JPS59182911A - Heating method of steel ingot - Google Patents
Heating method of steel ingotInfo
- Publication number
- JPS59182911A JPS59182911A JP5713083A JP5713083A JPS59182911A JP S59182911 A JPS59182911 A JP S59182911A JP 5713083 A JP5713083 A JP 5713083A JP 5713083 A JP5713083 A JP 5713083A JP S59182911 A JPS59182911 A JP S59182911A
- Authority
- JP
- Japan
- Prior art keywords
- heating
- steel
- steel ingot
- ingot
- transformation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/70—Furnaces for ingots, i.e. soaking pits
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は加熱割れを起こし易い鋼塊の効率的な加熱方法
に関する。低合金鋼のうち焼きの入り易い鋼種の、中〜
大型の鋼塊はしばしば加熱昇温時に表面に深い横割れを
起こし、使用不可になってしまう。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an efficient method for heating steel ingots that are prone to thermal cracking. Medium to low-alloy steel that is prone to hardening
Large steel ingots often develop deep horizontal cracks on the surface when heated, rendering them unusable.
従来、この種の加熱割れは、加熱昇温時tこ生じている
表面圧縮−内部引張りの応力が、変態点を通過する際t
こ一時的に逆転し、表面引張り一内部圧縮に変ることが
原因ではないかと推定されていた。しかし実際の鋼塊加
熱なこおいては、た。Conventionally, this type of heating cracking occurs when the surface compression-internal tensile stress that occurs when heating and temperature increases passes through the transformation point.
It was presumed that this was caused by a temporary reversal and a change from surface tension to internal compression. However, in actual heating of steel ingots,
本発明は上記tこ鑑みなされたもので、その要旨とする
ところは恒温変態図のパーライト変態終了線のノーズ部
tこ達する時間が15分以上である鋼種の直径又は対辺
距離が0,5m以上の鋼塊の加熱において鋼塊の表面温
度が当該鋼種のA C,点tこ到る直前のほぼ100℃
を(110−40D’ ) ℃/ hr以下にて昇温し
、その後最大熱効率加熱昇温を行うことを特徴とする鋼
塊の加熱方法である。ここでDは鋼塊の直径又は対辺距
離である。即ち、発明者らは従来から蓄積されている加
熱炉操業記録から加熱炉の型、鋼種、鋼塊型、炉内雰囲
気温度曲線および割れ発生の有無に関するデータを集め
、これらのデータをコンピューターに入れて、雰囲気温
度から鋼塊の表面温度と中心部の温度を推定計算させ、
更゛tこその経時変化をグラフに描かせた。The present invention has been made in view of the above considerations, and its gist is that the diameter or distance across opposite sides of the steel type that takes 15 minutes or more to reach the nose of the end line of pearlite transformation in the isothermal transformation diagram is 0.5 m or more. When heating a steel ingot, the surface temperature of the steel ingot is approximately 100°C just before reaching point t of the relevant steel type.
This is a method of heating a steel ingot, which is characterized by raising the temperature at a rate of (110-40D') °C/hr or less, and then performing heating with maximum thermal efficiency. Here, D is the diameter or distance across opposite sides of the steel ingot. That is, the inventors collected data on the type of heating furnace, steel type, steel ingot type, furnace atmosphere temperature curve, and presence or absence of cracking from the heating furnace operation records that had been accumulated in the past, and entered this data into a computer. Then, the surface temperature and center temperature of the steel ingot are estimated and calculated from the ambient temperature.
I also drew a graph showing the changes over time.
これらの計算およびグラフ化は従来、計算が非常eこ面
倒な為eこ行われていなかったものである。雰囲気温度
からの鋼塊表面および中心部温度の算出は以下の式を解
くことによって得た。Conventionally, these calculations and graphing have not been performed because the calculations are extremely troublesome. The steel ingot surface and center temperatures were calculated from the ambient temperature by solving the following equations.
×’(To−T、)・・・・・(3)
ここでKd°基準熱伝導率、S、内部発生熱量、089
表面熱吸収量、ψcg:総括熱吸収率、αC:熱伝達係
数。これら多数のグラフを解析した結果、調査した範囲
の鋼塊の大きさにあっては、鋼塊の大きさに関係なく鋼
塊表層部と中心部の温度差が一定温度以上tこなってい
る場合に割れが発生していること、但し、それは変態開
始前の一定期間のことで、その後は早い加熱速度であっ
ても割れない傾向があることを見出し=3−
これを追加の実験で確認し、発展させ唖除熱期間は表面
層がA C,点に到る直前のほぼ100 ℃とすればよ
いこと、また、その除熱速度は鋼塊の直径又は対辺をD
(m)とすれば、(11゜−40I)2)℃/hとして
、−膜化できることを見出して、本発明を完成させたも
のである。第1表に本発明の実施例を従来例および比較
例と共tこ示す。また第1図〜第8図に第1表のそれ。×'(To-T,)...(3) Here, Kd° standard thermal conductivity, S, internally generated heat amount, 089
Surface heat absorption amount, ψcg: overall heat absorption rate, αC: heat transfer coefficient. As a result of analyzing these many graphs, it was found that for the size of the steel ingot within the range of investigation, the temperature difference between the surface layer and the center of the steel ingot is greater than a certain temperature, regardless of the size of the steel ingot. We found that cracks do occur in some cases, but only for a certain period before the start of transformation, and after that there is a tendency for cracking to occur even at high heating rates = 3 - This was confirmed through additional experiments. However, the heat removal period should be approximately 100 °C just before the surface layer reaches point A, and the heat removal rate can be determined by changing the diameter or opposite side of the steel ingot to D.
(m), then (11°-40I)2)°C/h, and the present invention was completed by discovering that it is possible to form a -film. Table 1 shows examples of the present invention together with conventional examples and comparative examples. Also, those in Table 1 are shown in Figures 1 to 8.
ぞれの場合の温度一時間のグラフを示す。本発明の実施
例の場合、割れは発生せず、また従来第1表
4−
は、第5図の如く、変態進行中は除熱していたが本発明
においては第6図の如く変態開始以降の加熱速度を大幅
に早く、即ち最大効率加熱を′しており、加熱時間が短
縮していることがわかる。なお、本発明においても低温
脆性域は従来通り熱応力歪tこよる割れに気をつけた慎
重な加熱が必要なことは勿論である。また、表面温度の
測定は、特定の炉における特定の鋼塊について実測し、
炉内ガス温度との関係を求めておけば、いちいち実測し
なくて済む。A graph of temperature over one hour in each case is shown. In the case of the embodiment of the present invention, no cracking occurred, and in the conventional case of Table 1, heat was removed during the progress of transformation as shown in Fig. 5, but in the present invention, as shown in Fig. 6, heat was removed after the transformation started. It can be seen that the heating rate is significantly faster, that is, maximum efficiency heating is achieved, and the heating time is shortened. It goes without saying that in the present invention, careful heating is required in the low-temperature brittle region, taking care to avoid cracking due to thermal stress and strain, as in the past. In addition, the surface temperature is measured on a specific steel ingot in a specific furnace.
If you find the relationship with the furnace gas temperature, you won't have to actually measure it every time.
次をこ本発明tこおいては対象とする鋼種を、恒温変態
図のパーライト変態終了線のノーズ部に達する時間が1
5分以上であるものに限定したが、これはこれらの鋼種
についてよく割れが発生するからである。具体的eこは
、構造用低合金鋼のNi −Cr −Mo鋼およびNi
−Cr鋼+7)Niの高いものなどがこれtこ相当する
。これらの鋼種が他の変態の早い鋼種よりも何故、よく
割れるのかについては色々と説があるが、まだ明確にさ
れてvl す+ 1、 −k ナー 倒 抽 l
ハ + 藝 ン も 古 ヌ η I十 併 m 幇0
.5m以上のものに限定したのは、0.5m以下では加
熱速度をいくら早くしても殆んど割れが発生しないから
である。In the present invention, the time required to reach the nose of the end line of pearlite transformation in the isothermal transformation diagram is 1.
The test time was limited to 5 minutes or more because cracks often occur in these steel types. Specifically, Ni-Cr-Mo steel, which is a structural low alloy steel, and Ni
-Cr steel +7) High Ni content corresponds to this. There are various theories as to why these steel types crack more easily than other fast-transforming steel types, but it has not yet been clarified.
Ha + art also ancient nu η I ten together m 幇0
.. The reason why the length was limited to 5 m or more is because if the length is 0.5 m or less, cracks hardly occur no matter how fast the heating rate is.
以上に明らかにした如く、本発明の加熱方法tこよれば
変態温度付近での表面部の加熱割れを起こし易い鋼塊の
加熱【こおいて割れの発生を確実に防止し、且つ従来の
ような無駄な除熱を避けて加熱効率を向上し、加熱時間
を短縮できるなど、多くの利点を有するものである。As has been made clear above, the heating method of the present invention is characterized by heating a steel ingot that is prone to cracking due to heating near the transformation temperature. This method has many advantages, such as avoiding wasteful heat removal, improving heating efficiency, and shortening heating time.
第1図〜第6図は従来例、比較例および本発明実施例の
昇温曲線図である。
A:雰囲気温度、B:鋼塊表面温度、C:鋼塊中心部温
度、D:表面と中心の温度差
特許出願人 山陽特殊製鋼株式会社FIGS. 1 to 6 are temperature rise curve diagrams of a conventional example, a comparative example, and an example of the present invention. A: Ambient temperature, B: Steel ingot surface temperature, C: Steel ingot center temperature, D: Temperature difference between surface and center Patent applicant: Sanyo Special Steel Co., Ltd.
Claims (1)
塊の表面温度が当該鋼種のAC−こ到る直前のほぼ10
0℃を鋼塊の直径又は対辺距離をD (m )とすれば
(110−40D’) ℃/h以下で昇温し、その後最
大熱効率加熱昇温を行うことを特徴とする鋼塊の加熱方
法。Or, when heating a steel ingot with a distance across flats of 0.5 m or more, the surface temperature of the steel ingot is approximately 10°C, just before reaching AC- of the steel type.
If 0°C is the diameter of the steel ingot or the distance across opposite sides is D (m), then (110-40D') Heating of a steel ingot is characterized by raising the temperature at a rate of 0°C/h or less, and then heating the steel ingot with maximum thermal efficiency. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5713083A JPS59182911A (en) | 1983-03-31 | 1983-03-31 | Heating method of steel ingot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5713083A JPS59182911A (en) | 1983-03-31 | 1983-03-31 | Heating method of steel ingot |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59182911A true JPS59182911A (en) | 1984-10-17 |
Family
ID=13046972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5713083A Pending JPS59182911A (en) | 1983-03-31 | 1983-03-31 | Heating method of steel ingot |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59182911A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010065262A (en) * | 2008-09-09 | 2010-03-25 | Jfe Steel Corp | Soaking annealing treatment method for high carbon steel |
JP2010196136A (en) * | 2009-02-26 | 2010-09-09 | Jfe Steel Corp | Method for soaking diffusion treatment of steel |
CN103290204A (en) * | 2013-06-29 | 2013-09-11 | 济钢集团有限公司 | Process for heating carbon steel and low-alloy steel heavy piece-weight composite blank |
-
1983
- 1983-03-31 JP JP5713083A patent/JPS59182911A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010065262A (en) * | 2008-09-09 | 2010-03-25 | Jfe Steel Corp | Soaking annealing treatment method for high carbon steel |
JP2010196136A (en) * | 2009-02-26 | 2010-09-09 | Jfe Steel Corp | Method for soaking diffusion treatment of steel |
CN103290204A (en) * | 2013-06-29 | 2013-09-11 | 济钢集团有限公司 | Process for heating carbon steel and low-alloy steel heavy piece-weight composite blank |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109234573B (en) | Short chain heat treatment method for nickel-based superalloys resistant to molten salt corrosion | |
CN103361585A (en) | Homogenization treatment process of a high-alloyed GH742 superalloy | |
CN108642373A (en) | A kind of high-temperature oxidation resistant austenitic heat-resistance steel and its preparation process | |
CN104169027A (en) | Fe-Al ALLOY PRODUCTION METHOD | |
CN108411230A (en) | A kind of enhancing polycrystalline Ni3The heat treatment method of Al based high-temperature alloy thermal fatigue properties | |
CN108396269A (en) | A kind of enhancing polycrystalline Ni3The heat treatment method of Al based high-temperature alloy deformation stabilities | |
JPS59182911A (en) | Heating method of steel ingot | |
CN100537818C (en) | A kind of constant modulus alloy with high magnetic induction and low frequency temperature coefficient | |
TW355820B (en) | Heat treatment method for a silicon wafer and a silicon wafer heat-treated by the method | |
CN106337156A (en) | Method for manufacturing corrosion-resistant high-nickel alloy | |
CN104846237A (en) | Manufacturing method of Ni-Fe-Cr-Mo anticorrosive alloy tube blank | |
CN102876854A (en) | Tempering treatment technical method for 1Cr12 martensite stainless steel pressure spring forge piece | |
JPH1017927A (en) | Production of containing delta-ferrite-austenitic stainless steel | |
CN103484606A (en) | Heat treatment method for improving low-temperature toughness of WC6-1.7357 material | |
JP2003001416A5 (en) | ||
RU2003107693A (en) | METHOD FOR THERMAL TREATMENT OF CASTING FROM HEAT-RESISTANT SINGLE CRYSTAL NICKEL ALLOY | |
JPH0255619A (en) | Flatness correction method for metal plates | |
JPH062030A (en) | Quenching method | |
CN114606369B (en) | Isothermal normalizing preliminary heat treatment method for 20CrMnMo forge piece | |
JPS6186008A (en) | Manufacturing method of martensitic stainless steel | |
CN108468004A (en) | A kind of heat treatment method improving aluminium alloy castings performance | |
JP2001040659A (en) | Concrete casting method | |
JPH08311536A (en) | Method for annealing martensitic stainless steel | |
JPS6123863B2 (en) | ||
JPS61272350A (en) | High carbon steel rod and its manufacturing method |