple was attached to the slab 1 as described above, a cover 3 was installed, and cooling was started. The average cooling rate at 500 ° C or higher and 700 ° C or lower is 20 ° C / hr or less (10 ° C / hr or lower, 9.0 ° C / hr or lower in the illustrated range), and the holding time above 700 ° C is secured at 10 hr or higher. It was (11 hr) and could be cooled to room temperature without cracking. Then, it was hot rolled and rolled up and cooled to room temperature. Then, after pickling and cold rolling, a continuous annealing facility was passed through at an annealing temperature of 790 ° C. to manufacture a cold rolled steel sheet. Tensile test pieces were collected from the manufactured cold-rolled steel sheet, and a tensile test was carried out. As a result, a tensile strength of 980 MPa or more was secured.

条件C-4は、鋳造終了から6hr以内に、異なる鋼板スラブ2を最下段に敷いた後、鋼板成分Cのスラブ1を3本重ねた後、前述のように熱電対を取り付け、更に鋼板成分Cのスラブ1を2本重ねた後、最上段に異なる鋼板スラブ2を重ね冷却を開始した。700℃超の保持時間は10hr以上確保されていない(8hr)が、700~500℃間での平均冷却速度が20℃/hr以下(図示範囲で10℃/hr以下、8.3℃/hr)を確保することが出来た。室温まで冷却したスラブ1は割れなかったものの、熱間圧延後のコイルの端部に小さなヘゲは認められた。ただし、少量であり、ヘゲが発生した不良部を切断除去可能であったことから、不適合品の発生とはしなかった。その後、酸洗-冷間圧延を実施し、連続焼鈍設備にて800℃で焼鈍を行った後、溶融亜鉛めっき浴に浸漬し、更にその後、470℃で合金化処理を行い高張力合金化溶融亜鉛めっき鋼板を製造した。製造した合金化溶融亜鉛めっき鋼板から引張試験片を採取し、引張試験を実施したところ980MPa以上の引張強度を確保していた。 Condition C-4 is that within 6 hours from the end of casting, different steel plate slabs 2 are laid on the bottom, three slabs 1 of steel plate component C are stacked, a thermocouple is attached as described above, and the steel sheet component is further laid. After stacking two slabs 1 of C, different steel plate slabs 2 were stacked on the uppermost stage to start cooling. The holding time over 700 ° C is not secured for 10 hr or more (8 hr), but the average cooling rate between 700 and 500 ° C is 20 ° C / hr or less (10 ° C / hr or less, 8.3 ° C / hr in the illustrated range). ) Was secured. Although the slab 1 cooled to room temperature did not crack, a small burr was observed at the end of the coil after hot rolling. However, since it was a small amount and it was possible to cut and remove the defective part where the baldness was generated, it was not considered as a nonconforming product. After that, pickling-cold rolling was carried out, annealing was performed at 800 ° C. in a continuous annealing facility, then immersed in a hot-dip galvanized bath, and then alloying treatment was performed at 470 ° C. to achieve high- tensile alloying and melting. Manufactured galvanized steel sheets. Tensile test pieces were collected from the manufactured alloyed hot-dip galvanized steel sheet, and a tensile test was carried out. As a result, a tensile strength of 980 MPa or more was secured.

条件C-5は、鋳造開始から5hr以内に、異なる鋼板スラブ2を4本重ねた後、鋼板成分Cのスラブ1を最上段に重ね、その後、前述のように熱電対を取り付け、その上に別のスラブを重ねることなく冷却を開始した。700℃超の温度域での保持時間は10hr以上(12hr)を確保できたものの、700℃から500℃での平均冷却速度が20℃/hr超の22.2℃/hrとなった。その後、熱間圧延を実施したところ、スラブ加熱後に亀裂が見つかった。また、亀裂も複数個所見つかったことから、熱間圧延をすることが出来なかった。 Condition C-5 is that within 5 hours from the start of casting, four different steel plate slabs 2 are stacked, then the slab 1 of the steel plate component C is stacked on the uppermost stage, and then a thermocouple is attached as described above, and the thermocouple is mounted on the slab 1. Cooling was started without stacking another slab. Although the holding time in the temperature range over 700 ° C. could be secured at 10 hr or more (12 hr), the average cooling rate from 700 ° C. to 500 ° C. was 22.2 ° C./hr exceeding 20 ° C./hr. After that, when hot rolling was carried out, cracks were found after heating the slab. In addition, hot rolling could not be performed because multiple cracks were found.

条件C-8は、鋳造開始後に鋼板成分Cのスラブ1を最下段に置いた後、前述のように熱電対を設置し、その後、鋼板成分Cのスラブ1を5本重ね冷却を行った。スラブ1を最下段に置いたことで、700℃超で10hr以上の確保が出来なかった(6hr)とともに、700℃~500℃間での平均冷却速度が20℃/hr超の33.3℃/hrとなった。この結果、室温まで冷却したスラブ1に割れが発生した。また、亀裂も複数個所見つかったことから、熱間圧延をすることが出来なかった。 In condition C-8, after the start of casting, the slab 1 of the steel plate component C was placed at the bottom, a thermocouple was installed as described above, and then five slabs 1 of the steel plate component C were stacked and cooled. By placing the slab 1 at the bottom, it was not possible to secure 10 hr or more at over 700 ° C (6 hr), and the average cooling rate between 700 ° C and 500 ° C was 33.3 ° C over 20 ° C / hr. It became / hr. As a result, cracks occurred in the slab 1 cooled to room temperature. In addition, hot rolling could not be performed because multiple cracks were found.

尚、本発明に係るスラブ1は諸条件により積替えが発生する。積替えが発生した場合、スラブ1の冷却速度は一時的に20℃/hr超、例えば120~170℃/hrになることがある。しかしながら、スラブ1は少なくとも10数トン以上あり、その熱慣性は大きく、積替え程度のハンドリング時間(長くて1~2hr)であれば、そのヒートショックは吸収出来るようで、置き割れやヘゲの発生に至らない。図5では図示していないが、本発明ではこれを考慮し、500℃以上700℃以下の全てを通じて冷却速度が20℃/hr以下、ではなく、その温度範囲において平均冷却速度として20℃/hr以下であれば置き割れやヘゲの発生に至らないことを見出した。 The slab 1 according to the present invention is transshipped depending on various conditions. When transshipment occurs, the cooling rate of the slab 1 may temporarily exceed 20 ° C / hr, for example 120-170 ° C / hr. However, the slab 1 has at least 10 tons or more, its thermal inertia is large, and it seems that the heat shock can be absorbed if the handling time is about transshipment (1 to 2 hours at the longest), and cracks and shavings occur. Does not reach. Although not shown in FIG. 5, in consideration of this in the present invention, the cooling rate is not 20 ° C./hr or less throughout all of 500 ° C. and above and 700 ° C. or less, but the average cooling rate in the temperature range is 20 ° C./hr. It was found that if the following is the case, it does not lead to cracking or swelling.

より詳しくは、スラブ温度(スラブ1の広い面の上面中央部の表面温度((T:℃))が500℃~700℃間のスラブ1の平均冷却速度(V:℃/時間)を20℃/hr以下で冷却することでスラブ割れが抑制可能なことを見出した。更に、鋳造完了から少なくとも10hr以上は、スラブ温度を700℃以上に確保することでスラブ1の微小な割れに起因したヘゲも抑制可能なことを見出した。 More specifically, the slab temperature (the surface temperature at the center of the upper surface of the wide surface of the slab 1 ((T: ° C.)) is between 500 ° C. and 700 ° C., and the average cooling rate (V: ° C./hour) of the slab 1 is 20 ° C. It was found that slab cracking can be suppressed by cooling at / hr or less. Further, at least 10 hr or more after the completion of casting, by ensuring the slab temperature at 700 ° C. or higher, the slab 1 is caused by minute cracking. It was found that the temperature can also be suppressed.

次に、本発明の前提となる高張力熱延鋼板の化学成分の限定理由を説明する。なお、含有量の%は質量%である。 Next, the reason for limiting the chemical composition of the high- strength hot-rolled steel sheet, which is the premise of the present invention, will be described. The% of the content is mass%.

Cを0.020~0.600%とする理由は以下の通りである。Cは、鋼板の張力を高めるために添加する元素である。具体的には高張力化と伸び向上に寄与する残留オーステナイトを確保するために添加する元素である。Cが0.020%未満であると、必要な張力を得ることが出来ないことから、下限の添加量は0.020%である。一方、0.600%を超えると、溶接性や加工性が不充分となる。したがって、0.020~0.600%とする。 The reason for setting C to 0.020 to 0.600% is as follows. C is an element added to increase the tension of the steel sheet. Specifically, it is an element added to secure retained austenite that contributes to high tension and improvement of elongation. If C is less than 0.020%, the required tension cannot be obtained, so the lower limit of the addition amount is 0.020%. On the other hand, if it exceeds 0.600%, the weldability and workability become insufficient. Therefore, it is set to 0.020 to 0.600%.

Siを0.50~3.00%とする理由は以下の通りである。Siは、焼鈍工程で残留オーステナイトを確保するために添加する必要がある。加えて、固溶強化により高張力化にも寄与するため必須の添加元素である。このことから、0.50%以上添加する必要がある。この効果は、0.70%以上で特に顕著になることから、0.70%以上の添加することが好ましい。一方、3.00%超の添加は効果が飽和するだけでなく、熱延板に強固なスケールが発生する。このことから、外観や酸洗性を劣化させることから、上限は3.00%以下である。したがって、0.50~3.00%とする。 The reason for setting Si to 0.50 to 3.00% is as follows. Si needs to be added to ensure retained austenite in the annealing process. In addition, it is an essential additive element because it contributes to high tension by strengthening the solid solution. Therefore, it is necessary to add 0.50% or more. Since this effect becomes particularly remarkable at 0.70% or more, it is preferable to add 0.70% or more. On the other hand, addition of more than 3.00% not only saturates the effect, but also causes a strong scale on the hot-rolled sheet. From this, the upper limit is 3.00% or less because the appearance and pickling property are deteriorated. Therefore, it is set to 0.50 to 3.00%.

Mnを1.00%~3.00%とする理由は以下の通りである。Mnは、鋼板の強度を高めるために添加する元素である。具体的には、熱延での変態制御を通じて鋼板強度を制御するために添加する元素である。1.00%未満では、十分な強化が出来ないことから1.00%以上添加する必要がある。一方、3.00%超の添加は、その効果が飽和するとともに、経済性が悪いことから望ましくない。したがって、1.00%~3.00%とする。 The reason for setting Mn to 1.00% to 3.00% is as follows. Mn is an element added to increase the strength of the steel sheet. Specifically, it is an element added to control the strength of the steel sheet through transformation control by hot rolling. If it is less than 1.00%, it cannot be sufficiently strengthened, so it is necessary to add 1.00% or more. On the other hand, addition of more than 3.00% is not desirable because the effect is saturated and the economy is poor. Therefore, it is set to 1.00% to 3.00%.

Pを0.100%以下とする理由は以下の通りである。Pは、鋼板の板厚中央部に偏析する元素であり、また、溶接部を脆化させる元素でもある。低い方が好ましいが、脱Pの生産性、コストかかる影響から、上限を0.100%とすることが好ましい。より好ましい上限は0.050%である。下限は特に定めることなく本発明の効果が発揮されるが、Pを0.001%未満に低減することは、さらに経済的に不利であるので、下限を0.001%とする。 The reason for setting P to 0.100% or less is as follows. P is an element that segregates in the central portion of the thickness of the steel sheet and is also an element that embrittles the welded portion. A lower value is preferable, but the upper limit is preferably 0.100% because of the productivity of de-P and the costly effect. A more preferable upper limit is 0.050%. The effect of the present invention is exhibited without specifying the lower limit, but reducing P to less than 0.001% is further economically disadvantageous, so the lower limit is set to 0.001%.

Sを0.0001~0.0100%とする理由は以下の通りである。Sは、硫化物として存在することで、スラブ脆化をもたらしたり、製品板の成形性を劣化させたりすることから、鋼板中の含有量を制限することが好ましい元素である。このことから、上限を0.0100%とすることが好ましい。Sを0.0001%未満に低減することは、脱Sの生産性やコストの面から、不利であるので、下限を0.0001%とすることが好ましい。 The reason for setting S to 0.0001 to 0.0100% is as follows. Since S exists as a sulfide and causes slab embrittlement and deteriorates the formability of the product plate, it is preferable to limit the content in the steel sheet. For this reason, it is preferable to set the upper limit to 0.0100%. Reducing S to less than 0.0001% is disadvantageous in terms of productivity and cost of de-S, so it is preferable to set the lower limit to 0.0001%.

Alを0.005~1.000%とする理由は以下の通りである。Alは、熱延での組織制御や脱酸のため、0.005%以上添加する。0.005%未満では十分な脱酸効果を得ることが出来ず、鋼板中に多量の介在物(酸化物)が存在することとなる。一方、1.000%を超える添加は、スラブ脆化をもたらすことから好ましくない。このことから、添加量は、0.005~1.000%とする必要がある。 The reason for setting Al to 0.005 to 1.000% is as follows. Al is added in an amount of 0.005% or more for tissue control and deoxidation by hot rolling. If it is less than 0.005%, a sufficient deoxidizing effect cannot be obtained, and a large amount of inclusions (oxides) are present in the steel sheet. On the other hand, addition of more than 1.000% is not preferable because it causes slab embrittlement. Therefore, the addition amount needs to be 0.005 to 1.000%.

Nを0.0100%以下とする理由は以下の通りである。Nは、粗大な窒化物を形成し、曲げ性や穴拡げ性を劣化させる元素である。Nが0.0100%を超えると、曲げ性や穴拡げ性が顕著に劣化するので、上限を0.0100%とした。なお、Nは、溶接時のブローホールの発生原因になるので、少ない方が好ましい。Nの下限は、特に定める必要はないが、0.0001%未満に低減すると、製造コストが大幅に増加するので、0.0001%が実質的な下限である。Nは、製造コストの観点から、0.0005%以上が好ましい。 The reason for setting N to 0.0100% or less is as follows. N is an element that forms a coarse nitride and deteriorates bendability and hole expansion property. If N exceeds 0.0100%, the bendability and hole expansion property are significantly deteriorated, so the upper limit is set to 0.0100%. It should be noted that N is preferably a small amount because it causes blow holes during welding. The lower limit of N does not need to be set in particular, but if it is reduced to less than 0.0001%, the manufacturing cost will increase significantly, so 0.0001% is a substantial lower limit. N is preferably 0.0005% or more from the viewpoint of manufacturing cost.

尚、その他不可避的元素を微量含有することがある。例えばOは、酸化物を形成し、介在物として存在する。 In addition, other unavoidable elements may be contained in a trace amount. For example, O forms an oxide and exists as an inclusion.

本発明鋼板においては、さらに、必要に応じて、以下の元素の1種若しくは2種以上を以下の割合で含有する。Ni:0.01~2.00%、Cu:0.01~2.00%、Cr:0.01~2.00%、Mo:0.01~2.00%。 The steel sheet of the present invention further contains one or more of the following elements in the following proportions, if necessary. Ni: 0.01 to 2.00%, Cu: 0.01 to 2.00%, Cr: 0.01 to 2.00%, Mo: 0.01 to 2.00%.

Ni、Cu、Cr、Moは、鋼板の強度に影響する元素である。これら元素は、熱延での組織制御を通じた高強度化をもたらす。この効果は、Ni、Cu、Cr、Moの1種又は2種以上を、それぞれ、0.01%以上添加することで顕著になることから、0.01%以上添加する必要がある。各元素の量が、各元素の上限を超えると、溶接性、熱間加工性などが劣化することから、Ni、Cu、Cr、Moの上限は2.00%とする。 Ni, Cu, Cr and Mo are elements that affect the strength of the steel sheet. These elements bring about higher strength through microstructural control in hot rolling. This effect becomes remarkable when one or more of Ni, Cu, Cr, and Mo are added in an amount of 0.01% or more, respectively, and therefore it is necessary to add 0.01% or more. If the amount of each element exceeds the upper limit of each element, weldability, hot workability and the like deteriorate, so the upper limit of Ni, Cu, Cr and Mo is set to 2.00%.

本発明鋼板においては、さらに、必要に応じて、以下の元素の1種若しくは2種以上を以下の割合で含有する。Nb:0.005~0.100%、V:0.005~0.100%、W:0.005~0.100%。 The steel sheet of the present invention further contains one or more of the following elements in the following proportions, if necessary. Nb: 0.005 to 0.100%, V: 0.005 to 0.100%, W: 0.005 to 0.100%.

Nb、V、Wは、析出強化を通じて鋼板の強度に影響することから添加しても良い。この効果は、0.005%以上の添加で顕著となることから、0.005%以上添加することが望ましい。一方、0.100%超の添加は、その効果が飽和するとともに、熱延板段階でNb、V、Wの炭化物が析出することから、これら元素が残留オーステナイトの元であるCを消費してしまい残留オーステナイト量が減じてしまうことから、0.100%以下にする必要がある。なお、好ましくは、0.005~0.090%の範囲である。 Nb, V, and W may be added because they affect the strength of the steel sheet through precipitation strengthening. Since this effect becomes remarkable when 0.005% or more is added, it is desirable to add 0.005% or more. On the other hand, if the addition exceeds 0.100%, the effect is saturated and carbides of Nb, V, and W are precipitated at the hot rolling stage, so that these elements consume C, which is the source of retained austenite. Since the amount of retained austenite is reduced, it is necessary to make it 0.100% or less. The range is preferably 0.005 to 0.090%.

本発明鋼板においては、さらに、必要に応じて、Bを0.0005~0.0100%の割合で含有する。Bは、熱延での変態を制御するため、組織強化を通じて強度に影響を与えることから添加しても良い。この効果は、0.0005%以上で顕著となるため、0.0005%以上添加する必要がある。一方、0.0100%超の添加は、その効果が飽和するばかりでなく、鉄系の硼化物の析出を招き、Bの焼き入れ性の効果を失うことから好ましくない。望ましい範囲は、0.0005~0.0080%であり、更に望ましい範囲は、0.0005~0.0050%である。 The steel sheet of the present invention further contains B in a proportion of 0.0005 to 0.0100%, if necessary. B may be added because it affects the strength through tissue strengthening in order to control the transformation due to hot rolling. Since this effect becomes remarkable at 0.0005% or more, it is necessary to add 0.0005% or more. On the other hand, addition of more than 0.0100% is not preferable because not only the effect is saturated but also the precipitation of iron-based boride is caused and the quenching effect of B is lost. The desirable range is 0.0005 to 0.0080%, and the more desirable range is 0.0005 to 0.0050%.

本発明鋼板においては、さらに、必要に応じて、以下の元素の1種若しくは2種以上を以下の割合で含有する。REM:0.0003~0.0300%、Ca:0.0003~0.0300%、Ce:0.0003~0.0300%、Mg:0.0003~0.0300%。 The steel sheet of the present invention further contains one or more of the following elements in the following proportions, if necessary. REM: 0.0003 to 0.0300%, Ca: 0.0003 to 0.0300%, Ce: 0.0003 to 0.0300%, Mg: 0.0003 to 0.0300%.

REM、Ca、Ce、Mgは、強度に影響を与え、材質の改善に寄与する元素である。REM、Ca、Ce、Mgの1種又は2種以上の合計が0.0003%未満であると、充分な添加効果が得られないので、合計の下限を0.0003%とする。REM、Ca、Ce、Mgの1種又は2種以上の合計が0.0300%を超えると、鋳造性や熱間での加工性を劣化させるので、上限を0.0300%とする。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をさす。本発明においては、REMは、ミッシュメタルにて添加することが多く、また、Ceの他に、ランタノイド系列の元素を複合で含有する場合がある。本発明鋼板が、不可避不純物として、Laや、Ce以外のランタノイド系列の元素を含んでいても、本発明の効果は発現するし、また、金属を添加しても、本発明の効果は発現する。 REM, Ca, Ce, and Mg are elements that affect the strength and contribute to the improvement of the material. If the total of one or more of REM, Ca, Ce, and Mg is less than 0.0003%, a sufficient addition effect cannot be obtained, so the lower limit of the total is set to 0.0003%. If the total of one or more of REM, Ca, Ce, and Mg exceeds 0.0300%, castability and hot workability will deteriorate, so the upper limit is 0.0300%. REM is an abbreviation for Rare Earth Metal and refers to an element belonging to the lanthanoid series. In the present invention, REM is often added as a misch metal, and may contain a lanthanoid-series element in a complex in addition to Ce. The effect of the present invention is exhibited even if the steel sheet of the present invention contains elements of the lanthanoid series other than La and Ce as unavoidable impurities, and the effect of the present invention is exhibited even if a metal is added. ..

製品板のミクロ組織は、特に限定することなく本発明の効果は発揮するものの、例えば、引張強度が590MPa以上980MPa未満の鋼板であればミクロ組織はフェライト、ベイナイト、残留オーステナイトよりなる組織とすることが望ましい。980MPa以上1180MPa未満であれば、フェライト、ベイナイト、残留オーステナイト、マルテンサイトよりなる組織とすることが望ましい。1180MPa以上であれば、フェライト、ベイナイト、残留オーステナイト、マルテンサイトよりなる組織とすることが望ましい。更には、マルテンサイトは、内部に炭化物を含む焼き戻しマルテンサイトであることが望ましい。 The microstructure of the product plate is not particularly limited, and the effect of the present invention is exhibited. For example, if the steel sheet has a tensile strength of 590 MPa or more and less than 980 MPa, the microstructure shall be a structure composed of ferrite, bainite, and retained austenite. Is desirable. If it is 980 MPa or more and less than 1180 MPa, it is desirable to have a structure composed of ferrite, bainite, retained austenite and martensite. If it is 1180 MPa or more, it is desirable to have a structure composed of ferrite, bainite, retained austenite and martensite. Furthermore, it is desirable that the martensite is tempered martensite containing carbides inside.

なお、製品板の引張強度は590MPa以上とすることが望ましい。Siは、固溶強化元素であり、スラブ割れを引き起こす懸念のあるSiを添加すると、590MPa以上になる。このように、本技術は、引張強度590MPa以上の鋼板の素材となるスラブ1に適用することで、この効果は発揮される。上限は特に定めることなく本発明の効果は発揮されるが、製品板強度が高い鋼板ほど、Si添加量が多くなる傾向にあり、スラブ割れが顕在化しやすい。このことから、高張力鋼板ほど本技術を適用する効果が大きい。また、より効果が顕著に表れるのは780MPa以上、さらには980MPa以上である。 The tensile strength of the product plate is preferably 590 MPa or more. Si is a solid solution strengthening element, and when Si which may cause slab cracking is added, it becomes 590 MPa or more. As described above, this technique is exhibited by applying this technique to the slab 1 which is a material of a steel plate having a tensile strength of 590 MPa or more. Although the effect of the present invention is exhibited without setting an upper limit, the higher the product plate strength, the larger the amount of Si added, and the slab cracking tends to become apparent. From this, the higher the tension steel plate, the greater the effect of applying this technology. Further, the effect is more remarkable at 780 MPa or more, and further at 980 MPa or more.

本発明による冷却方法に従ったスラブ1であれば、鋳造後のスラブ割れや熱延時のヘゲ発生のない高張力熱延鋼板、冷延鋼板、並びに高張力溶融亜鉛めっき鋼板、高張力合金化溶融亜鉛めっき鋼板の製造が可能となる。これらの製造方法は以下のとおりである。 If the slab 1 is in accordance with the cooling method according to the present invention, high- tensile hot-rolled steel sheets, cold-rolled steel sheets, high- tensile hot-dip galvanized steel sheets, and high- tensile alloying without slab cracking after casting or generation of shavings during hot-rolling. It is possible to manufacture hot-dip galvanized steel sheets. These manufacturing methods are as follows.

まず本発明の冷却方法によるスラブ1を用いる。以下は通常の高張力鋼板の製造条件と同じである。熱延においては、スラブ加熱温度を1100℃~1300℃の範囲で加熱し、粗圧延後に仕上げ圧延出側板温を800℃~1100℃にて仕上げ圧延を行い、室温から700℃の温度域で捲き取りを行う。仕上げ圧延出側から捲き取りまでの間で急速冷却や板温の保持・保温、空冷を行っても構わない。この様にして高張力熱延鋼板を製造する。 First, the slab 1 according to the cooling method of the present invention is used. The following are the same as the manufacturing conditions for ordinary high- strength steel sheets. In hot rolling, the slab heating temperature is heated in the range of 1100 ° C to 1300 ° C, and after rough rolling, finish rolling is performed at a finish rolling output side plate temperature of 800 ° C to 1100 ° C, and the rolling is performed in the temperature range of room temperature to 700 ° C. Roll out. Rapid cooling, plate temperature maintenance / heat retention, and air cooling may be performed between the finishing rolling side and winding. In this way, a high- strength hot-rolled steel sheet is manufactured.

張力冷延鋼板の場合は、前記高張力熱延鋼板を酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30%~80%の冷間圧延を行った後、750℃~900℃の温度範囲に再加熱し、0.2~2.0%の圧下率での調質圧延を施して冷延鋼板とする。めっきを付与する場合は、上記熱処理後に溶融亜鉛めっき浴に浸漬し、溶融亜鉛めっきを施し、0.2%~2.0%の圧下率での調質圧延を施して高張力冷延溶融亜鉛めっき鋼板とする。
張力熱延溶融亜鉛めっき鋼板の場合は、前記高張力熱延鋼板を酸洗後、750℃~900℃の温度範囲に再加熱し、溶融亜鉛めっき浴に浸漬し、溶融亜鉛めっきを施し、0.2%~2.0%の圧下率での調質圧延を施して高張力溶融亜鉛めっき鋼板とする。
In the case of a high- tensile cold-rolled steel sheet, the high- tensile hot-rolled steel sheet is pickled, and in the case of further thinning, after pickling, cold rolling with a reduction ratio of 30% to 80% is performed, and then 750 ° C. It is reheated to a temperature range of 900 ° C. and tempered and rolled at a reduction rate of 0.2 to 2.0% to obtain a cold-rolled steel sheet. When plating is applied, after the above heat treatment, it is immersed in a hot-dip galvanizing bath, hot-dip galvanized, tempered and rolled at a reduction rate of 0.2% to 2.0%, and high- tensile cold-rolled hot-dip zinc. It shall be a plated steel plate.
In the case of a high- tensile hot-rolled hot-dip galvanized steel sheet, the high- tensile hot-rolled steel sheet is pickled, reheated to a temperature range of 750 ° C to 900 ° C, immersed in a hot-dip galvanized bath, and hot-dip galvanized. High- tensile hot-dip galvanized steel sheet is obtained by temper rolling at a rolling reduction of 0.2% to 2.0%.

張力合金化溶融亜鉛めっき鋼板とする場合には、前記高張力溶融亜鉛めっき鋼板製造の溶融亜鉛めっきから調質圧延の間で470℃~600℃に加熱して溶融亜鉛めっきを合金化させることで高張力合金化溶融亜鉛めっき鋼板とする。 In the case of a high- tensile alloyed hot-dip galvanized steel plate, the hot-dip galvanized steel is alloyed by heating to 470 ° C. to 600 ° C. between hot-dip galvanizing and temper rolling in the production of the high- tensile hot-dip galvanized steel plate. A high- tensile alloyed hot-dip galvanized steel plate is used.

本発明を用いれば、Siを多く含む割れのないスラブ1が割れなく製造でき、歩留り向上に寄与できる。また、Siを多量添加できることから、より高張力な自動車用高張力鋼板(例えば、GA980/1180MPa級TRIP鋼)の製造が可能となる。 According to the present invention, a crack-free slab 1 containing a large amount of Si can be manufactured without cracking, which can contribute to an improvement in yield. Further, since a large amount of Si can be added, it becomes possible to manufacture high- strength steel sheets for automobiles (for example, GA980 / 1180 MPa class TRIP steel) having higher tension .

以上、実施形態を中心として本発明を説明してきたが、本発明は上記実施形態に限定されることはなく、各種の態様とすることが可能である。 Although the present invention has been described above with a focus on the embodiments, the present invention is not limited to the above embodiments and can be in various embodiments.

1 スラブ(冷却対
2 スラブ(冷却制御用)
3 カバー
1 slab (cooling target )
2 slab (for cooling control)
3 cover

Claims (11)

質量%で、
C:0.020~0.600%、
Si:0.5~3.00%、
Mn:1.00~3.00%、
P:0.100%以下、
S:0.0001~0.0100%、
Al:0.005~1.000%、
N:0.0100%以下、
を含有し、残部Fe及び不可避的不純物からなる高張力鋼板用の連続鋳造したスラブについて、
500℃以上700℃以下におけるスラブの平均冷却速度を20℃/hr以下とすることを特徴とする高張力鋼板用スラブの冷却方法。
By mass%,
C: 0.020 to 0.600%,
Si: 0.5-3.00%,
Mn: 1.00 to 3.00%,
P: 0.100% or less,
S: 0.0001 to 0.0100%,
Al: 0.005 to 1.000%,
N: 0.0100% or less,
For continuously cast slabs for high-strength steel sheets containing Fe and unavoidable impurities in the balance.
A method for cooling a slab for a high-strength steel plate, characterized in that the average cooling rate of the slab at 500 ° C. or higher and 700 ° C. or lower is 20 ° C./hr or lower.
前記スラブが、さらに質量%で、
Ni:0.01~2.00%、
Cu:0.01~2.00%、
Cr:0.01~2.00%、
Mo:0.01~2.00%、
Nb:0.005~0.100%、
V:0.005~0.100%、
W:0.005~0.100%、
B:0.0005~0.0100%、
REM:0.0003~0.0300%、
Ca:0.0003~0.0300%、
Ce:0.0003~0.0300%、
Mg:0.0003~0.0300%、
の1種又は2種以上を含有することを特徴とする請求項1に記載の高張力鋼板用スラブの冷却方法。
The slab is further in mass%
Ni: 0.01-2.00%,
Cu: 0.01-2.00%,
Cr: 0.01-2.00%,
Mo: 0.01-2.00%,
Nb: 0.005 to 0.100%,
V: 0.005 to 0.100%,
W: 0.005 to 0.100%,
B: 0.0005-0.0100%,
REM: 0.0003-0.0300%,
Ca: 0.0003-0.0300%,
Ce: 0.0003-0.0300%,
Mg: 0.0003-0.0300%,
The method for cooling a slab for a high-strength steel plate according to claim 1, wherein the slab for high-strength steel plate contains one or more of the above.
請求項1又は2に記載の成分の高張力鋼板用スラブを、鋳造完了から少なくとも10hr以上は、当該スラブ温度を700℃超に確保し、かつ、その後500℃以上700℃以下における当該スラブの平均冷却速度を20℃/hr以下とすることを特徴とする請求項1または2に記載の高張力鋼板用スラブの冷却方法。 The slab for high-strength steel plate having the component according to claim 1 or 2 has a slab temperature of 700 ° C. or higher for at least 10 hr or more after the completion of casting, and then the average of the slab at 500 ° C. or higher and 700 ° C. or lower. The method for cooling a slab for a high-strength steel plate according to claim 1 or 2, wherein the cooling rate is 20 ° C./hr or less. 前記スラブの冷却速度は、前記スラブを他の複数のスラブにより挟むことにより制御することを特徴とする請求項1乃至3のいずれか1項に記載の高張力鋼板用スラブの冷却方法。 The method for cooling a slab for a high-strength steel plate according to any one of claims 1 to 3, wherein the cooling rate of the slab is controlled by sandwiching the slab between a plurality of other slabs. 前記他の複数のスラブにより、前記スラブを複数同時に挟むことを特徴とする請求項4に記載の高張力鋼板用スラブの冷却方法。 The method for cooling a slab for a high-strength steel plate according to claim 4, wherein a plurality of the slabs are simultaneously sandwiched by the other plurality of slabs. 前記高張力鋼板用スラブを冷却するにあたり、カバーをかけることを特徴とする請求項1乃至5のいずれか1項に記載の高張力鋼板用スラブの冷却方法。 The method for cooling a slab for a high-strength steel plate according to any one of claims 1 to 5, wherein a cover is applied to cool the slab for the high-strength steel plate. 請求項1から6のいずれか1項の冷却方法にて冷却した前記高張力鋼板用スラブを用い、当該スラブ加熱温度を1100~1300℃の範囲で加熱し、粗圧延後に仕上げ圧延出側板温を800~1100℃にて仕上げ圧延を行い、室温から700℃の温度域で捲き取りを行うことを特徴とする高張力熱延鋼板の製造方法。 Using the high-strength steel plate slab cooled by the cooling method according to any one of claims 1 to 6, the slab heating temperature is heated in the range of 1100 to 1300 ° C., and after rough rolling, the finish-rolled output side plate temperature is adjusted. A method for manufacturing a high-strength hot-rolled steel sheet, which comprises performing finish rolling at 800 to 1100 ° C. and winding in a temperature range of room temperature to 700 ° C. 請求項7に記載の製造方法で製造された高張力熱延鋼板を用い、これを酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30~80%の冷間圧延を行った後、700~900℃の温度範囲に再加熱し、焼鈍を行った後、0.2~2.0%の圧下率での調質圧延を施すことを特徴とする高張力冷延鋼板の製造方法。 A high-strength hot-rolled steel sheet manufactured by the manufacturing method according to claim 7 was used, and after pickling, cold rolling with a reduction ratio of 30 to 80% was performed after pickling to further reduce the thickness. After that, it is reheated to a temperature range of 700 to 900 ° C., annealed, and then tempered and rolled at a reduction rate of 0.2 to 2.0% to produce a high-strength cold-rolled steel sheet. Method. 請求項7に記載の製造方法で製造された高張力熱延鋼板を用い、これを酸洗後、700~900℃の温度範囲に再加熱し、溶融亜鉛めっきを行った後、0.2~2.0%の圧下率での調質圧延を施すことを特徴とする高張力熱延溶融亜鉛めっき鋼鈑の製造方法。 A high-tensile hot-rolled steel sheet manufactured by the manufacturing method according to claim 7 is used, pickled, reheated to a temperature range of 700 to 900 ° C., hot-dip galvanized, and then 0.2 to 0.2. A method for manufacturing a high-tensile hot-rolled hot-dip galvanized steel sheet, which comprises performing temper rolling at a rolling reduction of 2.0%. 請求項7に記載の製造方法で製造された高張力熱延鋼板を用い、これを酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30~80%の冷間圧延を行った後、700~900℃の温度範囲に再加熱し、溶融亜鉛めっきを行った後、0.2~2.0%の圧下率での調質圧延を施すことを特徴とする高張力冷延溶融亜鉛めっき鋼鈑の製造方法。 A high-tensile hot-rolled steel sheet manufactured by the manufacturing method according to claim 7 was used, and after pickling, cold rolling with a reduction ratio of 30 to 80% was performed after pickling to further reduce the thickness. After that, it is reheated to a temperature range of 700 to 900 ° C., hot-dip galvanized, and then temper-rolled at a reduction rate of 0.2 to 2.0%. Manufacturing method of galvanized steel sheet. 請求項9叉は10の溶融亜鉛めっきから調質圧延の間で、470℃以上600℃以下に加熱して溶融亜鉛めっきを合金化させることを特徴とする高張力合金化溶融亜鉛めっき鋼板の製造方法。 Manufacture of a high-tensile alloyed hot-dip galvanized steel sheet, which comprises heating to 470 ° C. or higher and 600 ° C. or lower to alloy the hot-dip galvanizing between the hot-dip galvanizing of claim 9 or 10 and temper rolling. Method.
JP2018054188A 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets. Active JP7047517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054188A JP7047517B2 (en) 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054188A JP7047517B2 (en) 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.

Publications (2)

Publication Number Publication Date
JP2019167560A JP2019167560A (en) 2019-10-03
JP7047517B2 true JP7047517B2 (en) 2022-04-05

Family

ID=68106334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054188A Active JP7047517B2 (en) 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.

Country Status (1)

Country Link
JP (1) JP7047517B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7260336B2 (en) * 2019-02-28 2023-04-18 株式会社神戸製鋼所 Cooling method for slabs of high-strength steel
WO2023218787A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Continuous casting slab and method for manufacturing same
JP7396544B1 (en) * 2022-05-09 2023-12-12 Jfeスチール株式会社 Slabs for high-strength steel plates and their cooling methods, methods for producing high-strength hot-rolled steel plates, methods for producing high-strength cold-rolled steel plates, and methods for producing high-strength plated steel plates.
JPWO2023218784A1 (en) * 2022-05-09 2023-11-16
WO2023218786A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Continuous casting slab and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024087A (en) 2012-07-26 2014-02-06 Nippon Steel & Sumitomo Metal Cooling method of cast piece
JP2015224359A (en) 2014-05-27 2015-12-14 Jfeスチール株式会社 Method of producing high strength steel sheet
JP2016141858A (en) 2015-02-03 2016-08-08 Jfeスチール株式会社 High-strength steel sheet, high-strength plated steel sheet, high-strength molten zinc plated steel sheet, high-strength alloyed molten zinc plated steel sheet, and method of producing the same
WO2017131054A1 (en) 2016-01-29 2017-08-03 Jfeスチール株式会社 High strength zinc plated steel sheet, high strength member, and production method for high strength zinc plated steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014024087A (en) 2012-07-26 2014-02-06 Nippon Steel & Sumitomo Metal Cooling method of cast piece
JP2015224359A (en) 2014-05-27 2015-12-14 Jfeスチール株式会社 Method of producing high strength steel sheet
JP2016141858A (en) 2015-02-03 2016-08-08 Jfeスチール株式会社 High-strength steel sheet, high-strength plated steel sheet, high-strength molten zinc plated steel sheet, high-strength alloyed molten zinc plated steel sheet, and method of producing the same
WO2017131054A1 (en) 2016-01-29 2017-08-03 Jfeスチール株式会社 High strength zinc plated steel sheet, high strength member, and production method for high strength zinc plated steel sheet

Also Published As

Publication number Publication date
JP2019167560A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6443593B1 (en) High strength steel sheet
JP6443592B1 (en) High strength steel sheet
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP7047517B2 (en) Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.
KR101570629B1 (en) High-strength hot-dip galvanized steel plate having excellent impact resistance and method for producing same, and high-strength alloyed hot-dip galvanized steel sheet and method for producing same
US8657970B2 (en) Hot-rolled steel sheet excellent in fatigue properties and stretch-flange formability and method for manufacturing the same
KR101609331B1 (en) Alloyed hot-dip galvanized steel sheet
JP4790639B2 (en) High-strength cold-rolled steel sheet excellent in stretch flange formability and impact absorption energy characteristics, and its manufacturing method
JP2018090894A (en) Process for manufacturing hot-rolled steel plate and process for manufacturing cold-rolled full hard steel plate
WO2012002565A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
JP5967318B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
US11332804B2 (en) High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same
JP7047516B2 (en) Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.
JP6610749B2 (en) High strength cold rolled steel sheet
JPH024657B2 (en)
JP2004225132A (en) High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor
JP4736853B2 (en) Precipitation strengthened high strength steel sheet and method for producing the same
JP5686028B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4010132B2 (en) Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same
JP4010131B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
KR102698066B1 (en) High-strength steel plates, high-strength members and their manufacturing methods
JP5682356B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5682357B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5987999B1 (en) High strength steel plate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R151 Written notification of patent or utility model registration

Ref document number: 7047517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151