JPH062030A - Quenching method - Google Patents

Quenching method

Info

Publication number
JPH062030A
JPH062030A JP4189993A JP18999392A JPH062030A JP H062030 A JPH062030 A JP H062030A JP 4189993 A JP4189993 A JP 4189993A JP 18999392 A JP18999392 A JP 18999392A JP H062030 A JPH062030 A JP H062030A
Authority
JP
Japan
Prior art keywords
temperature
temp
coolant
cooling
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4189993A
Other languages
Japanese (ja)
Inventor
Koji Obayashi
巧治 大林
Yukihisa Yamamoto
幸久 山本
Shigeru Goto
茂 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP4189993A priority Critical patent/JPH062030A/en
Publication of JPH062030A publication Critical patent/JPH062030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To prevent the unevenness of strain in the heat stress caused by difference in cooling speed at the time of cooling in high temp. while restraining lowering of the hardness in the inner part, at the time of executing quenching. CONSTITUTION:A material to be quenched is dipped into high temp. coolant of mineral oil at the temp. C just below the starting temp. of martensitic transformation and thereafter, cooled by low temp. coolant of mineral oil at the temp. D lower than the temp. of the high temp. coolant. As the high temp. coolant uses the mineral oil having comparatively small heat capacity and the cooling speed is not so fast, partial temp. difference is small and the unevenness of the strain caused by the heat stress is small. Further, as the temp. of the high temp. coolant is set at the temp. C just below the starting temp. of the martensitic transformation, the cooling speed is not so low and lowering of the hardness can be restrained. Further, as this material is cooled by the low temp. coolant, without receiving the influence from the outer part, the deviation in strain caused by the martensitic transformation is small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼の焼き入れ方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quenching steel.

【0002】[0002]

【従来の技術】従来、クロム鋼やクロムモリブデン鋼等
の肌焼鋼に表面処理として浸炭処理を行ない、その後に
焼き入れ処理を行なうが、この焼き入れ方法として、所
定の焼き入れ温度に保持した処理物を、マルテンサイト
変態開始温度よりわずかに高い硝酸塩中に浸漬して焼き
入れを施し、非処理物の全体が均一な温度になった時点
で硝酸塩中より取り出して大気中で放冷させ、熱処理歪
み又はロット間での歪みのばらつきを低減するマルクエ
ンチ処理が行われている。
2. Description of the Related Art Conventionally, case hardening steel such as chrome steel or chrome molybdenum steel is subjected to a carburizing treatment as a surface treatment, followed by a quenching treatment. As this quenching method, a predetermined quenching temperature is maintained. The treated material is immersed in a nitrate slightly higher than the martensitic transformation start temperature and subjected to quenching, and when the whole untreated material has a uniform temperature, it is taken out from the nitrate and allowed to cool in the atmosphere, A marquenching process is performed to reduce heat treatment strain or variation in strain between lots.

【0003】上記の方法は実質的に大気中でマルテンサ
イト変態させる方法であるために、例えば熱処理設備内
での被処理物の位置や被処理物の肉厚あるいは凸部と凹
部等の形状の違い、さらには大気の流れや季節による気
温変動等によって冷却温度に差が発生する。この冷却温
度の差によりマルテンサイト変態に伴う体積膨張の有無
あるいはその割合が被処理物の場所によって異なるため
に歪みが発生、又はロット間で歪みがばらつくという問
題点がある。
Since the above-mentioned method is a method of substantially performing martensitic transformation in the atmosphere, for example, the position of the object to be processed in the heat treatment equipment, the thickness of the object to be processed, or the shape of the projections and depressions, etc. Differences occur in the cooling temperature due to differences in air flow and seasonal temperature fluctuations. Due to this difference in cooling temperature, the presence or absence of the volume expansion due to the martensitic transformation or the ratio thereof varies depending on the location of the object to be processed, so that distortion occurs or there is a problem that the distortion varies between lots.

【0004】この問題点を解決するために、例えば特開
平02−101113号公報に記載されているように、
マルテンサイト変態開始温度以上のの硝酸塩である高温
冷却材に浸漬して非処理物全体の温度を均一化し、その
後直ちにマルテンサイト変態開始温度以下の冷却剤中に
浸漬する方法が提供されている。
In order to solve this problem, for example, as described in JP-A-02-101113,
There is provided a method in which the temperature of the whole untreated material is made uniform by immersing it in a high temperature coolant which is a nitrate having a martensite transformation start temperature or higher, and immediately thereafter, it is dipped in a coolant having a martensite transformation start temperature or lower.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の焼き入れ方法では、高温冷却剤で被処理物各部の温
度がマルテンサイト変態開始温度以上に均一化され、次
に低温冷却剤により低い温度に急冷されるので、マルテ
ンサイト変態が行なわれる領域では、冷却速度の差が小
さくマルテンサイト変態応力による歪みのバラツキは小
さくなるものの、マルテンサイト変態が行なわれる前の
領域では、高温冷却剤として比較的熱容量が大きい硝酸
塩を使用しているために、高温冷却剤での冷却工程の冷
却速度が早く、被処理物の部分的な冷却速度の差が大き
くなる。
However, in the above-mentioned conventional quenching method, the temperature of each part of the object to be treated is made uniform by the high temperature coolant to be equal to or higher than the martensite transformation start temperature, and then lowered by the low temperature coolant. Since it is rapidly cooled, in the region where the martensitic transformation is performed, the difference in cooling rate is small and the variation in strain due to the martensitic transformation stress is small, but in the region before the martensitic transformation is performed, it is relatively high as a high temperature coolant. Since the nitrate having a large heat capacity is used, the cooling rate in the cooling step with the high temperature coolant is high, and the difference in the partial cooling rate of the object to be processed becomes large.

【0006】これを図2で説明すると、図中曲線a及び
bは冷却中の被処理物の温度変化を示し、曲線aは冷却
速度の早い箇所、曲線bは冷却速度の遅い箇所であり、
一般に、被処理物の表層部では冷却速度が早く、内部で
は冷却速度が遅い。fは高温冷却剤温度、gは低温冷却
剤温度であり、eはマルテンサイト変態開始温度であ
る。高温冷却剤での冷却の開始時点から温度差は徐々に
大きくなり、高温冷却剤温度f付近ではかなり大きな温
度差を示し、この差により熱応力の歪みのバラツキが大
きくなるという問題点がある。
This will be explained with reference to FIG. 2. Curves a and b in the figure show the temperature change of the object to be treated, a curve a is a portion having a high cooling rate, a curve b is a portion having a low cooling rate,
Generally, the surface layer of the object to be processed has a high cooling rate, and the inside has a low cooling rate. f is the high temperature coolant temperature, g is the low temperature coolant temperature, and e is the martensite transformation start temperature. There is a problem that the temperature difference gradually increases from the start of cooling with the high-temperature coolant, and shows a fairly large temperature difference in the vicinity of the high-temperature coolant temperature f, which causes a large variation in the distortion of thermal stress.

【0007】上記問題点を解決するために、硝酸塩に比
べて熱容量の小さな鉱物油を高温冷却剤として、マルテ
ンサイト変態開始温度以上の温度で冷却して冷却速度を
遅くすることが考えられる。この場合の被処理物の温度
変化は図4の曲線c及び曲線dに示すようになり、冷却
速度の部分的差は小さくなるために熱応力の歪みのバラ
ツキは小さくなるが、冷却速度が遅すぎて被処理物の硬
度が低下してしまう。すなわち、硝酸塩を冷却剤とした
場合は上述の曲線a及び曲線bのように冷却速度が早い
ために高い硬度が得られるが、鉱物油を冷却剤とした場
合には曲線c及び曲線dのように冷却速度が遅くなり、
特に曲線dの冷却速度が遅い箇所つまり被処理物の内部
では冷却速度がかなり遅く、そのため被処理物の内部硬
度が低下するという問題がある。
In order to solve the above problems, it is conceivable to use mineral oil having a heat capacity smaller than that of nitrate as a high temperature coolant to cool it at a temperature higher than the martensite transformation start temperature to slow down the cooling rate. The temperature change of the object to be treated in this case is as shown by the curves c and d in FIG. 4, and since the partial difference in the cooling rate is small, the variation in the distortion of the thermal stress is small, but the cooling rate is slow. If too much, the hardness of the object to be treated will be reduced. That is, when nitrate is used as the coolant, high hardness can be obtained because the cooling rate is fast as in the above curves a and b, but when mineral oil is used as the coolant, it is as in curves c and d. The cooling rate slows down,
In particular, there is a problem that the cooling rate is considerably slow in a portion where the cooling rate of the curve d is low, that is, inside the object to be processed, and thus the internal hardness of the object to be processed is lowered.

【0008】そこで、本発明は、上記従来の焼き入れ方
法の問題点を解決して、内部硬度の低下を抑制しなが
ら、高温冷却時における冷却速度の差による熱応力の歪
みのバラツキを防止することのできる焼き入れ方法を提
供することを目的とする。
Therefore, the present invention solves the problems of the above-mentioned conventional quenching method, and suppresses the variation of the thermal stress due to the difference in the cooling rate during high temperature cooling while suppressing the decrease of the internal hardness. The object is to provide a quenching method that can be performed.

【0009】[0009]

【課題を解決するための手段】そのために、本発明の焼
き入れ方法においては、所定の焼き入れ温度に保持した
被処理物を、マルテンサイト変態開始温度直下の温度の
鉱物油である高温冷却剤中に浸し、その後、上記高温冷
却剤の温度より低い温度の低温冷却剤で冷却することを
特徴とする。
Therefore, in the quenching method of the present invention, the object to be treated kept at a predetermined quenching temperature is a high temperature coolant which is a mineral oil at a temperature just below the martensite transformation start temperature. It is characterized in that it is immersed therein and then cooled with a low temperature coolant having a temperature lower than the temperature of the high temperature coolant.

【0010】[0010]

【作用及び発明の効果】本発明の作用及び発明の効果を
図1を用いて説明すると、曲線Aは冷却速度が早い箇所
の冷却速度を示し、曲線Bは冷却速度の遅い箇所の冷却
速度を示す。またCは高温冷却剤の温度、Dは低温冷却
剤の温度であり、Eはマルテンサイト変態開始温度を示
す。
The operation of the present invention and the effect of the present invention will be described with reference to FIG. 1. Curve A shows the cooling rate at a portion having a high cooling rate, and curve B shows the cooling rate at a portion having a low cooling rate. Show. C is the temperature of the high temperature coolant, D is the temperature of the low temperature coolant, and E is the martensite transformation start temperature.

【0011】所定の焼き入れ温度に保持された被処理物
が高温冷却材で冷却されるが、高温冷却剤を比較的熱容
量の小さい鉱物油としたので、曲線A及び曲線Bに示す
ように冷却速度があまり早くないために、部分的温度差
が小さく熱応力による歪みのバラツキが小さい。更にそ
の高温冷却剤の温度をマルテンサイト変態開始温度直下
としたので、マルテンサイト変態開始温度以上の鉱物油
で冷却した場合のように冷却速度が遅くなり過ぎないの
で、硬度の低下も抑制することができる。
The object to be treated kept at a predetermined quenching temperature is cooled by a high temperature coolant, but since the high temperature coolant is mineral oil having a relatively small heat capacity, it is cooled as shown by curves A and B. Since the speed is not so fast, the partial temperature difference is small and the variation in strain due to thermal stress is small. Furthermore, since the temperature of the high-temperature coolant is set just below the martensite transformation start temperature, the cooling rate does not become too slow as in the case of cooling with a mineral oil having a martensite transformation start temperature or higher, so that the decrease in hardness is also suppressed. You can

【0012】この際、高温冷却剤の温度がマルテンサイ
ト変態開始温度より低いために、その冷却によってマル
テンサイト変態が開始してしまうが、その温度が変態開
始温度の直下であるためにマルテンサイト変態は5〜1
0%程度でありマルテンサイト変態応力による歪みのバ
ラツキの影響はほとんどない。
At this time, since the temperature of the high temperature coolant is lower than the martensite transformation start temperature, the martensite transformation starts due to the cooling, but since the temperature is directly below the transformation start temperature, the martensite transformation starts. Is 5 to 1
It is about 0%, and there is almost no influence of strain variation due to martensitic transformation stress.

【0013】その後、低温冷却剤で所定温度に冷却する
ので、外部の影響を受けることなく所定の冷却速度でマ
ルテンサイト変態が進行するので、マルテンサイト変態
による歪みのバラツキが小さい。
After that, since it is cooled to a predetermined temperature with a low temperature coolant, the martensite transformation proceeds at a predetermined cooling rate without being affected by the outside, so that the variation in strain due to the martensite transformation is small.

【0014】[0014]

【実施例】以下本発明の実施例について詳細に説明す
る。実施例及び比較例1,2,3は、JIS SCr4
20Hの材料のモジュール2.3,外径約140mmの
車両用自動変速機のカウンタギヤを、ガス浸炭処理をカ
ーボンポテンシャル0.8%,温度930°,浸炭及び
拡散を4時間行ない、850°まで降温した後に、続い
て表1に示した条件で焼き入れ処理を行なったものであ
る。表2は各条件での測定した歪みの標準偏差、つま
り、歪みのバラツキを示したものであり、R.Hは右側
の歯形、L.Hは左側の歯形の測定結果である。表3は
各条件で測定した硬度を示したものであり、硬度の単位
はビッカース硬さ(Hv)である。
EXAMPLES Examples of the present invention will be described in detail below. The examples and comparative examples 1, 2, and 3 are JIS SCr4.
20H material module 2.3, counter gear of automatic transmission for vehicle with outer diameter about 140mm, gas carburizing process with carbon potential 0.8%, temperature 930 °, carburizing and diffusing for 4 hours, up to 850 °. After the temperature is lowered, the quenching treatment is subsequently performed under the conditions shown in Table 1. Table 2 shows the standard deviation of the strain measured under each condition, that is, the variation of the strain. H is the right tooth profile, L. H is the measurement result of the left tooth profile. Table 3 shows the hardness measured under each condition, and the unit of the hardness is Vickers hardness (Hv).

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0018】本実施例の焼き入れ方法では、カーボンポ
テンシャル0.8%の場合のマルテンサイト変態開始温
度が220°程度であるために、高温冷却剤の温度をそ
のマルテンサイト変態開始温度の直下の210°として
いる。この高温冷却剤の温度は後述するが200°〜2
10°程度が望ましい。また低温冷却剤は80°の鉱物
油としている。
In the quenching method of this embodiment, since the martensite transformation start temperature is about 220 ° when the carbon potential is 0.8%, the temperature of the high temperature coolant is set just below the martensite transformation start temperature. It is set to 210 °. The temperature of this high-temperature coolant will be described later, but is 200 ° to 2
About 10 ° is desirable. The low-temperature coolant is 80 ° mineral oil.

【0019】本実施例と比較例1とを比較すると、比較
例1は高温冷却剤を240°の鉱物油とし、低温冷却剤
を80°の鉱物油とした場合であるが、表3の硬度の結
果から表面硬度は本実施例と同等であるが内部硬度が低
下していることが分かる。これは高温冷却剤による冷却
速度が遅すぎるためであり、特に冷却速度の遅い被処理
物内部の硬度が低下することが明白である。一方、表2
の歪みのバラツキを比較してみると、本実施例と比較例
1とでは歪みのバラツキが同等であることが分かる。こ
れは本実施例の高温冷却剤の温度をマルテンサイト変態
開始温度以下としても歪みのバラツキには影響がないこ
とを示している。すなわち、高温冷却工程においてマル
テンサイト変態が開始しても、マルテンサイト変態の進
行が全体の5〜10%程度であり、ほとんどのマルテン
サイト変態が低温冷却工程において進行するために、マ
ルテンサイト変態応力の歪みのバラツキにはほとんど影
響がないことを示している。
Comparing this example with Comparative Example 1, Comparative Example 1 shows the case where the high temperature coolant is 240 ° mineral oil and the low temperature coolant is 80 ° mineral oil. From the results, it can be seen that the surface hardness is equivalent to that of this example, but the internal hardness is lowered. This is because the cooling rate by the high temperature coolant is too slow, and it is apparent that the hardness inside the object to be processed, which has a slow cooling rate, is lowered. On the other hand, Table 2
Comparing the variations in the strains of 1 and 2, it can be seen that the variations in the strains of the present embodiment and Comparative Example 1 are equal. This indicates that even if the temperature of the high-temperature coolant of this example is set to the martensitic transformation start temperature or lower, the variation in strain is not affected. That is, even if martensitic transformation starts in the high temperature cooling step, the martensitic transformation progresses to about 5 to 10% of the whole, and most martensitic transformation progresses in the low temperature cooling step. It shows that there is almost no effect on the variation of the distortion of.

【0020】次に、本実施例と比較例2,3とを比較す
ると、比較例2は高温冷却剤を180°の鉱物油とし低
温冷却剤を80°の鉱物油とした場合であり、比較例3
は高温冷却剤を140°の鉱物油とし低温冷却剤を80
°の鉱物油とした場合であるが、表3の硬度の結果か
ら、本実施例と比べて高温冷却剤の温度が低いために冷
却速度が早く内部硬度が高いことが分かる。しかしなが
ら、表2の歪みのバラツキを見ると、本実施例と比較し
て歪みのバラツキが大きくなっていることが分かる。こ
れは高温冷却剤の温度が低すぎるために、高温冷却工程
においてマルテンサイト変態の進行度が大きく、低温冷
却工程を行なってマルテンサイト変態時の冷却速度の違
いによる部分的温度差を小さくしようとしても、高温冷
却工程でのマルテンサイト変態による歪みのバラツキが
大きいことが明白である。
Comparing this example with Comparative Examples 2 and 3, Comparative Example 2 is a case where the high temperature coolant is 180 ° mineral oil and the low temperature coolant is 80 ° mineral oil. Example 3
Is a high temperature coolant of 140 ° mineral oil and a low temperature coolant of 80
In the case of the mineral oil of °, it can be seen from the results of hardness in Table 3 that the cooling rate is high and the internal hardness is high because the temperature of the high temperature coolant is lower than that in this example. However, looking at the variation in distortion in Table 2, it can be seen that the variation in distortion is greater than in this example. This is because the temperature of the high temperature coolant is too low, so the degree of progress of martensitic transformation is high in the high temperature cooling step, and the low temperature cooling step is performed to reduce the partial temperature difference due to the difference in cooling rate during the martensitic transformation. However, it is clear that there is a large variation in strain due to martensitic transformation in the high temperature cooling step.

【0021】以上の結果より、SCr420Hの材料に
おいての高温冷却剤の温度は、冷却速度が遅くなり過ぎ
ない温度で、かつ、マルテンサイト変態の進行度が5〜
10%程度であれば、硬度を余り低下させることなく、
マルテンサイト変態のための歪みのバラツキを小さくす
ることができるので200°〜210°程度にすればよ
い。また、本実施例では低温冷却剤の温度を80°とし
ているが、マルテンサイト変態の進行が70〜80%程
度となる温度まで低温冷却工程を行ない冷却速度の部分
的差を小さくすればマルテンサイト変態による歪みのバ
ラツキが小さくすることができるので、この温度に限定
されるものではない。
From the above results, the temperature of the high temperature coolant in the material of SCr420H is a temperature at which the cooling rate does not become too slow, and the degree of martensite transformation is 5 to 5.
If it is about 10%, the hardness is not lowered so much,
Since the variation in strain due to the martensitic transformation can be reduced, it may be about 200 ° to 210 °. Further, although the temperature of the low-temperature coolant is 80 ° in this example, the low-temperature cooling step is performed to a temperature at which the martensite transformation progresses to about 70 to 80%, and if the partial difference in the cooling rate is reduced, martensite is reduced. The variation in strain due to transformation can be reduced, and thus the temperature is not limited to this.

【0022】以上のように本実施例の焼き入れ方法によ
れば、高温冷却剤を比較的熱容量の小さい鉱物油とした
ので、図1の曲線A及び曲線Bに示すように冷却速度が
あまり早くないために、部分的温度差が小さく熱応力に
よる歪みのバラツキが小さい。更にその高温冷却剤の温
度をマルテンサイト変態開始温度(カーボンポテンシャ
ル0.8%の場合は220°程度)の直下の210°と
したので、マルテンサイト変態開始温度以上の240°
の鉱物油で冷却した場合と比較して冷却速度が遅くなり
過ぎないので、硬度の低下も抑制することができる。
As described above, according to the quenching method of this embodiment, since the high temperature coolant is the mineral oil having a relatively small heat capacity, the cooling rate is too high as shown by the curves A and B in FIG. Since there is no such difference, the partial temperature difference is small and the variation in strain due to thermal stress is small. Further, since the temperature of the high-temperature coolant is set to 210 ° immediately below the martensite transformation start temperature (220 ° in the case of carbon potential 0.8%), it is 240 ° above the martensite transformation start temperature.
Since the cooling rate does not become too slow as compared with the case of cooling with the mineral oil, it is possible to suppress the decrease in hardness.

【0023】この際、高温冷却剤の温度がマルテンサイ
ト変態開始温度より低いために、その冷却によってマル
テンサイト変態が開始してしまうが、その温度が変態開
始温度の直下の210°であるためにマルテンサイト変
態は5〜10%程度でありマルテンサイト変態応力によ
る歪みのバラツキの影響は少ない。
At this time, since the temperature of the high temperature coolant is lower than the martensite transformation start temperature, the martensite transformation starts due to the cooling, but since the temperature is 210 ° immediately below the transformation start temperature, The martensitic transformation is about 5 to 10%, and the influence of strain variation due to the martensitic transformation stress is small.

【0024】その後、低温冷却剤で所定温度に冷却する
ので、外部の影響を受けることなく所定の冷却速度でマ
ルテンサイト変態が進行するので、マルテンサイト変態
による歪みのバラツキが小さい。
After that, since it is cooled to a predetermined temperature with a low-temperature coolant, the martensite transformation proceeds at a predetermined cooling rate without being affected by the outside, so that the variation in strain due to the martensite transformation is small.

【0025】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々変形すること
が可能であり、それらを本発明の範囲から排除するもの
ではない。
The present invention is not limited to the above embodiments, but various modifications can be made based on the spirit of the present invention, and they are not excluded from the scope of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の焼き入れ方法の冷却曲線図である。FIG. 1 is a cooling curve diagram of the quenching method of the present invention.

【図2】従来の焼き入れ方法の冷却曲線図である。FIG. 2 is a cooling curve diagram of a conventional quenching method.

【符号の説明】[Explanation of symbols]

A 冷却速度が早い箇所の冷却曲線 B 冷却速度の遅い箇所の冷却曲線 C 高温冷却剤の温度 D 低温冷却材の温度 E マルテンサイト変態開始温度 A Cooling curve at a fast cooling rate B Cooling curve at a slow cooling rate C High-temperature coolant temperature D Low-temperature coolant temperature E Martensite transformation start temperature

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定の焼き入れ温度に保持した被処理物
を、マルテンサイト変態開始温度直下の温度の鉱物油で
ある高温冷却剤中に浸し、その後、前記高温冷却剤の温
度より低い温度の低温冷却剤で冷却することを特徴とす
る焼き入れ方法。
1. An object to be treated, which has been maintained at a predetermined quenching temperature, is immersed in a high temperature coolant which is a mineral oil having a temperature just below the martensitic transformation start temperature, and then at a temperature lower than the temperature of the high temperature coolant. A quenching method characterized by cooling with a low-temperature coolant.
【請求項2】 前記低温冷却剤は、鉱物油であることを
特徴とする特許請求の範囲第1項記載の焼き入れ方法。
2. The quenching method according to claim 1, wherein the low temperature coolant is mineral oil.
JP4189993A 1992-06-23 1992-06-23 Quenching method Pending JPH062030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4189993A JPH062030A (en) 1992-06-23 1992-06-23 Quenching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4189993A JPH062030A (en) 1992-06-23 1992-06-23 Quenching method

Publications (1)

Publication Number Publication Date
JPH062030A true JPH062030A (en) 1994-01-11

Family

ID=16250602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4189993A Pending JPH062030A (en) 1992-06-23 1992-06-23 Quenching method

Country Status (1)

Country Link
JP (1) JPH062030A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492806A (en) * 2011-12-29 2012-06-13 重庆机床(集团)有限责任公司 Segmental variable speed quenching method
US8425120B2 (en) 2005-10-27 2013-04-23 Nsk Ltd. Electrolytic erosion preventing insulated rolling bearing, manufacturing method thereof, and bearing device
JP2013213243A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Heat treatment method
CN106435098A (en) * 2016-11-03 2017-02-22 滁州市康泰金属热处理厂 Application of double curves in heat treatment
US20220106653A1 (en) * 2019-03-29 2022-04-07 Aisin Corporation Quenching method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425120B2 (en) 2005-10-27 2013-04-23 Nsk Ltd. Electrolytic erosion preventing insulated rolling bearing, manufacturing method thereof, and bearing device
CN102492806A (en) * 2011-12-29 2012-06-13 重庆机床(集团)有限责任公司 Segmental variable speed quenching method
JP2013213243A (en) * 2012-03-30 2013-10-17 Idemitsu Kosan Co Ltd Heat treatment method
CN106435098A (en) * 2016-11-03 2017-02-22 滁州市康泰金属热处理厂 Application of double curves in heat treatment
US20220106653A1 (en) * 2019-03-29 2022-04-07 Aisin Corporation Quenching method

Similar Documents

Publication Publication Date Title
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
US4021272A (en) Method of isothermal annealing of band steels for tools and razor blades
JPH0288714A (en) Manufacture of steel member
US6723188B2 (en) Steel workpiece oil quenching method
JPH062030A (en) Quenching method
CN110042217B (en) Nano bainite bearing heat treatment method and bearing manufactured by same
JP4837160B2 (en) Heat treatment method
US6187118B1 (en) Method for heat-treating steel work pieces
JPH0754038A (en) Method for quenching by carburizing or carbo-nitriding
JP5075293B2 (en) Mold quenching method
JPS6147208B2 (en)
JP3990917B2 (en) Oil quenching method for steel parts
JP2614653B2 (en) Manufacturing method of carburized parts with little heat treatment distortion
JP6759842B2 (en) Steel manufacturing method
JPH03126858A (en) Carburizing and heat treating method for high-carbon chromium bearing steel
JPH0416538B2 (en)
JPH07138733A (en) Surface hardening heat treating method for die
JPS626612B2 (en)
JP2921235B2 (en) Carburizing and quenching method
JP2852433B2 (en) Manufacturing method of bearing parts
US2538239A (en) Method for hardening cast iron
KR100550588B1 (en) heat-treatment method for thin wall ring
JPH0873932A (en) Method for heat-treating steel for machine structure
JPH08311536A (en) Method for annealing martensitic stainless steel
JPH02101113A (en) Hardening method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees