JP2010065262A - Soaking annealing treatment method for high carbon steel - Google Patents

Soaking annealing treatment method for high carbon steel Download PDF

Info

Publication number
JP2010065262A
JP2010065262A JP2008231516A JP2008231516A JP2010065262A JP 2010065262 A JP2010065262 A JP 2010065262A JP 2008231516 A JP2008231516 A JP 2008231516A JP 2008231516 A JP2008231516 A JP 2008231516A JP 2010065262 A JP2010065262 A JP 2010065262A
Authority
JP
Japan
Prior art keywords
carbon steel
temperature
soaking
high carbon
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008231516A
Other languages
Japanese (ja)
Other versions
JP5447770B2 (en
Inventor
Yoshimichi Hino
善道 日野
Seishi Uei
清史 上井
Hideto Kimura
秀途 木村
Kenji Tokinori
健次 時乗
Yoshinori Otani
義則 大谷
Satoshi Nakajima
聡 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008231516A priority Critical patent/JP5447770B2/en
Publication of JP2010065262A publication Critical patent/JP2010065262A/en
Application granted granted Critical
Publication of JP5447770B2 publication Critical patent/JP5447770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soaking annealing treatment method for high carbon steel by which huge carbide such as eutectic carbide is rendered harmless substantially, occurrence of flaws such as the surface crack can be prevented or reduced, and the treatmentprocessing time can be shortened. <P>SOLUTION: When a cast billet of the high carbon steel is heated to a predetermined soaking temperature in a heating furnace, the cast billet is heated at heating rate of &le;50&deg;C/h in the transforming temperature zone from the starting point of the transformation to the finishing point of the transformation, and is heated at higher heating rate than the heating rate in the transformation temperature zone in the temperature zone other than the above temperature zone, and then is held in a predetermined soaking temperature. Further, it is preferable that the heating rate in the temperature zone of lower than the starting point and/or the temperature zone exceeding the finishing point is &le;100&deg;C/h. Furthermore, an isothermal conservation may be performed at just below the starting point of the transformation and/or just above the finishing point of transformation. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、高炭素含有鋼材の均熱焼鈍処理方法に係り、とくにCr含有高炭素鋼材の均熱焼鈍処理における処理時間の短縮化に関する。   The present invention relates to a soaking annealing method for a high carbon content steel material, and more particularly to shortening of the processing time in a soaking annealing process for a Cr containing high carbon steel material.

高炭素鋼材、とくに軸受鋼等のCr含有率の高い高炭素鋼材では、例えば連続鋳造法で鋳造した場合には、とくに最終凝固する中央部に巨大な共晶炭化物が晶出し、その後の、熱間圧延によっても消滅しないため、機械的特性が低下するという問題がある。
このような問題に対し、例えば非特許文献1には、軸受鋼の巨大炭化物の消滅のためには、例えば1200℃程度の温度で10時間以上の高温長時間の均熱処理を必要とすることが指摘されている。このような巨大炭化物の消滅のため、さらには鋳片の割れを防止するために、実操業では、均熱処理として、均熱温度までの加熱時間を50時間程度以上、均熱時間を20時間程度以上の、長時間の処理を実施していた。
In high carbon steel materials, especially high carbon steel materials with high Cr content such as bearing steel, for example, when cast by the continuous casting method, huge eutectic carbides crystallize in the central part where the final solidification occurs. Since it does not disappear even by hot rolling, there is a problem that the mechanical properties are deteriorated.
In order to solve such a problem, for example, Non-Patent Document 1 requires a soaking process at a temperature of about 1200 ° C. for 10 hours or more for a long time to eliminate the giant carbides in the bearing steel. It has been pointed out. In order to eliminate such giant carbides and to prevent cracking of the slab, in the actual operation, as the soaking process, the heating time to the soaking temperature is about 50 hours or more, and the soaking time is about 20 hours. The above-described long-time treatment was performed.

また、特許文献1には、垂直連続鋳造法により断面が円形の鋳片を鋳造し、水冷鋳型から引き出される鋳片に対し、中心凝固率が0.3〜0.6である間に、フラットロールを用いて圧下率1〜3%の軽圧下を加えて中心偏析を解消し、得られた鋳片に温度:1150〜1260℃に2〜5時間加熱するソーキングを行って分塊圧延することを特徴とする軸受鋼の製造方法が記載されている。特許文献1に記載された技術は、鋳造時に軽圧下を加えて中心偏析を低減若しくは消滅させ、その後の均熱処理時間の短縮を図ろうとするものである。特許文献1に記載された技術によれば、ソーキング時間を従来の半分程度とすることができるとしている。   Further, in Patent Document 1, a slab having a circular cross section is cast by a vertical continuous casting method, and a flat roll is used while the central solidification rate is 0.3 to 0.6 with respect to a slab drawn from a water-cooled mold. It is characterized by eliminating the central segregation by applying a light reduction with a reduction ratio of 1 to 3%, and subjecting the obtained slab to soaking that is heated at a temperature of 1150 to 1260 ° C. for 2 to 5 hours and performing batch rolling. A method for producing bearing steel is described. The technique described in Patent Document 1 intends to reduce or eliminate the center segregation by applying a light reduction during casting to shorten the subsequent soaking time. According to the technique described in Patent Document 1, the soaking time can be reduced to about half of the conventional time.

また、特許文献2には、高炭素クロム軸受鋼材の製造方法が記載されている。特許文献2に記載された技術は、P濃度が0.002〜0.009質量%である高炭素クロム軸受鋼用鋳片を使用して、少なくとも、ソーキング温度を1150〜1260℃とし、保持時間を2時間未満とするソーキングと、熱間圧延とを行うことに特徴があり、これにより、巨大炭化物を高度に抑制できるとしている。
特開平7−299550号公報 特開2006−016683号公報 太田隆美ら:鉄と鋼、第52年(1966)第13号、p.1851〜1859
Patent Document 2 describes a method for producing a high carbon chromium bearing steel. The technique described in Patent Document 2 uses a slab for high carbon chromium bearing steel having a P concentration of 0.002 to 0.009 mass%, at least a soaking temperature of 1150 to 1260 ° C., and a holding time of less than 2 hours It is characterized by performing soaking and hot rolling, which makes it possible to highly suppress giant carbides.
JP-A-7-299550 JP 2006-016683 A Takami Ota et al .: Iron and Steel, 52 (1966) No. 13, p.1851-1859

特許文献1に記載された技術によれば、鋳片を均熱焼鈍する際に、焼鈍時間の短縮が可能となるが、鋳造時に鋳片の軽圧下のための設備を必要とするため、多大の設備投資が必須となるという問題があった。また、特許文献2に記載された技術によれば、ソーキング保持時間の短縮化が可能であるが、均熱処理の全体時間の更なる短縮化までは達成できていないという問題があった。   According to the technique described in Patent Document 1, it is possible to shorten the annealing time when soaking the slab, but it requires equipment for light reduction of the slab at the time of casting. There was a problem that the capital investment of became indispensable. Further, according to the technique described in Patent Document 2, it is possible to shorten the soaking holding time, but there is a problem that it is not possible to achieve further shortening of the total time of soaking.

本発明は、かかる従来技術の問題を解決し、多大の設備投資を行うことなく、また、長時間の処理を必要とすることなく、共晶炭化物等の巨大炭化物を実質的に無害化し、とくに鋳片割れ、表面割れ等の疵発生を防止または軽減でき生産性に優れた、高炭素鋼材の均熱焼鈍処理方法を提供することを目的とする。   The present invention solves such problems of the prior art, makes a large amount of carbides such as eutectic carbides substantially harmless, without making a large capital investment and without requiring a long time treatment. An object of the present invention is to provide a soaking annealing method for a high carbon steel material, which can prevent or reduce the occurrence of defects such as slab cracking and surface cracking and has excellent productivity.

本発明者らは、上記した目的を達成するために、高炭素鋼材鋳片の均熱焼鈍処理時の鋳片割れ、表面割れ等の疵発生に影響する要因について鋭意研究した。その結果、とくに高炭素鋼材鋳片では、均熱焼鈍処理時間の短縮化のために、変態温度域を特定範囲を超える大きな加熱速度で加熱すると、鋳片に割れが発生することを新規に見出した。これは、加熱速度の増大に伴い鋳片の内外層における温度差が大きくなり、とくに変態温度域では、変態による熱膨張変化が内外層で異なることとなり、表面に大きな引張の熱応力が発生し割れ発生に至る場合が多いことによると考え、このような鋳片の割れ発生を防止するためには、変態温度域を特定範囲内の加熱速度で加熱することが必要であることに想到した。   In order to achieve the above-mentioned object, the present inventors diligently studied factors affecting the occurrence of defects such as slab cracking and surface cracking during soaking annealing of high carbon steel slabs. As a result, especially in the case of high carbon steel slabs, in order to shorten the soaking annealing time, it was newly found that when the transformation temperature range is heated at a large heating rate exceeding a specific range, cracks occur in the slab. It was. This is because the temperature difference between the inner and outer layers of the slab increases as the heating rate increases. Especially in the transformation temperature range, the thermal expansion changes due to transformation differ between the inner and outer layers, and a large tensile thermal stress is generated on the surface. In order to prevent the occurrence of such cracking of the cast slab, it has been thought that it is necessary to heat the transformation temperature range at a heating rate within a specific range.

本発明はかかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次の通りである。
(1)高炭素鋼材の鋳片を加熱炉を用いて所定の均熱温度まで加熱し、該所定の均熱温度で所定時間保持する高炭素鋼材の均熱焼鈍処理方法において、前記加熱を、該高炭素鋼材の次(a)
開始点(℃):高炭素鋼材の、加熱に伴う熱膨張が膨張から収縮に転じる温度‥‥(a)
で定義される開始点から次(b)
終了点(℃):高炭素鋼材の、加熱に伴う熱膨張が収縮から膨張に転じる温度‥‥(b)
で定義される終了点までの温度範囲を、炉温制御で50℃/h以下の加熱速度で行う加熱とし、前記開始点未満の温度域、および/または、前記終了点を超える温度域、での前記加熱を、前記開始点〜前記終了点の温度範囲での加熱速度より速い加熱速度で行う加熱とすることを特徴とする高炭素鋼材の均熱焼鈍処理方法。
(2)(1)において、前記高炭素鋼材が、Cr含有高炭素鋼材であることを特徴とする高炭素鋼材の均熱焼鈍処理方法。
(3)(1)または(2)において、前記開始点未満の温度域、および/または、前記終了点を超える温度域での加熱速度が、炉温制御で100℃/h以下であることを特徴とする高炭素鋼材の均熱焼鈍処理方法。
(4)(1)ないし(3)のいずれかにおいて、前記開始点以下(開始点−30℃)以上、および/または、前記終了点以上(終了点+30℃)以下、の温度域の温度で、等温保持を行うことを特徴とする高炭素鋼材の均熱焼鈍処理方法。
(5)(1)ないし(3)のいずれかにおいて、前記開始点以下(開始点−30℃)以上、および/または、前記終了点以上(終了点+30℃)以下、の温度域での加熱を、加熱速度が炉温制御で10℃/h以下である加熱とすることを特徴とする高炭素鋼材の均熱焼鈍処理方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) In the soaking annealing method of a high carbon steel material, the slab of high carbon steel material is heated to a predetermined soaking temperature using a heating furnace, and maintained at the predetermined soaking temperature for a predetermined time. Next to the high carbon steel (a)
Starting point (° C): Temperature at which the thermal expansion of a high carbon steel material changes from expansion to contraction (a)
From the start point defined by (b)
End point (° C): Temperature at which the thermal expansion of high carbon steel changes from shrinkage to expansion (b)
The temperature range up to the end point defined by is heating performed at a heating rate of 50 ° C./h or less by furnace temperature control, and the temperature range below the start point and / or the temperature range above the end point The soaking is performed at a heating rate faster than the heating rate in the temperature range from the start point to the end point.
(2) In the method (1), the high-carbon steel material is a Cr-containing high-carbon steel material.
(3) In (1) or (2), the heating rate in the temperature range below the starting point and / or in the temperature range exceeding the end point is 100 ° C./h or less by furnace temperature control. A soaking annealing method for high carbon steel.
(4) In any one of (1) to (3), at a temperature in the temperature range not higher than the start point (start point −30 ° C.) and / or higher and / or higher than the end point (end point + 30 ° C.). A soaking annealing method for high carbon steel, characterized by performing isothermal holding.
(5) In any one of (1) to (3), heating in the temperature range below the start point (start point −30 ° C.) and / or above and / or the end point (end point + 30 ° C.) and below Is a heating treatment at a heating rate of 10 ° C./h or less by controlling the furnace temperature.

本発明によれば、多大の設備投資を行うことなく、均熱焼鈍処理時間を短縮でき、共晶炭化物等の巨大炭化物を実質的に無害化し、またさらに割れ等の疵発生を防止または軽減し、鋳片の手入れ等を軽減でき、生産性を顕著に向上できるという、産業上格段の効果を奏する。   According to the present invention, it is possible to shorten the soaking annealing time without making a large capital investment, to substantially detoxify giant carbides such as eutectic carbides, and to further prevent or reduce the occurrence of flaws such as cracks. In addition, there is a remarkable industrial effect that the maintenance of the slab can be reduced and the productivity can be remarkably improved.

本発明では、高炭素鋼材の鋳片を炉中に装入し、所定の均熱温度まで加熱し、該均熱温度で所定時間保持する。なお、ここでいう「高炭素鋼材」とは、C:0.95質量%以上好ましくは1.1質量%以下を含み、共晶炭化物等の巨大炭化物を有し、好ましくは少なくとも0.9質量%以上のCrを含有する鋼材をいうものとする。なお、さらに好ましくは、「高炭素鋼材」は、JIS G 4805に規定される高炭素クロム軸受鋼鋼材、SUJ2〜SUJ5である。   In the present invention, a high carbon steel slab is charged into a furnace, heated to a predetermined soaking temperature, and held at the soaking temperature for a predetermined time. As used herein, “high carbon steel” includes C: 0.95% by mass or more, preferably 1.1% by mass or less, has a giant carbide such as a eutectic carbide, and preferably contains at least 0.9% by mass of Cr. It shall mean steel material to be used. More preferably, the “high carbon steel material” is a high carbon chromium bearing steel material defined in JIS G 4805, SUJ2 to SUJ5.

本発明では、均熱温度は、1200〜1250℃とすることが好ましい。均熱温度を上記した温度範囲に調整することにより、巨大炭化物の消滅、無害化を容易に達成できる。均熱温度が1200℃未満では、Cや合金元素の拡散が不十分で工業的に可能な時間内で、巨大炭化物の消滅を十分に達成できない。一方、1250℃を超えると、偏析部が溶融する。このため、均熱温度は1200〜1250℃とすることが好ましい。上記した均熱温度であれば、保持時間は、1〜20時間程度で充分である。   In the present invention, the soaking temperature is preferably 1200 to 1250 ° C. By adjusting the soaking temperature to the above temperature range, the disappearance and detoxification of the giant carbide can be easily achieved. If the soaking temperature is less than 1200 ° C., the diffusion of C and alloy elements is insufficient, and the disappearance of giant carbides cannot be sufficiently achieved within an industrially possible time. On the other hand, when the temperature exceeds 1250 ° C., the segregation part melts. For this reason, the soaking temperature is preferably 1200 to 1250 ° C. With the soaking temperature described above, a holding time of about 1 to 20 hours is sufficient.

本発明では、好ましくは上記した均熱温度への加熱を、被加熱材である高炭素鋼材の次(a)
開始点(℃):高炭素鋼材の、加熱に伴う熱膨張が膨張から収縮に転じる温度‥‥(a)
で定義される開始点から次(b)
終了点(℃):高炭素鋼材の、加熱に伴う熱膨張が収縮から膨張に転じる温度‥‥(b)
で定義される終了点までの温度範囲を、炉温制御で50℃/h以下の加熱速度で行う加熱とする。なお、開始点、終了点は、被均熱焼鈍処理材である高炭素鋼材についての加熱時の変態の開始点および変態の終了点である。変態の開始点および終了点は、鋼種ごとに区分して熱膨張測定を行って、予め求めた値を用いればよい。また、文献等にすでに知られている場合にはその値を用いればよい。
In the present invention, the heating to the soaking temperature described above is preferably performed after the high carbon steel material (a) to be heated.
Starting point (° C): Temperature at which the thermal expansion of a high carbon steel material changes from expansion to contraction (a)
From the start point defined by (b)
End point (° C): Temperature at which the thermal expansion of high carbon steel changes from shrinkage to expansion (b)
The temperature range up to the end point defined by is defined as heating performed at a heating rate of 50 ° C./h or less by furnace temperature control. The start point and end point are the transformation start point and the transformation end point during heating of the high carbon steel material that is the heat-treated material. The starting point and the ending point of transformation may be values obtained in advance by performing thermal expansion measurement by classifying each steel type. Moreover, what is necessary is just to use the value, when already known by literature etc.

この開始点から終了点までの温度範囲(いわゆる変態温度域)を、50℃/h以下の加熱速度で加熱することにより、鋳片に発生する割れを防止または顕著に低減することができる。これにより、その後の鋳片の手入れ等を省略あるいは軽減することができ、生産効率が顕著に向上する。なお、変態域での加熱速度は好ましくは40℃/h以下、さらに好ましくは30℃/h以下である。   By heating the temperature range from the start point to the end point (so-called transformation temperature range) at a heating rate of 50 ° C./h or less, cracks occurring in the slab can be prevented or significantly reduced. Thereby, subsequent care of the slab can be omitted or reduced, and the production efficiency is remarkably improved. The heating rate in the transformation region is preferably 40 ° C./h or less, more preferably 30 ° C./h or less.

なお、本発明では、上記した変態温度域以外の温度域では、該変態温度域の加熱速度より速い加熱速度とすることができる。というのは、変態温度域の加熱速度を上記した条件とすることにより、変態温度域以外の温度域を、変態温度域の加熱速度より速い加熱速度で加熱しても、割れ等の欠陥の発生は認められない。これにより、均熱焼鈍処理時間の大幅な短縮が図れる。   In the present invention, in a temperature range other than the transformation temperature range described above, a heating rate higher than the heating rate in the transformation temperature range can be achieved. This is because, by setting the heating rate in the transformation temperature range as described above, even if the temperature range other than the transformation temperature range is heated at a heating rate faster than the heating rate in the transformation temperature range, defects such as cracks are generated. It is not allowed. As a result, the soaking annealing treatment time can be significantly shortened.

また、本発明では、変態温度域直下の温度域の加熱および/または変態温度域直上の温度域の加熱を加熱速度:10℃/h以下とする徐加熱とすることが好ましい。これにより、鋳片の内外層の温度差を更に小さく、あるいは略均一状態とすることができ、割れ発生確率をさらに低減できる。加熱速度が10℃/hを超えて大きくなると、所期した断面内温度の均一化を充分に達成できない。なお、変態温度域直下の温度域としては、開始点以下(開始点−30℃)以上とすることが、また、変態温度域直上の温度域としては、終了点以上(終了点+30℃)以下とすることが、それぞれ好ましい。変態温度域直下の温度域を(開始点−30℃)より低い温度域から、または変態温度域直上の温度域を(終了点+30℃)より高い温度域まで徐加熱してもよいが、効果はほとんど同じで、焼鈍処理時間のみが長時間となる。   In the present invention, heating in the temperature range immediately below the transformation temperature range and / or heating in the temperature range immediately above the transformation temperature range is preferably gradual heating at a heating rate of 10 ° C./h or less. As a result, the temperature difference between the inner and outer layers of the slab can be made smaller or substantially uniform, and the probability of cracking can be further reduced. If the heating rate exceeds 10 ° C./h, the desired uniform temperature in the cross section cannot be achieved sufficiently. Note that the temperature range immediately below the transformation temperature range should be not more than the start point (start point −30 ° C.), and the temperature range just above the transformation temperature range should be not less than the end point (end point + 30 ° C.) or less. It is preferable that The temperature range immediately below the transformation temperature range may be gradually heated from a temperature range lower than (start point -30 ° C) or the temperature range just above the transformation temperature range to a temperature range higher than (end point + 30 ° C). Are almost the same, and only the annealing time is long.

なお、上記した徐加熱に代えて、上記した温度域の温度で等温保持してもよい。等温保持の温度は、上記した開始点または終了点とすることがより好ましい。なお、好ましい等温保持の時間は、1〜5hである。より好ましくは2h以下である。等温保持のパターンは、等温保持を実操業で正確に行うことはかなりの困難を伴う。通常では、1hに10℃程度の温度変動、望ましくは温度上昇、が不可避的に生じることが多い。このため、等温保持といっても、実質的には10℃/h程度の温度変化は不可避的である場合が多く、等温保持には、10℃/h程度の温度変化(温度上昇)を含むことが許容される。   In place of the above-described slow heating, isothermal holding at a temperature in the above-described temperature range may be performed. The isothermal holding temperature is more preferably set to the above-described start point or end point. In addition, the preferable isothermal holding time is 1 to 5 hours. More preferably, it is 2 h or less. The isothermal holding pattern involves considerable difficulty in accurately performing isothermal holding in actual operation. Usually, a temperature fluctuation of about 10 ° C. per 1 h, desirably a temperature rise, often occurs inevitably. For this reason, even if it is called isothermal holding, a temperature change of about 10 ° C./h is inevitable in many cases, and the isothermal holding includes a temperature change (temperature increase) of about 10 ° C./h. It is acceptable.


高炭素鋼材(SUJ2:0.95〜1.10質量%C−0.15〜0.35質量%Si−0.50質量%以下Mn−0.025質量%以下P−0.025質量%以下S−1.30〜1.60質量%Cr−残部Feおよび不可避的不純物)の鋳片(大きさ:350mm肉厚×450mm幅)に、表1に示す各条件で均熱焼鈍処理を施した。なお、各均熱焼鈍処理のパターンを模式的に図1〜図4に示す。なお、均熱焼鈍処理を開始する際の温度は200℃であった。また、上記した高炭素鋼材の変態の開始点、終了点は、予め加熱時の熱膨張測定により求めた。変態の開始点は740℃、終了点は810℃であった。均熱保持条件は、1220℃×10hとした。

High carbon steel (SUJ2: 0.95 to 1.10 mass% C-0.15 to 0.35 mass% Si-0.50 mass% or less Mn-0.025 mass% or less P-0.025 mass% or less S-1.30 to 1.60 mass% Cr-balance Fe and inevitable Impregnated slabs (size: 350 mm thickness x 450 mm width) were subjected to a soaking annealing treatment under the conditions shown in Table 1. In addition, the pattern of each soaking annealing process is typically shown in FIGS. In addition, the temperature at the time of starting soaking annealing was 200 degreeC. Moreover, the above-mentioned transformation start point and end point of the high-carbon steel material were obtained in advance by measurement of thermal expansion during heating. The transformation start point was 740 ° C and the end point was 810 ° C. The soaking condition was 1220 ° C. × 10 h.

図2は、開始点以下および終了点で等温保持する均熱焼鈍処理のパターンの例である。また、図3は一定加熱速度で均熱温度まで加熱する従来例、図4は途中で等温保持を含み一定加熱速度で均熱温度まで加熱する従来例である。
鋳片は、均熱焼鈍処理後、炉中冷却し、30℃近傍まで冷却したのち、磁気損傷法で表面疵の個数を測定した。なお、表面疵の測定に当たっては、脱炭層をピーリングで除去したのち行った。同一条件で均熱焼鈍処理された鋳片50個について、同様の測定を行い、平均疵個数を求め、各均熱焼鈍処理の平均疵個数とした。
FIG. 2 shows an example of a soaking annealing pattern in which isothermal holding is performed below the start point and at the end point. 3 is a conventional example in which heating is performed at a constant heating rate to a soaking temperature, and FIG. 4 is a conventional example in which heating is performed at a constant heating rate to a soaking temperature including isothermal holding in the middle.
The slab was cooled in a furnace after soaking, and cooled to around 30 ° C., and the number of surface defects was measured by a magnetic damage method. The surface flaws were measured after removing the decarburized layer by peeling. The same measurement was performed on 50 slabs subjected to soaking annealing under the same conditions, and the average number of soots was obtained, which was used as the average number of soots in each soaking annealing treatment.

また、均熱焼鈍処理終了後、鋳片中心部を切断採取し、断面を研磨したのち、腐食液(ナイタール液)で腐食し、中心部近傍における巨大炭化物(大きさ:10μm以上)の存在の有無を光学顕微鏡(400倍)を用いて観察し、巨大炭化物が存在する場合を×、存在しない場合を○として評価した。なお、巨大炭化物は白色組織として容易に判別できる。
得られた結果を表1に示す。
After the soaking annealing process, the slab center is cut and sampled, the cross section is polished, then corroded with a corrosive liquid (Nital liquid), and there is a giant carbide (size: 10μm or more) near the center. Presence / absence was observed using an optical microscope (400 times), and the case where a giant carbide was present was evaluated as x, and the case where it was not present was evaluated as ◯. Giant carbides can be easily distinguished as white structures.
The obtained results are shown in Table 1.

Figure 2010065262
Figure 2010065262

本発明例はいずれも、従来例に比べて均熱焼鈍処理時間(合計)を短くすることができ、しかも疵発生が格段に軽減し、さらに巨大炭化物が消滅している。   In all of the examples of the present invention, the soaking annealing time (total) can be shortened as compared with the conventional example, the generation of soot is remarkably reduced, and the giant carbides disappear.

実施例で用いた本発明例の均熱焼鈍処理パターンの1例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the soaking annealing process pattern of the example of this invention used in the Example. 実施例で用いた本発明例の均熱焼鈍処理パターンの1例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the soaking annealing process pattern of the example of this invention used in the Example. 実施例で用いた従来例の均熱焼鈍処理パターンを模式的に示す説明図である。It is explanatory drawing which shows typically the soaking annealing process pattern of the prior art example used in the Example. 実施例で用いた従来例の均熱焼鈍処理パターンを模式的に示す説明図である。It is explanatory drawing which shows typically the soaking annealing process pattern of the prior art example used in the Example.

Claims (5)

高炭素鋼材の鋳片を加熱炉を用いて所定の均熱温度まで加熱し、該所定の均熱温度で所定時間保持する高炭素鋼材の均熱焼鈍処理方法において、前記加熱を、該高炭素鋼材の下記(a)で定義される開始点から下記(b)で定義される終了点までの温度範囲を、炉温制御で50℃/h以下の加熱速度で行う加熱とし、前記開始点未満の温度域、および/または、前記終了点を超える温度域、での前記加熱を、前記開始点〜前記終了点の温度範囲での加熱速度より速い加熱速度で行う加熱とすることを特徴とする高炭素鋼材の均熱焼鈍処理方法。

開始点(℃):高炭素鋼材の、加熱に伴う熱膨張が膨張から収縮に転じる温度‥‥(a)
終了点(℃):高炭素鋼材の、加熱に伴う熱膨張が収縮から膨張に転じる温度‥‥(b)
In the soaking annealing treatment method for a high carbon steel material in which a slab of high carbon steel material is heated to a predetermined soaking temperature using a heating furnace and held at the predetermined soaking temperature for a predetermined time, the heating is performed by the high carbon steel material. The temperature range from the starting point defined by (a) below to the ending point defined by (b) below is the heating performed at a heating rate of 50 ° C./h or less by furnace temperature control, and less than the starting point. The heating in the temperature range and / or the temperature range exceeding the end point is performed at a heating rate faster than the heating rate in the temperature range from the start point to the end point. A soaking annealing method for high carbon steel.
Starting point (° C): Temperature at which the thermal expansion of a high carbon steel material changes from expansion to contraction (a)
End point (° C): Temperature at which the thermal expansion of high carbon steel changes from shrinkage to expansion (b)
前記高炭素鋼材が、Cr含有高炭素鋼材であることを特徴とする請求項1に記載の高炭素鋼材の均熱焼鈍処理方法。   The high-carbon steel material according to claim 1, wherein the high-carbon steel material is a Cr-containing high-carbon steel material. 前記開始点未満の温度域、および/または、前記終了点を超える温度域での加熱速度が、炉温制御で100℃/h以下であることを特徴とする請求項1または2に記載の高炭素鋼材の均熱焼鈍処理方法。   The heating rate in a temperature range below the starting point and / or in a temperature range exceeding the end point is 100 ° C./h or less by furnace temperature control. A soaking annealing method for carbon steel. 前記開始点以下(開始点−30℃)以上、および/または、前記終了点以上(終了点+30℃)以下、の温度域の温度で、等温保持を行うことを特徴とする請求項1ないし3のいずれかに記載の高炭素鋼材の均熱焼鈍処理方法。   The isothermal holding is performed at a temperature in a temperature range of not more than the starting point (starting point -30 ° C) and / or not less than the ending point (ending point + 30 ° C). The soaking annealing method for the high carbon steel material according to any one of the above. 前記開始点以下(開始点−30℃)以上、および/または、前記終了点以上(終了点+30℃)以下、の温度域での加熱を、加熱速度が炉温制御で10℃/h以下である加熱とすることを特徴とする請求項1ないし3のいずれかに記載の高炭素鋼材の均熱焼鈍処理方法。   Heating in the temperature range below the start point (start point −30 ° C.) and / or above the end point (end point + 30 ° C.) and below at a heating rate of 10 ° C./h or less by furnace temperature control The soaking annealing method for a high carbon steel material according to any one of claims 1 to 3, wherein the heating is performed.
JP2008231516A 2008-09-09 2008-09-09 Soaking annealing method for high carbon steel Active JP5447770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231516A JP5447770B2 (en) 2008-09-09 2008-09-09 Soaking annealing method for high carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231516A JP5447770B2 (en) 2008-09-09 2008-09-09 Soaking annealing method for high carbon steel

Publications (2)

Publication Number Publication Date
JP2010065262A true JP2010065262A (en) 2010-03-25
JP5447770B2 JP5447770B2 (en) 2014-03-19

Family

ID=42191094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231516A Active JP5447770B2 (en) 2008-09-09 2008-09-09 Soaking annealing method for high carbon steel

Country Status (1)

Country Link
JP (1) JP5447770B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011006A (en) * 2011-06-30 2013-01-17 Jfe Steel Corp METHOD FOR SOAKING/ANNEALING Cr-CONTAINING HIGH-CARBON STEEL MATERIAL
JP2013011007A (en) * 2011-06-30 2013-01-17 Jfe Steel Corp METHOD FOR SOAKING/ANNEALING TREATING Cr-CONTAINING HIGH-CARBON STEEL MATERIAL
JP2013011008A (en) * 2011-06-30 2013-01-17 Jfe Steel Corp METHOD FOR SOAKING/ANNEALING TREATING Cr-CONTAINING HIGH-CARBON STEEL MATERIAL

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182911A (en) * 1983-03-31 1984-10-17 Sanyo Tokushu Seikou Kk Heating method of steel ingot
JPS59226117A (en) * 1983-06-07 1984-12-19 Nisshin Steel Co Ltd Production of fe-high ni alloy slab
JPH06328214A (en) * 1993-05-24 1994-11-29 Nippon Steel Corp Method for preventing season cracking of ferritic stainless steel
JPH07238322A (en) * 1994-02-28 1995-09-12 Nippon Steel Corp Method for preventing surface cracking in steel slab
JP2003027141A (en) * 2001-07-13 2003-01-29 Nkk Corp Method for heating steel slab
JP2003034824A (en) * 2001-07-25 2003-02-07 Nkk Corp Method for heating steel slab

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182911A (en) * 1983-03-31 1984-10-17 Sanyo Tokushu Seikou Kk Heating method of steel ingot
JPS59226117A (en) * 1983-06-07 1984-12-19 Nisshin Steel Co Ltd Production of fe-high ni alloy slab
JPH06328214A (en) * 1993-05-24 1994-11-29 Nippon Steel Corp Method for preventing season cracking of ferritic stainless steel
JPH07238322A (en) * 1994-02-28 1995-09-12 Nippon Steel Corp Method for preventing surface cracking in steel slab
JP2003027141A (en) * 2001-07-13 2003-01-29 Nkk Corp Method for heating steel slab
JP2003034824A (en) * 2001-07-25 2003-02-07 Nkk Corp Method for heating steel slab

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011006A (en) * 2011-06-30 2013-01-17 Jfe Steel Corp METHOD FOR SOAKING/ANNEALING Cr-CONTAINING HIGH-CARBON STEEL MATERIAL
JP2013011007A (en) * 2011-06-30 2013-01-17 Jfe Steel Corp METHOD FOR SOAKING/ANNEALING TREATING Cr-CONTAINING HIGH-CARBON STEEL MATERIAL
JP2013011008A (en) * 2011-06-30 2013-01-17 Jfe Steel Corp METHOD FOR SOAKING/ANNEALING TREATING Cr-CONTAINING HIGH-CARBON STEEL MATERIAL

Also Published As

Publication number Publication date
JP5447770B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
KR101423826B1 (en) Martensitic stainless steel and the method of manufacturing the same
JP6038026B2 (en) High carbon chromium bearing steel and manufacturing method thereof
JP2014152336A (en) Method for manufacturing bar steel
JP4375149B2 (en) High strength low alloy steel wire
JP5447770B2 (en) Soaking annealing method for high carbon steel
JP2009074155A (en) Method for quenching die
JP5155739B2 (en) Steel bar manufacturing method
JP2006342377A (en) Method for quenching large-sized die
KR20160022258A (en) Piercer plug for manufacturing a seamless pipe
JP5760757B2 (en) Soaking annealing method for Cr-containing high carbon steel
JP5075293B2 (en) Mold quenching method
JP2009287056A (en) Method for manufacturing machine-parts excellent in rolling fatigue life
JP5504646B2 (en) Method of soaking and diffusion treatment of steel
JP5760755B2 (en) Soaking annealing method for Cr-containing high carbon steel
JP5760754B2 (en) Soaking annealing method for Cr-containing high carbon steel
JP2007331010A (en) Method for manufacturing hot-rolled bearing steel
KR101322972B1 (en) Martensitic stainless steel and method for manufacturing the same
JP2013007105A (en) Method for manufacturing bar steel
CN108070785B (en) High carbon wire rod with excellent ductility and method for producing same
JP6340783B2 (en) Heating method of Ti alloy
KR101461716B1 (en) Ultra high strength wire rod with excellent drawability and manufacturing method of the same
TWI779686B (en) Steel material for hot-stamping and method of manufacturing steel material
KR101249213B1 (en) Furnace for surface treatment of stainless steel and stainless steel manufactured using the same
JP2006239748A (en) Method for producing magnesium alloy
KR102109232B1 (en) Antioxidant, processing method of the steel using thereof, and rolled steel product using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130614

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

R150 Certificate of patent or registration of utility model

Ref document number: 5447770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250