JP7047516B2 - Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets. - Google Patents

Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets. Download PDF

Info

Publication number
JP7047516B2
JP7047516B2 JP2018054187A JP2018054187A JP7047516B2 JP 7047516 B2 JP7047516 B2 JP 7047516B2 JP 2018054187 A JP2018054187 A JP 2018054187A JP 2018054187 A JP2018054187 A JP 2018054187A JP 7047516 B2 JP7047516 B2 JP 7047516B2
Authority
JP
Japan
Prior art keywords
slab
hot
strength
cooling
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018054187A
Other languages
Japanese (ja)
Other versions
JP2019167559A (en
Inventor
昌史 東
政樹 長嶋
大幹 内藤
敏 加藤
拓矢 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018054187A priority Critical patent/JP7047516B2/en
Publication of JP2019167559A publication Critical patent/JP2019167559A/en
Application granted granted Critical
Publication of JP7047516B2 publication Critical patent/JP7047516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、高張力鋼板用スラブの冷却方法、高張力熱延鋼板の製造方法、高張力溶融亜鉛めっき鋼板の製造方法及び高張力合金化溶融亜鉛めっき鋼板の製造方法に関する。 The present invention relates to a method for cooling a slab for a high- strength steel sheet, a method for manufacturing a high- tensile hot-rolled steel sheet, a method for manufacturing a high- strength hot-dip galvanized steel sheet, and a method for manufacturing a high- strength alloyed hot-dip galvanized steel sheet.

足回り向けに適用の期待される高張力熱延鋼板および高張力溶融亜鉛めっき鋼板、高張力合金化溶融亜鉛めっき鋼板は、高い部品耐力と疲労特性の両立が要望されることから、Tiを添加し、熱延捲き取時にTiCとして析出させることで高YP化とTSアップを達成している。一方、これらの高張力鋼板のスラブを製鋼鋳造後、冷却する際にも、これら合金元素は析出物を形成する。特に、鋳造したスラブの高温での結晶粒径は極めて大きい。一般的には、スラブは室温まで冷却する間に変態を経ることから、粒径は小さくなる。ただし、Tiは高温でも析出しやすいことから、粗大なオーステナイト粒界に粗大な硫化物や炭化物として析出する。特に、析出したTiの析出物はオーステナイト粒界を覆うように析出するとともに、硬くて脆いことからスラブを脆化させる。 High- strength hot-rolled steel sheets, high- strength hot-dip galvanized steel sheets, and high-tensile alloyed hot-dip galvanized steel sheets, which are expected to be applied to undercarriage, are required to have both high component resistance and fatigue characteristics, so Ti is added. However, high YP and TS up are achieved by precipitating as TiC during hot rolling. On the other hand, these alloying elements also form precipitates when the slabs of these high- strength steel plates are cooled after steelmaking and casting. In particular, the crystal grain size of the cast slab at high temperature is extremely large. In general, the slab undergoes transformation while cooling to room temperature, resulting in a smaller particle size. However, since Ti tends to precipitate even at high temperatures, it precipitates as coarse sulfides and carbides at the coarse austenite grain boundaries. In particular, the precipitated Ti precipitates are precipitated so as to cover the austenite grain boundaries, and are hard and brittle, so that the slab is embrittled.

一方、スラブを冷却すると、スラブ表面と内部の温度差に起因して、応力が発生する。この応力が高いとスラブを室温まで冷却する際に亀裂が発生し、最悪は図1のように割れが発生する。あるいは、熱間圧延中に開口し、熱延時のコイルが破断する。あるいは亀裂で極微小なものは、熱延で再加熱する際にヘゲと呼ばれる品質欠陥となって現れる。スラブの微細な割れは、スラブをグラインダーで研削するなどにより除去可能なものの、大きな亀裂は除去できない。また、亀裂が見逃される場合があり、製品板の欠陥となる場合がある。このようなことから、スラブ割れは抑制する必要がある。 On the other hand, when the slab is cooled, stress is generated due to the temperature difference between the surface of the slab and the inside. When this stress is high, cracks occur when the slab is cooled to room temperature, and in the worst case, cracks occur as shown in FIG. Alternatively, it opens during hot rolling and the coil during hot rolling breaks. Alternatively, cracks that are extremely small appear as quality defects called hege when reheated by hot rolling. Fine cracks in the slab can be removed by grinding the slab with a grinding machine, but large cracks cannot be removed. In addition, cracks may be overlooked, which may result in defects in the product board. Therefore, it is necessary to suppress slab cracking.

図2にスラブ亀裂部の破面を示す。破面は旧オーステナイト粒界に沿った粒界破面の様相を呈しているとともに、破面をSEM観察、並びに破面に存在する析出物の成分分析を行うと、粒界に沿ってTiを含む析出物が存在する様子が観察された(図3)。このことから、高張力化のために添加したTiがスラブ割れに悪影響を及ぼすものと考えられた。すなわち、Tiはスラブ冷却時にも析出物として析出するとともに、オーステナイト粒界に粗大な析出物として析出し、スラブを脆化させたものと考えられる。 FIG. 2 shows the fracture surface of the slab crack portion. The fracture surface has the appearance of a grain boundary fracture surface along the old austenite grain boundaries, and when the fracture surface is observed by SEM and the components of the precipitates present on the fracture surface are analyzed, Ti is found along the grain boundaries. The presence of inclusions was observed (Fig. 3). From this, it was considered that Ti added for increasing the tension had an adverse effect on slab cracking. That is, it is considered that Ti precipitates as a precipitate even when the slab is cooled, and also precipitates as a coarse precipitate at the austenite grain boundaries, making the slab embrittlement.

一方、スラブを冷却すると、スラブ表面と内部の温度差に起因して、応力が発生する。この応力が高いとスラブを室温まで冷却する際に、旧γ粒界に存在する脆いTi析出物が割れ起点となりスラブ割れが発生する。このように発生した亀裂は、熱延を経ても残存することから、ヘゲなどの表面欠陥となるため歩留り落ちにつながる、あるいはスラブが割れるなどの問題へと発展することから改善が求められていた。なお、特許文献1に記載されているように、スラブが割れることについての対策については、従来も検討されている。 On the other hand, when the slab is cooled, stress is generated due to the temperature difference between the surface of the slab and the inside. When this stress is high, when the slab is cooled to room temperature, the brittle Ti precipitates present at the old γ grain boundaries become the cracking starting point and slab cracking occurs. Since the cracks generated in this way remain even after hot rolling, they become surface defects such as shavings, which leads to yield drop or cracks in the slabs, so improvement is required. rice field. As described in Patent Document 1, measures against cracking of the slab have been conventionally studied.

特開2007-832743号公報Japanese Unexamined Patent Publication No. 2007-832743

ところで、Ti添加鋼の割れについての対策を検討する中で、特許文献1に記載の方法についての有効性の確認を試みたが、特許文献1に記載された範囲内で制御しても、Ti添加鋼の割れは、抑制されない場合があることが分かった。 By the way, while examining measures against cracking of Ti-added steel, an attempt was made to confirm the effectiveness of the method described in Patent Document 1, but even if controlled within the range described in Patent Document 1, Ti It was found that cracking of the added steel may not be suppressed.

本発明は、このような背景でなされた発明であり、本発明の課題は、Tiを含む成分のスラブであっても、当該スラブの冷却中のスラブ割れのみならず、熱延時のヘゲ等の品質欠陥が発生しない高張力鋼板用スラブの冷却方法を提供することである。また、当該冷却方法を利用した高張力熱延鋼板、高張力溶融亜鉛めっき鋼板、高張力合金化溶融亜鉛めっき鋼板の製造方法を提供することである。 The present invention has been made in such a background, and the subject of the present invention is not only cracking of the slab during cooling of the slab, but also shaving during hot spreading, etc., even if the slab contains Ti. It is to provide a cooling method for a slab for a high- strength steel plate that does not cause quality defects. Another object of the present invention is to provide a method for manufacturing a high- strength hot-rolled steel sheet, a high-tensile hot -dip galvanized steel sheet, and a high- tensile alloyed hot-dip galvanized steel sheet using the cooling method.

上記課題を解決するため、質量%で、C:0.020~0.600%、Si:0.01~3.00%、Mn:1.00~3.00%、Ti:0.030~0.200%、P:0.100%以下、S:0.0001~0.0100%、Al:0.005~1.000%、N:0.0100%以下、を含有し、残部にFe及び不可避的不純物を含有する高張力鋼板の連続鋳造したスラブについて、500℃以上700℃以下におけるスラブの平均冷却速度を20℃/hr以下とすることを特徴とする高張力鋼板用スラブの冷却方法とする。 In order to solve the above problems, in terms of mass %, C: 0.020 to 0.600%, Si: 0.01 to 3.00%, Mn: 1.00 to 3.00%, Ti: 0.030. -0.200%, P: 0.100% or less, S: 0.0001 to 0.0100%, Al: 0.005 to 1.000%, N: 0.0100% or less , in the balance For continuously cast slabs for high- strength steel plates containing Fe and unavoidable impurities , the average cooling rate of the slabs at 500 ° C. or higher and 700 ° C. or lower is 20 ° C./hr or lower. Use the cooling method.

また、前記スラブが、さらに質量%で、Ni:0.01~2.00%、Cu:0.01~2.00%、Cr:0.01~2.00%、Mo:0.01~2.00%、Nb:0.005~0.100%、V:0.005~0.100%、W:0.005~0.100%、B:0.0005~0.0100%、REM:0.0003~0.0300%、Ca:0.0003~0.0300%、Ce:0.0003~0.0300%、Mg:0.0003~0.0300%の1種又は2種以上を含有する構成とすることが好ましい。 Further, the slab is further mass%, Ni: 0.01 to 2.00%, Cu: 0.01 to 2.00%, Cr: 0.01 to 2.00%, Mo: 0.01 to 2.00%, Nb: 0.005 to 0.100%, V: 0.005 to 0.100%, W: 0.005 to 0.100%, B: 0.0005 to 0.0100%, REM : 0.0003 to 0.0300%, Ca: 0.0003 to 0.0300%, Ce: 0.0003 to 0.0300%, Mg: 0.0003 to 0.0300%, one or more. It is preferable that the composition contains it.

また、前記高張力鋼板用スラブを、鋳造完了から少なくとも10hr以上は、当該スラブ温度を700℃以上に確保し、かつ、その後500℃以上700℃以下における当該スラブの平均冷却速度を20℃/hr以下とすることが好ましい。 Further, for the high-strength steel plate slab, the slab temperature is secured at 700 ° C. or higher for at least 10 hr or more after the casting is completed, and then the average cooling rate of the slab at 500 ° C. or higher and 700 ° C. or lower is 20 ° C./hr. The following is preferable.

また、前記スラブの冷却速度は、前記スラブを他の複数のスラブにより挟むことにより制御することが好ましい。 Further, it is preferable to control the cooling rate of the slab by sandwiching the slab with a plurality of other slabs.

また、前記他の複数のスラブにより、前記スラブを複数同時に挟むことが好ましい。 Further, it is preferable that the slabs are sandwiched by the other plurality of slabs at the same time.

また、高張力鋼板用スラブを冷却するにあたり、カバーをかけることが好ましい。 Further, when cooling the slab for high-strength steel plate, it is preferable to cover it.

また、前記冷却方法にて冷却した前記高張力鋼板用スラブを用い、当該スラブ加熱温度を1100℃以上1300℃以下の範囲で加熱し、粗圧延後に仕上げ圧延出側板温を800℃以上1100℃以下にて仕上げ圧延を行い、室温以上700℃以下の温度域で捲き取りを行い高張力熱延鋼板の製造を行うことが好ましい。 Further, using the slab for high-strength steel plate cooled by the cooling method, the slab heating temperature is heated in the range of 1100 ° C. or higher and 1300 ° C. or lower, and after rough rolling, the finish-rolled output side plate temperature is 800 ° C. or higher and 1100 ° C. or lower. It is preferable to perform finish rolling in a high- strength hot-rolled steel sheet by winding in a temperature range of room temperature or higher and 700 ° C. or lower.

また、製造方法で製造された前記高張力熱延鋼板を用い、これを酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30%以上80%以下の冷間圧延を行った後、430℃以上800℃以下の温度範囲に再加熱し、溶融亜鉛めっき浴に浸漬し、溶融亜鉛めっきを施し、0.2%以上2.0%以下の圧下率での調質圧延を施して高張力溶融亜鉛めっき鋼板の製造を行うことが好ましい。 Further, using the high- tensile hot-rolled steel sheet manufactured by the manufacturing method, after pickling the steel sheet, and if the plate thickness is to be further thinned, after pickling and then cold rolling with a reduction ratio of 30% or more and 80% or less. Reheated to a temperature range of 430 ° C or higher and 800 ° C or lower, immersed in a hot-dip galvanizing bath, hot-dip galvanized, and tempered and rolled at a rolling reduction of 0.2% or higher and 2.0% or lower. It is preferable to manufacture a high- tensile hot-dip galvanized steel sheet.

また、前記溶融亜鉛めっきから調質圧延の間で、470℃以上600℃以下に加熱して溶融亜鉛めっきを合金化させて高張力合金化溶融亜鉛めっき鋼板の製造を行うことが好ましい。 Further, it is preferable to manufacture a high- tensile alloyed hot-dip galvanized steel sheet by heating the hot-dip galvanizing to 470 ° C. or higher and 600 ° C. or lower to alloy the hot-dip galvanizing between the hot-dip galvanizing and tempering rolling.

本発明を用いると、Tiを含む成分のスラブであっても、当該スラブの冷却中のスラブ割れのみならず、熱延時のヘゲ等の品質欠陥が発生しない高張力鋼板用スラブの冷却方法を提供することができる。また、当該冷却方法を用いた高張力熱延鋼板、高張力溶融亜鉛めっき鋼板、高張力合金化溶融亜鉛めっき鋼板の製造方法を提供することができる。 According to the present invention, a method for cooling a slab for a high- strength steel plate, which does not cause not only slab cracking during cooling of the slab but also quality defects such as shavings during hot spreading, even if the slab contains Ti, is used. Can be provided. Further, it is possible to provide a method for manufacturing a high- strength hot-rolled steel sheet, a high-tensile hot -dip galvanized steel sheet, and a high- tensile alloyed hot-dip galvanized steel sheet using the cooling method.

割れが生じたスラブの写真である。This is a photograph of a slab with cracks. スラブ亀裂部の破面のSEM観察で得られた画像である。It is an image obtained by SEM observation of the fracture surface of the slab crack part. 破面のSEM観察、並びに破面に存在する析出物の成分分析の結果を表す図である。但し、SEM観察で得られた画像は、図2よりも大きな倍率としている。It is a figure which shows the result of SEM observation of the fracture surface, and the component analysis of the precipitate present in the fracture surface. However, the image obtained by SEM observation has a larger magnification than that in FIG. スラブの温度測定位置を表す図である。It is a figure which shows the temperature measurement position of a slab. スラブの冷却態様を表す図である。但し、通常冷却、冷却対象となるスラブを2枚の他の成分のスラブにより挟んだ冷却、冷却対象となるスラブをカバーで覆った状態での冷却の3種類について表している。It is a figure which shows the cooling mode of a slab. However, three types of cooling are described: normal cooling, cooling in which the slab to be cooled is sandwiched between two slabs of other components, and cooling in which the slab to be cooled is covered with a cover. 経過時間とスラブ表面温度に係る冷却履歴を示す図である。ただし、条件H-1、H-2、条件H-6、H-8、条件H-10に関するものである。It is a figure which shows the cooling history which concerns on the elapsed time and the slab surface temperature. However, it relates to the conditions H-1, H-2, the condition H-6, the H-8, and the condition H-10. 亀裂を備えたスラブの写真である。This is a picture of a slab with cracks. 図7の模式図である。It is a schematic diagram of FIG. 7.

以下に発明を実施するための形態を示す。本実施形態の高張力鋼板用スラブ1の冷却方法は、質量%で、C:0.020~0.600%、Si:0.01~3.00%、Mn:1.00~3.00%、Ti:0.030~0.200%、P:0.100%以下、S:0.0001~0.0100%、Al:0.005~1.000%、N:0.0100%以下、を含有し、残部にFe及び不可避的不純物を含有する高張力鋼板の連続鋳造したスラブ1に関するものであり、500℃以上700℃以下におけるスラブ1の平均冷却速度を20℃/hr以下とするものである。これにより、Tiを含む成分のスラブ1であっても、当該スラブ1の冷却中のスラブ割れのみならず、熱延時のヘゲ等の品質欠陥が発生しない高張力鋼板用スラブ1の冷却方法とすることができる。 The embodiment for carrying out the invention is shown below. The cooling method of the slab 1 for high- strength steel plate of the present embodiment is C: 0.020 to 0.600 %, Si: 0.01 to 3.00%, Mn: 1.00 to 3. 00%, Ti: 0.030 to 0.200%, P: 0.100% or less, S: 0.0001 to 0.0100%, Al: 0.005 to 1.000%, N: 0.0100% It relates to a continuously cast slab 1 for a high-strength steel plate containing the following and containing Fe and unavoidable impurities in the balance, and the average cooling rate of the slab 1 at 500 ° C. or higher and 700 ° C. or lower is 20 ° C./hr or lower. Is to be. As a result, even if the slab 1 contains Ti, not only the slab 1 is cracked during cooling, but also the slab 1 for high- strength steel plate is cooled so that quality defects such as shavings during hot spreading do not occur. can do.

ここで、本発明に至った流れを説明する。本発明者らは、質量%で、C:0.020~0.600%、Si:0.01~3.00%、Mn:1.00~3.00%、Ti:0.030~0.200%、P:0.100%以下、S:0.0001~0.0100%、Al:0.005~1.000%、N:0.0100%以下、を含有し、残部にFe及び不可避的不純物を含有する高張力鋼板の連続鋳造したスラブ1の割れを検討する中で、スラブ割れの原因が、旧オーステナイト粒界へのTi系析出物の形成とスラブ1内の温度ムラに起因して発生する熱応力にあることを知見した。当該鋼は、Tiの析出強化を利用し、高張力化を行っていることから、Ti添加が不可欠である。つまり、Ti系析出物を発生させるTi添加は必要であることから、スラブ1の温度ムラ(特に、表面と内部での温度差)に起因した熱応力の低減に着目することで、スラブ1の割れを抑制できないかと考えた。 Here, the flow leading to the present invention will be described. The present inventors, in terms of mass %, C: 0.020 to 0.600%, Si: 0.01 to 3.00%, Mn: 1.00 to 3.00%, Ti: 0.030 to Contains 0.200%, P: 0.100% or less, S: 0.0001 to 0.0100%, Al: 0.005 to 1.000%, N: 0.0100% or less , and Fe in the balance. In examining the cracking of the continuously cast slab 1 for high-strength steel plates containing unavoidable impurities , the causes of the slab cracking are the formation of Ti-based precipitates at the old austenite grain boundaries and the temperature unevenness in the slab 1. It was found that the thermal stress was caused by the above. Since the steel is increased in tension by utilizing the precipitation strengthening of Ti, it is indispensable to add Ti. That is, since it is necessary to add Ti to generate Ti-based precipitates, by focusing on the reduction of thermal stress caused by the temperature unevenness of the slab 1 (particularly, the temperature difference between the surface and the inside), the slab 1 can be used. I wondered if it would be possible to suppress cracking.

そこで、図4に示すように、スラブ1の広い面の上面中央部に熱電対を設置し、各種冷却条件とスラブ割れや、その後のスラブ冷却時や熱延での割れやヘゲと呼ばれる表面欠陥の有無を調査した。この位置での温度をスラブ温度とする。熱延での割れは、スラブ冷却時に形成した亀裂11が熱延の加熱、あるいは、圧延により開口し、割れに至るものと考えられる。一方、割れに至らずとも、開口した亀裂11は、ヘゲといった欠陥として検出される場合もあるので、こちらに関しても評価を実施した。一部のスラブ1に関しては、異なる成分のスラブ2で挟み込み冷却するか、あるいは、スラブ1をカバー3で覆うかして、冷却速度を制御した(図5参照)。なお、これら方法にて、スラブ温度を測定し、冷却速度並びに冷却開始温度を種々変化させた。 Therefore, as shown in FIG. 4, a thermocouple is installed in the center of the upper surface of the wide surface of the slab 1, and various cooling conditions and slab cracking, and subsequent cracking during slab cooling or hot rolling, and a surface called hege. The presence or absence of defects was investigated. The temperature at this position is defined as the slab temperature. It is considered that the cracks formed by hot rolling are caused by the cracks 11 formed during cooling of the slab, which are opened by hot rolling heating or rolling, leading to cracks. On the other hand, even if the cracks do not occur, the opened cracks 11 may be detected as defects such as shavings, and therefore the evaluation was also carried out. For some slabs 1, the cooling rate was controlled by sandwiching and cooling with slabs 2 having different components, or by covering the slabs 1 with a cover 3 (see FIG. 5). In addition, the slab temperature was measured by these methods, and the cooling rate and the cooling start temperature were variously changed.

検討に用いた鋼の化学組成を表1に示し、表2-1、表2-2にスラブ冷却条件とスラブ割れ、熱延ヘゲの有無を示す。また各条件の経過時間とスラブ表面温度に係る冷却履歴を図6に示す。 The chemical composition of the steel used in the study is shown in Table 1, and Tables 2-1 and 2-2 show the slab cooling conditions and the presence or absence of slab cracking and hot rolling. Further, FIG. 6 shows the elapsed time of each condition and the cooling history related to the slab surface temperature.

Figure 0007047516000001
Figure 0007047516000001

Figure 0007047516000002
Figure 0007047516000002
Figure 0007047516000003
Figure 0007047516000003

条件H-1は、鋳造開始から4hr以内に、前述のようにスラブ1に熱電対を取り付け、カバー3を設置し、冷却を開始した。500℃以上700℃以下での平均冷却速度は20℃/hr以下(図示範囲で4.2℃/hr以下)であるとともに、700℃以上での保持時間は10hr以上確保(44hr)されており、室温まで割れなく冷却できた。その後、熱間圧延および捲き取りを行い、室温まで冷却した。その後、熱延鋼板から引張試験片を採取し、引張試験を実施したところ980MPa以上の引張強度を確保していた。 Condition H-1 was such that within 4 hours from the start of casting, a thermocouple was attached to the slab 1 as described above, a cover 3 was installed, and cooling was started. The average cooling rate at 500 ° C. or higher and 700 ° C. or lower is 20 ° C./hr or lower (4.2 ° C./hr or lower in the illustrated range), and the holding time at 700 ° C. or higher is 10 hr or more (44 hr). , I was able to cool to room temperature without cracking. Then, it was hot rolled and rolled up and cooled to room temperature. After that, a tensile test piece was taken from a hot-rolled steel sheet and a tensile test was carried out to secure a tensile strength of 980 MPa or more.

条件H-2は、鋳造開始から4hr以内に、異なる鋼板スラブ2を最下段に敷いた後、鋼板成分Hのスラブ1を3本重ね、その後、前述のように熱電対を取り付け、更に鋼板成分Hのスラブ1を2本重ねた後、最上段に異なる鋼板スラブ2を重ね冷却を開始した。500℃以上700℃以下での平均冷却速度は20℃/hr以下(4.9℃/hr)であるとともに、700℃以上での保持時間は10hr以上確保(31hr)されており、室温まで割れなく冷却できた。その後、スラブ1を再加熱し、熱間圧延を行い作成した熱延鋼板から引張試験片を採取し、引張試験を実施したところ980MPa以上の引張強度を確保していた。 Condition H-2 is that within 4 hours from the start of casting, different steel plate slabs 2 are laid on the bottom stage, three slabs 1 of steel plate component H are stacked, and then a thermocouple is attached as described above, and further, the steel plate component. After stacking two slabs 1 of H, different steel plate slabs 2 were stacked on the uppermost stage to start cooling. The average cooling rate at 500 ° C. or higher and 700 ° C. or lower is 20 ° C./hr or lower (4.9 ° C./hr), and the holding time at 700 ° C. or higher is 10 hr or more (31 hr), which causes cracking to room temperature. I was able to cool it without. After that, the slab 1 was reheated, hot-rolled, and a tensile test piece was collected from the hot-rolled steel sheet, and a tensile test was carried out. As a result, a tensile strength of 980 MPa or more was secured.

条件H-6は、鋳造開始から9hr以内に、異なる鋼板スラブ2を6本重ねた後、鋼板成分Hのスラブ1を最上段に重ね、その後、前述のように熱電対を取り付け、その上に別のスラブを重ねることなく冷却を開始した。700℃以上の温度域での保持時間は10hr以上(15hr)を確保できたものの、700℃から500℃での平均冷却速度が20℃/hr超の29℃/hrとなった。その後、熱間圧延を実施したところ、スラブ加熱後に亀裂11が見つかった例である(図7及び図8参照)。これら亀裂11は圧延により開口する可能性が高く、直ちに圧延を中止した。 The condition H-6 is that within 9 hours from the start of casting, six different steel plate slabs 2 are stacked, then the slab 1 of the steel plate component H is stacked on the uppermost stage, and then a thermocouple is attached as described above, and the thermocouple is mounted on the slab 1. Cooling was started without stacking another slab. Although the holding time in the temperature range of 700 ° C. or higher could be secured at 10 hr or more (15 hr), the average cooling rate from 700 ° C. to 500 ° C. was 29 ° C./hr exceeding 20 ° C./hr. After that, when hot rolling was carried out, cracks 11 were found after slab heating (see FIGS. 7 and 8). These cracks 11 are likely to be opened by rolling, and rolling was stopped immediately.

条件H-8は、鋳造開始後に鋼板成分Hのスラブ1を最下段に置いた後、前述のように熱電対を設置し、その後、鋼板成分Hのスラブ1を4本重ね冷却を行った。スラブ1を最下段に置いたことで、700℃以上で10hr以上の確保が出来なかった(7hr)とともに、700℃~500℃間での平均冷却速度が20℃/hr超の29℃/hrとなった。この結果、室温まで冷却したスラブ1に割れが発生した(図1参照)。また、亀裂11も複数個所見つかったことから、熱間圧延をすることが出来なかった。 In condition H-8, after the start of casting, the slab 1 of the steel plate component H was placed at the bottom, a thermocouple was installed as described above, and then four slabs 1 of the steel plate component H were stacked and cooled. By placing the slab 1 at the bottom, it was not possible to secure 10 hr or more at 700 ° C or higher (7 hr), and the average cooling rate between 700 ° C and 500 ° C was 29 ° C / hr exceeding 20 ° C / hr. It became. As a result, cracks occurred in the slab 1 cooled to room temperature (see FIG. 1). Further, since a plurality of cracks 11 were found, hot rolling could not be performed.

条件H-10は、鋳造開始後に異なる成分のスラブ2を最下段に置いた後、鋼板成分Hのスラブ1を置き、その後、前述のように熱電対を設置し、更に、鋼板成分Hのスラブ1を5本重ねた後、カバー3をかけ冷却を行った。スラブ1の700℃以上で保持時間は5hrであり、700℃~500℃間での平均冷却速度が20℃/hr未満の10℃/hrとなった。700℃~500℃間での平均冷却速度が20℃/hr未満を確保することが出来、室温まで冷却したスラブは割れなかったものの、熱間圧延後のコイルの端部に小さなヘゲは認められた。ただし、少量であり、製品の端部を切断除去することにより、出荷可能であったことから、不適合品の発生とはしなかった。 In the condition H-10, after the start of casting, the slab 2 having a different component is placed at the bottom, then the slab 1 having the steel plate component H is placed, and then the thermocouple is installed as described above, and further, the slab having the steel plate component H is placed. After stacking 5 of 1's, the cover 3 was put on and cooled. The holding time of the slab 1 at 700 ° C. or higher was 5 hr, and the average cooling rate between 700 ° C. and 500 ° C. was 10 ° C./hr, which was less than 20 ° C./hr. An average cooling rate of less than 20 ° C / hr could be ensured between 700 ° C and 500 ° C, and although the slab cooled to room temperature did not crack, a small heddle was observed at the end of the coil after hot rolling. Was done. However, since it was a small amount and could be shipped by cutting and removing the end of the product, no nonconforming product was generated.

尚、本発明に係るスラブ1は諸条件により積替えが発生する。積替えが発生した場合、スラブ1の冷却速度は一時的に20℃/hr超、例えば120~170℃/hrになることがある。しかしながら、スラブ1は少なくとも10数トン以上あり、その熱慣性は大きく、積替え程度のハンドリング時間(長くて1~2hr)であれば、そのヒートショックは吸収出来るようで、置き割れやヘゲの発生に至らない。図6では図示していないが、本発明ではこれを考慮し、500℃以上700℃以下の全てを通じて冷却速度が20℃/hr以下、ではなく、その温度範囲において平均冷却速度として20℃/hr以下であれば置き割れやヘゲの発生に至らないことを見出した。 The slab 1 according to the present invention is transshipped depending on various conditions. When transshipment occurs, the cooling rate of the slab 1 may temporarily exceed 20 ° C / hr, for example 120-170 ° C / hr. However, the slab 1 has at least 10 tons or more, its thermal inertia is large, and it seems that the heat shock can be absorbed if the handling time is about transshipment (1 to 2 hours at the longest), and cracks and shavings occur. Does not reach. Although not shown in FIG. 6, in consideration of this in the present invention, the cooling rate is not 20 ° C./hr or less throughout all of 500 ° C. and above and 700 ° C. or less, but the average cooling rate in the temperature range is 20 ° C./hr. It was found that if the following is the case, it does not lead to cracking or swelling.

より詳しくは、スラブ温度(スラブ1の広い面の上下面中央部の表面温度((T:℃))が500℃~700℃間のスラブ1の平均冷却速度(V:℃/時間)を20℃/hr以下で冷却することでスラブ割れが抑制可能なことを見出した。更に、鋳造完了から少なくとも10hr以上は、スラブ温度を700℃以上に確保することでスラブ1の微小な割れに起因したヘゲも抑制可能なことを見出した。 More specifically, the average cooling rate (V: ° C./hour) of the slab 1 is 20 when the slab temperature (the surface temperature ((T: ° C.)) at the center of the upper and lower surfaces of the wide surface of the slab 1 is between 500 ° C. and 700 ° C.). It was found that slab cracking can be suppressed by cooling at ° C./hr or less. Further, at least 10 hr or more after the completion of casting was caused by minute cracking of slab 1 by ensuring the slab temperature at 700 ° C. or higher. It was found that hege can also be suppressed.

次に、本発明の前提となる高張力熱延鋼板の化学成分の限定理由を説明する。なお、含有量の%は質量%である。 Next, the reason for limiting the chemical composition of the high- strength hot-rolled steel sheet, which is the premise of the present invention, will be described. The% of the content is mass%.

Cを0.020~0.600%とする理由は以下の通りである。Cは、鋼板の強度を高めるために添加する元素である。具体的にはTiCとして析出することで、高張力化に寄与する元素である。Cが0.020%未満であると、必要な張力を得ることが出来ないことから、下限の添加量は0.020%である。一方、0.600%を超えると、溶接性や加工性が不充分となる。したがって、0.020~0.600%とする。 The reason for setting C to 0.020 to 0.600% is as follows. C is an element added to increase the strength of the steel sheet. Specifically, it is an element that contributes to high tension by precipitating as TiC. If C is less than 0.020%, the required tension cannot be obtained, so the lower limit of the addition amount is 0.020%. On the other hand, if it exceeds 0.600%, the weldability and workability become insufficient. Therefore, it is set to 0.020 to 0.600%.

Siを0.01~3.00%とする理由は以下の通りである。Siは、鋼板の強度を高めるために添加しても良い。しかしながら、3.00%超の添加は効果が飽和するだけでなく、熱延板に強固なスケールが発生する。これにより、外観や酸洗性を劣化させることから、上限は3.00%以下である。一方、0.01%未満とすることは、その効果が飽和するばかりでなく、生産性や経済性に悪影響を及ぼす。このことから、0.01%以上の添加とすることが望ましい。したがって、0.01~3.00%とする。ただし、生産性や経済性を気にしないのであれば、0.01%未満としても良い。 The reason for setting Si to 0.01 to 3.00% is as follows. Si may be added to increase the strength of the steel sheet. However, the addition of more than 3.00% not only saturates the effect, but also produces a strong scale on the hot rolled plate. As a result, the appearance and pickling property are deteriorated, so that the upper limit is 3.00% or less. On the other hand, if it is less than 0.01%, not only the effect is saturated, but also productivity and economic efficiency are adversely affected. For this reason, it is desirable to add 0.01% or more. Therefore, it is set to 0.01 to 3.00%. However, if productivity and economy are not a concern, it may be less than 0.01%.

Mnを1.00%~3.00%とする理由は以下の通りである。Mnは、鋼板の強度を高めるために添加する元素である。具体的には、熱延での変態制御を通じて鋼板強度を制御するために添加する元素である。1.00%未満では、十分な強化が出来ないことから1.00%以上添加する必要がある。一方、3.00%超の添加は、その効果が飽和するとともに、経済性が悪いことから望ましくない。したがって、1.00%~3.00%とする。 The reason for setting Mn to 1.00% to 3.00% is as follows. Mn is an element added to increase the strength of the steel sheet. Specifically, it is an element added to control the strength of the steel sheet through transformation control by hot rolling. If it is less than 1.00%, it cannot be sufficiently strengthened, so it is necessary to add 1.00% or more. On the other hand, addition of more than 3.00% is not desirable because the effect is saturated and the economy is poor. Therefore, it is set to 1.00% to 3.00%.

Tiを0.030~0.200%とする理由は以下の通りである。Tiは、Cと結合し、TiCを形成することで、高張力化に寄与する元素である。この効果は、0.030%以上で顕著になることから、0.030%以上の添加が必要である。一方、0.200%超の添加は、鋳造時に形成したTi析出物が安定になりすぎてしまい、熱間圧延でのスラブ加熱時に溶解させることが出来なくなる。このため、目的である高張力化の効果が発揮されない。そこで、0.030~0.200%の添加とする必要がある。 The reason for setting Ti to 0.030 to 0.200% is as follows. Ti is an element that contributes to high tension by binding to C and forming TiC. Since this effect becomes remarkable at 0.030% or more, it is necessary to add 0.030% or more. On the other hand, if the addition of more than 0.200%, the Ti precipitate formed during casting becomes too stable and cannot be melted during slab heating in hot rolling. Therefore, the effect of increasing the tension , which is the target, cannot be exhibited. Therefore, it is necessary to add 0.030 to 0.200%.

Pを0.100%以下とする理由は以下の通りである。Pは、鋼板の板厚中央部に偏析する元素であり、また、溶接部を脆化させる元素でもある。低い方が好ましいが、脱Pの生産性、コストかかる影響から、上限を0.100%とすることが好ましい。より好ましい上限は0.050%である。下限は特に定めることなく本発明の効果が発揮されるが、Pを0.001%未満に低減することは、さらに経済的に不利であるので、下限を0.001%とする。 The reason for setting P to 0.100% or less is as follows. P is an element that segregates in the central portion of the thickness of the steel sheet and is also an element that embrittles the welded portion. A lower value is preferable, but the upper limit is preferably 0.100% because of the productivity of de-P and the costly effect. A more preferable upper limit is 0.050%. The effect of the present invention is exhibited without specifying the lower limit, but reducing P to less than 0.001% is further economically disadvantageous, so the lower limit is set to 0.001%.

Sを0.0001~0.0100%とする理由は以下の通りである。Sは、硫化物として存在することで、スラブ脆化をもたらしたり、製品板の成形性を劣化させたりすることから、鋼板中の含有量を制限することが好ましい元素である。このことから、上限を0.0100%とすることが好ましい。しかしながら、脱Sの生産性やコストの面から、Sを0.0001%未満に低減することは、さらに経済的に不利であるので、下限を0.0001%とすることが好ましい。 The reason for setting S to 0.0001 to 0.0100% is as follows. Since S exists as a sulfide and causes slab embrittlement and deteriorates the formability of the product plate, it is preferable to limit the content in the steel sheet. For this reason, it is preferable to set the upper limit to 0.0100%. However, it is more economically disadvantageous to reduce S to less than 0.0001% from the viewpoint of productivity and cost of de-S, so it is preferable to set the lower limit to 0.0001%.

Alを0.005~1.000%とする理由は以下の通りである。Alは、熱延での組織制御や脱酸のため、0.005%以上添加する。0.005%未満では十分な脱酸効果を得ることが出来ず、鋼板中に多量の介在物(酸化物)が存在することとなる。一方、1.000%を超える添加は、スラブ脆化をもたらすことから好ましくない。このことから、添加量は、0.005~1.000%とする必要がある。 The reason for setting Al to 0.005 to 1.000% is as follows. Al is added in an amount of 0.005% or more for tissue control and deoxidation by hot rolling. If it is less than 0.005%, a sufficient deoxidizing effect cannot be obtained, and a large amount of inclusions (oxides) are present in the steel sheet. On the other hand, addition of more than 1.000% is not preferable because it causes slab embrittlement. Therefore, the addition amount needs to be 0.005 to 1.000%.

Nを0.0100%以下とする理由は以下の通りである。Nは、粗大な窒化物を形成し、曲げ性や穴拡げ性を劣化させる元素である。Nが0.0100%を超えると、曲げ性や穴拡げ性が顕著に劣化するので、上限を0.0100%とした。なお、Nは、溶接時のブローホールの発生原因になるので、少ない方が好ましい。Nの下限は、特に定める必要はないが、0.0001%未満に低減すると、製造コストが大幅に増加するので、0.0001%が実質的な下限である。Nは、製造コストの観点から、0.0005%以上が好ましい。 The reason for setting N to 0.0100% or less is as follows. N is an element that forms a coarse nitride and deteriorates bendability and hole expansion property. If N exceeds 0.0100%, the bendability and hole expansion property are significantly deteriorated, so the upper limit is set to 0.0100%. It should be noted that N is preferably a small amount because it causes blow holes during welding. The lower limit of N does not need to be set in particular, but if it is reduced to less than 0.0001%, the manufacturing cost will increase significantly, so 0.0001% is a substantial lower limit. N is preferably 0.0005% or more from the viewpoint of manufacturing cost.

尚、その他不可避的元素を微量含有することがある。例えばOは、酸化物を形成し、介在物として存在する。 In addition, other unavoidable elements may be contained in a trace amount. For example, O forms an oxide and exists as an inclusion.

本発明鋼板においては、さらに、必要に応じて、以下の元素の1種若しくは2種以上を以下の割合で含有する。Ni:0.01~2.00%、Cu:0.01~2.00%、Cr:0.01~2.00%、Mo:0.01~2.00%。 The steel sheet of the present invention further contains one or more of the following elements in the following proportions, if necessary. Ni: 0.01 to 2.00%, Cu: 0.01 to 2.00%, Cr: 0.01 to 2.00%, Mo: 0.01 to 2.00%.

Ni、Cu、Cr、Moは、強度に影響する元素である。これら元素は、熱延での組織制御を通じた高強度化をもたらす。この効果は、Ni、Cu、Cr、Moの1種又は2種以上を、それぞれ、0.01%以上添加することで顕著になることから、0.01%以上添加する必要がある。各元素の量が、各元素の上限を超えると、溶接性、熱間加工性などが劣化することから、Ni、Cu、Cr、Moの上限は2.00%とする。 Ni, Cu, Cr and Mo are elements that affect the strength. These elements bring about higher strength through microstructural control in hot rolling. This effect becomes remarkable when one or more of Ni, Cu, Cr, and Mo are added in an amount of 0.01% or more, respectively, and therefore it is necessary to add 0.01% or more. If the amount of each element exceeds the upper limit of each element, weldability, hot workability and the like deteriorate, so the upper limit of Ni, Cu, Cr and Mo is set to 2.00%.

本発明鋼板においては、さらに、必要に応じて、以下の元素の1種若しくは2種以上を以下の割合で含有する。Nb:0.005~0.100%、V:0.005~0.100%、W:0.005~0.100%。 The steel sheet of the present invention further contains one or more of the following elements in the following proportions, if necessary. Nb: 0.005 to 0.100%, V: 0.005 to 0.100%, W: 0.005 to 0.100%.

Nb、V、Wは、析出強化を通じて鋼板の強度に影響することから添加しても良い。この効果は、0.005%以上の添加で顕著となることから、0.005%以上添加することが望ましい。一方、0.100%超の添加は、望ましくない。好ましくは、0.005~0.090%の範囲である。 Nb, V, and W may be added because they affect the strength of the steel sheet through precipitation strengthening. Since this effect becomes remarkable when 0.005% or more is added, it is desirable to add 0.005% or more. On the other hand, addition of more than 0.100% is not desirable. It is preferably in the range of 0.005 to 0.090%.

本発明鋼板においては、さらに、必要に応じて、Bを0.0005~0.0100%の割合で含有する。Bは、熱延での変態を制御するため、組織強化を通じて強度に影響を与えることから添加しても良い。この効果は、0.0005%以上で顕著となるため、0.0005%以上添加する必要がある。一方、0.0100%超の添加は、その効果が飽和するばかりでなく、鉄系の硼化物の析出を招き、Bの焼き入れ性の効果を失うことから好ましくない。望ましい範囲は、0.0005~0.0080%であり、更に望ましい範囲は、0.0005~0.0050%である。 The steel sheet of the present invention further contains B in a proportion of 0.0005 to 0.0100%, if necessary. B may be added because it affects the strength through tissue strengthening in order to control the transformation due to hot rolling. Since this effect becomes remarkable at 0.0005% or more, it is necessary to add 0.0005% or more. On the other hand, addition of more than 0.0100% is not preferable because not only the effect is saturated but also the precipitation of iron-based boride is caused and the quenching effect of B is lost. The desirable range is 0.0005 to 0.0080%, and the more desirable range is 0.0005 to 0.0050%.

本発明鋼板においては、さらに、必要に応じて、以下の元素の1種若しくは2種以上を以下の割合で含有する。REM:0.0003~0.0300%、Ca:0.0003~0.0300%、Ce:0.0003~0.0300%、Mg:0.0003~0.0300%。 The steel sheet of the present invention further contains one or more of the following elements in the following proportions, if necessary. REM: 0.0003 to 0.0300%, Ca: 0.0003 to 0.0300%, Ce: 0.0003 to 0.0300%, Mg: 0.0003 to 0.0300%.

REM、Ca、Ce、Mgは、強度に影響を与え、材質の改善に寄与する元素である。REM、Ca、Ce、Mgの1種又は2種以上の合計が0.0003%未満であると、充分な添加効果が得られないので、合計の下限を0.0003%とする。REM、Ca、Ce、Mgの1種又は2種以上の合計が0.0300%を超えると、鋳造性や熱間での加工性を劣化させるので、上限を0.0300%とする。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をさす。本発明においては、REMは、ミッシュメタルにて添加することが多く、また、Ceの他に、ランタノイド系列の元素を複合で含有する場合がある。本発明鋼板が、不可避不純物として、Laや、Ce以外のランタノイド系列の元素を含んでいても、本発明の効果は発現するし、また、金属を添加しても、本発明の効果は発現する。 REM, Ca, Ce, and Mg are elements that affect the strength and contribute to the improvement of the material. If the total of one or more of REM, Ca, Ce, and Mg is less than 0.0003%, a sufficient addition effect cannot be obtained, so the lower limit of the total is set to 0.0003%. If the total of one or more of REM, Ca, Ce, and Mg exceeds 0.0300%, castability and hot workability will deteriorate, so the upper limit is 0.0300%. REM is an abbreviation for Rare Earth Metal and refers to an element belonging to the lanthanoid series. In the present invention, REM is often added as a misch metal, and may contain a lanthanoid-series element in a complex in addition to Ce. The effect of the present invention is exhibited even if the steel sheet of the present invention contains elements of the lanthanoid series other than La and Ce as unavoidable impurities, and the effect of the present invention is exhibited even if a metal is added. ..

本発明による冷却方法に従ったスラブ1であれば、鋳造後のスラブ割れや熱延時のヘゲ発生のない高張力熱延鋼板や高張力溶融亜鉛めっき鋼板、高張力合金化溶融亜鉛めっき鋼板の製造が可能となる。これらの製造方法は以下のとおりである。 If the slab 1 is in accordance with the cooling method according to the present invention, it can be used for high- tensile hot-rolled steel sheets, high- tensile hot-dip galvanized steel sheets, and high- tensile alloyed hot-dip galvanized steel sheets that do not crack slabs after casting or generate heddle during hot-spreading. It can be manufactured. These manufacturing methods are as follows.

まず本発明の冷却方法によるスラブ1を用いる。以下は通常の高張力鋼板の製造条件と同じである。熱延においては、スラブ加熱温度を1100℃~1300℃の範囲で加熱し、粗圧延後に仕上げ圧延出側板温を800℃~1100℃にて仕上げ圧延を行い、室温から700℃の温度域で捲き取りを行う。仕上げ圧延出側から捲き取りまでの間で急速冷却や板温の保持・保温、空冷を行っても構わない。この様にして高張力熱延鋼板を製造する。 First, the slab 1 according to the cooling method of the present invention is used. The following are the same as the manufacturing conditions for ordinary high- strength steel sheets. In hot rolling, the slab heating temperature is heated in the range of 1100 ° C to 1300 ° C, and after rough rolling, finish rolling is performed at a finish rolling output side plate temperature of 800 ° C to 1100 ° C, and the rolling is performed in the temperature range of room temperature to 700 ° C. Roll out. Rapid cooling, plate temperature maintenance / heat retention, and air cooling may be performed between the finishing rolling side and winding. In this way, a high- strength hot-rolled steel sheet is manufactured.

張力冷延鋼板の場合は、前記高張力熱延鋼板を酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30%~80%の冷間圧延を行った後、750℃~900℃の温度範囲に再加熱し、0.2~2.0%の圧下率での調質圧延を施して冷延鋼板とする。めっきを付与する場合は、上記熱処理後に溶融亜鉛めっき浴に浸漬し、溶融亜鉛めっきを施し、0.2%~2.0%の圧下率での調質圧延を施して高張力冷延溶融亜鉛めっき鋼板とする。
張力熱延溶融亜鉛めっき鋼板の場合は、前記高張力熱延鋼板を酸洗後、750℃~900℃の温度範囲に再加熱し、溶融亜鉛めっき浴に浸漬し、溶融亜鉛めっきを施し、0.2%~2.0%の圧下率での調質圧延を施して高張力溶融亜鉛めっき鋼板とする。
In the case of a high- tensile cold-rolled steel sheet, the high- tensile hot-rolled steel sheet is pickled, and in the case of further thinning, after pickling, cold rolling with a reduction ratio of 30% to 80% is performed, and then 750 ° C. It is reheated to a temperature range of 900 ° C. and tempered and rolled at a reduction rate of 0.2 to 2.0% to obtain a cold-rolled steel sheet. When plating is applied, after the above heat treatment, it is immersed in a hot-dip galvanizing bath, hot-dip galvanized, tempered and rolled at a reduction rate of 0.2% to 2.0%, and high- tensile cold-rolled hot-dip zinc. It shall be a plated steel plate.
In the case of a high- tensile hot-rolled hot-dip galvanized steel sheet, the high- tensile hot-rolled steel sheet is pickled, reheated to a temperature range of 750 ° C to 900 ° C, immersed in a hot-dip galvanized bath, and hot-dip galvanized. High- tensile hot-dip galvanized steel sheet is obtained by temper rolling at a rolling reduction of 0.2% to 2.0%.

張力合金化溶融亜鉛めっき鋼板とする場合には、前記高張力熱延溶融亜鉛めっき鋼板、あるいは、高張力冷延溶融亜鉛めっき鋼板製造の溶融亜鉛めっきから調質圧延の間で470℃~600℃に加熱して溶融亜鉛めっきを合金化させることで高張力合金化溶融亜鉛めっき鋼板とする。 In the case of a high - tensile alloyed hot - dip galvanized steel sheet, the temperature is 470 ° C. to 600 ° C. A high- tensile alloyed hot-dip galvanized steel sheet is obtained by heating to ℃ and alloying the hot-dip galvanizing.

本発明を用いれば、Tiを多く含む割れのないスラブ1が割れなく製造でき、歩留り向上に寄与できる。また、Tiを多量添加できることから、より高張力な自動車の足回り向け熱延高張力鋼板(例えば、1180MPa級)の製造が可能となる。 According to the present invention, a crack-free slab 1 containing a large amount of Ti can be manufactured without cracking, which can contribute to an improvement in yield. Further, since a large amount of Ti can be added, it becomes possible to manufacture a hot-rolled high- strength steel plate (for example, 1180 MPa class) for undercarriage of an automobile having higher tension .

以上、実施形態を中心として本発明を説明してきたが、本発明は上記実施形態に限定されることはなく、各種の態様とすることが可能である。 Although the present invention has been described above with a focus on the embodiments, the present invention is not limited to the above embodiments and can be in various embodiments.

1 スラブ(冷却対
2 スラブ(冷却制御用)
3 カバー
11 亀裂
1 slab (cooling target )
2 slab (for cooling control)
3 cover 11 crack

Claims (11)

質量%で、
C:0.020~0.600%、
Si:0.01~3.00%、
Mn:1.00~3.00%、
Ti:0.030~0.200%、
P:0.100%以下、
S:0.0001~0.0100%、
Al:0.005~1.000%、
N:0.0100%以下、
を含有し、残部Fe及び不可避的不純物からなる高張力鋼板用の連続鋳造したスラブについて、
500℃以上700℃以下におけるスラブの平均冷却速度を20℃/hr以下とすることを特徴とする高張力鋼板用スラブの冷却方法。
By mass%,
C: 0.020 to 0.600%,
Si: 0.01-3.00%,
Mn: 1.00 to 3.00%,
Ti: 0.030 to 0.200%,
P: 0.100% or less,
S: 0.0001 to 0.0100%,
Al: 0.005 to 1.000%,
N: 0.0100% or less,
For continuously cast slabs for high-strength steel sheets containing Fe and unavoidable impurities in the balance.
A method for cooling a slab for a high-strength steel plate, characterized in that the average cooling rate of the slab at 500 ° C. or higher and 700 ° C. or lower is 20 ° C./hr or lower.
前記スラブが、さらに質量%で、
Ni:0.01~2.00%、
Cu:0.01~2.00%、
Cr:0.01~2.00%、
Mo:0.01~2.00%、
Nb:0.005~0.100%、
V:0.005~0.100%、
W:0.005~0.100%、
B:0.0005~0.0100%、
REM:0.0003~0.0300%、
Ca:0.0003~0.0300%、
Ce:0.0003~0.0300%、
Mg:0.0003~0.0300%、
の1種又は2種以上を含有することを特徴とする請求項1に記載の高張力鋼板用スラブの冷却方法。
The slab is further in mass%
Ni: 0.01-2.00%,
Cu: 0.01-2.00%,
Cr: 0.01-2.00%,
Mo: 0.01-2.00%,
Nb: 0.005 to 0.100%,
V: 0.005 to 0.100%,
W: 0.005 to 0.100%,
B: 0.0005-0.0100%,
REM: 0.0003-0.0300%,
Ca: 0.0003-0.0300%,
Ce: 0.0003-0.0300%,
Mg: 0.0003-0.0300%,
The method for cooling a slab for a high-strength steel plate according to claim 1, wherein the slab for high-strength steel plate contains one or more of the above.
請求項1又は2に記載の成分の高張力鋼板用スラブを、鋳造完了から少なくとも10hr以上は、当該スラブ温度を700℃以上に確保し、かつ、その後500℃以上700℃以下における当該スラブの平均冷却速度を20℃/hr以下とすることを特徴とする請求項1または2に記載の高張力鋼板用スラブの冷却方法。 The slab for high-strength steel plate having the component according to claim 1 or 2 has a slab temperature of 700 ° C. or higher for at least 10 hr or more after the completion of casting, and then the average of the slab at 500 ° C. or higher and 700 ° C. or lower. The method for cooling a slab for a high-strength steel plate according to claim 1 or 2, wherein the cooling rate is 20 ° C./hr or less. 前記スラブの冷却速度は、前記スラブを他の複数のスラブにより挟むことにより制御することを特徴とする請求項1乃至3のいずれか1項に記載の高張力鋼板用スラブの冷却方法。 The method for cooling a slab for a high-strength steel plate according to any one of claims 1 to 3, wherein the cooling rate of the slab is controlled by sandwiching the slab between a plurality of other slabs. 前記他の複数のスラブにより、前記スラブを複数同時に挟むことを特徴とする請求項4に記載の高張力鋼板用スラブの冷却方法。 The method for cooling a slab for a high-strength steel plate according to claim 4, wherein a plurality of the slabs are simultaneously sandwiched by the other plurality of slabs. 前記高張力鋼板用スラブを冷却するにあたり、カバーをかけることを特徴とする請求項1乃至5のいずれか1項に記載の高張力鋼板用スラブの冷却方法。 The method for cooling a slab for a high-strength steel plate according to any one of claims 1 to 5, wherein a cover is applied to cool the slab for the high-strength steel plate. 請求項1から6のいずれか1項に記載の冷却方法にて冷却した前記高張力鋼板用スラブを用い、当該スラブ加熱温度を1100℃以上1300℃以下の範囲で加熱し、粗圧延後に仕上げ圧延出側板温を800℃以上1100℃以下にて仕上げ圧延を行い、室温以上700℃以下の温度域で捲き取りを行うことを特徴とする高張力熱延鋼板の製造方法。 Using the high-strength steel plate slab cooled by the cooling method according to any one of claims 1 to 6, the slab heating temperature is heated in the range of 1100 ° C. or higher and 1300 ° C. or lower, and after rough rolling, finish rolling is performed. A method for manufacturing a high-strength hot-rolled steel sheet, which comprises performing finish rolling at a temperature of the output side plate of 800 ° C. or higher and 1100 ° C. or lower, and winding in a temperature range of room temperature or higher and 700 ° C. or lower. 請求項7に記載の製造方法で製造された高張力熱延鋼板を用い、これを酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30~80%の冷間圧延を行った後、700~900℃の温度範囲に再加熱し、焼鈍を行った後、0.2~2.0%の圧下率での調質圧延を施すことを特徴とする高張力冷延鋼板の製造方法。 A high-strength hot-rolled steel sheet manufactured by the manufacturing method according to claim 7 was used, and after pickling, cold rolling with a reduction ratio of 30 to 80% was performed after pickling to further reduce the thickness. After that, it is reheated to a temperature range of 700 to 900 ° C., annealed, and then tempered and rolled at a reduction rate of 0.2 to 2.0% to produce a high-strength cold-rolled steel sheet. Method. 請求項7に記載の製造方法で製造された高張力熱延鋼板を用い、これを酸洗後、700~900℃の温度範囲に再加熱し、溶融亜鉛めっきを行った後、0.2~2.0%の圧下率での調質圧延を施すことを特徴とする高張力熱延溶融亜鉛めっき鋼鈑の製造方法。 A high-tensile hot-rolled steel sheet manufactured by the manufacturing method according to claim 7 is used, pickled, reheated to a temperature range of 700 to 900 ° C., hot-dip galvanized, and then 0.2 to 0.2. A method for manufacturing a high-tensile hot-rolled hot-dip galvanized steel sheet, which comprises performing temper rolling at a rolling reduction of 2.0%. 請求項7に記載の製造方法で製造された高張力熱延鋼板を用い、これを酸洗後、更に板厚を薄くする場合は酸洗後に圧下率30~80%の冷間圧延を行った後、700~900℃の温度範囲に再加熱し、溶融亜鉛めっきを行った後、0.2~2.0%の圧下率での調質圧延を施すことを特徴とする高張力冷延溶融亜鉛めっき鋼鈑の製造方法。 A high-tensile hot-rolled steel sheet manufactured by the manufacturing method according to claim 7 was used, and after pickling, cold rolling with a reduction ratio of 30 to 80% was performed after pickling to further reduce the thickness. After that, it is reheated to a temperature range of 700 to 900 ° C., hot-dip galvanized, and then temper-rolled at a reduction rate of 0.2 to 2.0%. Manufacturing method of galvanized steel sheet. 請求項9叉は10の溶融亜鉛めっきから調質圧延の間で、470℃以上600℃以下に加熱して溶融亜鉛めっきを合金化させることを特徴とする高張力合金化溶融亜鉛めっき鋼板の製造方法。 Manufacture of a high-tensile alloyed hot-dip galvanized steel sheet, which comprises heating to 470 ° C. or higher and 600 ° C. or lower to alloy the hot-dip galvanizing between the hot-dip galvanizing of claim 9 or 10 and temper rolling. Method.
JP2018054187A 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets. Active JP7047516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054187A JP7047516B2 (en) 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054187A JP7047516B2 (en) 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.

Publications (2)

Publication Number Publication Date
JP2019167559A JP2019167559A (en) 2019-10-03
JP7047516B2 true JP7047516B2 (en) 2022-04-05

Family

ID=68106330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054187A Active JP7047516B2 (en) 2018-03-22 2018-03-22 Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.

Country Status (1)

Country Link
JP (1) JP7047516B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218785A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Slab for high-strength steel sheet and cooling method thereof, method for producing high-strength hot-rolled steel sheet, method for producing high-strength cold-rolled steel sheet, and method for producing high-strength plated steel sheet
JP7477051B2 (en) 2022-05-09 2024-05-01 Jfeスチール株式会社 Continuously cast slab and its manufacturing method
JP7477052B2 (en) 2022-05-09 2024-05-01 Jfeスチール株式会社 Continuously cast slab and its manufacturing method
WO2023218784A1 (en) * 2022-05-09 2023-11-16 Jfeスチール株式会社 Continuous cast slab

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104113A (en) 2011-11-15 2013-05-30 Jfe Steel Corp High-strength thin steel plate excellent in rigidity, and its manufacturing method
WO2015093043A1 (en) 2013-12-18 2015-06-25 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet and manufacturing method therefor
JP2016141859A (en) 2015-02-03 2016-08-08 Jfeスチール株式会社 High-strength steel sheet, high-strength plated steel sheet, high-strength molten zinc plated steel sheet, high-strength alloyed molten zinc plated steel sheet, and method of producing the same
JP2016183413A (en) 2015-03-26 2016-10-20 Jfeスチール株式会社 Consecutive cast slab and manufacturing method therefor and manufacturing method of high tensile steel plate excellent in processability
WO2017168962A1 (en) 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149764B2 (en) * 1995-12-15 2001-03-26 日本鋼管株式会社 Prevention method of placing cracks in continuous cast slabs of bearing steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104113A (en) 2011-11-15 2013-05-30 Jfe Steel Corp High-strength thin steel plate excellent in rigidity, and its manufacturing method
WO2015093043A1 (en) 2013-12-18 2015-06-25 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet and manufacturing method therefor
JP2016141859A (en) 2015-02-03 2016-08-08 Jfeスチール株式会社 High-strength steel sheet, high-strength plated steel sheet, high-strength molten zinc plated steel sheet, high-strength alloyed molten zinc plated steel sheet, and method of producing the same
JP2016183413A (en) 2015-03-26 2016-10-20 Jfeスチール株式会社 Consecutive cast slab and manufacturing method therefor and manufacturing method of high tensile steel plate excellent in processability
WO2017168962A1 (en) 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full-hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet

Also Published As

Publication number Publication date
JP2019167559A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6409917B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
JP6048580B2 (en) Hot rolled steel sheet and manufacturing method thereof
CN103703156B (en) The high tensile steel plate had excellent moldability, high strength galvanized steel plate and their manufacture method
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
US8657970B2 (en) Hot-rolled steel sheet excellent in fatigue properties and stretch-flange formability and method for manufacturing the same
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
CN102333899B (en) Hot rolled steel sheet having excellent punching workability and fatigue properties, hot dip galvanized steel sheet, and method for producing same
KR101570629B1 (en) High-strength hot-dip galvanized steel plate having excellent impact resistance and method for producing same, and high-strength alloyed hot-dip galvanized steel sheet and method for producing same
JP4959161B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility
JP7047517B2 (en) Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.
KR101609331B1 (en) Alloyed hot-dip galvanized steel sheet
JP7047516B2 (en) Cooling method for slabs for high-strength steel sheets, manufacturing method for high-strength hot-rolled steel sheets, manufacturing method for high-strength hot-dip galvanized steel sheets, and manufacturing method for high-strength alloyed hot-dip galvanized steel sheets.
KR20180063303A (en) Hot press member and manufacturing method thereof
JP4790639B2 (en) High-strength cold-rolled steel sheet excellent in stretch flange formability and impact absorption energy characteristics, and its manufacturing method
JP5742697B2 (en) Hot stamping molded body excellent in balance between strength and toughness, manufacturing method thereof, and manufacturing method of steel sheet for hot stamping molded body
JP5569657B2 (en) Steel sheet with excellent aging resistance and method for producing the same
JPWO2020203158A1 (en) Steel plate
CN106661699A (en) High-strength molten galvanized steel sheet and method for production thereof
WO2013094130A1 (en) High-strength steel sheet and process for producing same
JP2007070649A (en) Hot dip galvanized high strength steel sheet and alloyed hot dip galvanized high strength steel sheet having excellent corrosion resistance and hole expandability, and method for producing them
TWI655299B (en) High-strength steel plate and manufacturing method thereof
JP2013181183A (en) High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
JP5428999B2 (en) LPG / ammonia mixed steel manufacturing method
JP3295900B2 (en) High strength alloyed hot-dip galvanized steel sheet for deep drawing with excellent secondary work brittleness resistance
WO2024105998A1 (en) Hot-rolled steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R151 Written notification of patent or utility model registration

Ref document number: 7047516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151