JP3990917B2 - Oil quenching method for steel parts - Google Patents

Oil quenching method for steel parts Download PDF

Info

Publication number
JP3990917B2
JP3990917B2 JP2002021142A JP2002021142A JP3990917B2 JP 3990917 B2 JP3990917 B2 JP 3990917B2 JP 2002021142 A JP2002021142 A JP 2002021142A JP 2002021142 A JP2002021142 A JP 2002021142A JP 3990917 B2 JP3990917 B2 JP 3990917B2
Authority
JP
Japan
Prior art keywords
quenching
temperature
oil
steel
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002021142A
Other languages
Japanese (ja)
Other versions
JP2002309314A (en
Inventor
吉計 下里
三郎 小川
清浩 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2002021142A priority Critical patent/JP3990917B2/en
Publication of JP2002309314A publication Critical patent/JP2002309314A/en
Application granted granted Critical
Publication of JP3990917B2 publication Critical patent/JP3990917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は鋼材部品の油焼入方法、特に、鋼材部品をマルクエンチ処理する方法に関するものである。
【0002】
【従来の技術】
一般に、焼入温度に保持された鋼材部品を焼入油に浸漬すると、鋼材部品は蒸気膜段階(高温域)、沸騰段階(中温域)及び対流段階(低温域)の三段階を経て冷却される。蒸気膜段階での冷却速度は遅く、沸騰段階での冷却速度はそれよりも3〜10倍早いことが知られている。また、高温焼入油(ホットクエンチオイル)は、低温焼入油(コールドクエンチオイル)と比べて中温及び低温域での冷却速度が遅いため、焼入れ変態に起因する歪みを軽減できるが、蒸気膜段階の時間が短く、蒸気膜段階の終了温度が高いため、高温域での温度差に起因する熱歪みが生じ易いことが知られている。一方、焼入油を減圧下におくと、図2に示すように、沸点が下降することによって蒸気膜段階の時間が長くなると共に、蒸気膜段階の終了温度が低くなる。そこで、このような現象を利用して、焼入れに起因する変形を軽減する方法として、焼入温度に保持された鋼材部品を高温焼入油中に浸漬して焼入れを行う方法、或いは減圧下の焼入油中に浸漬して焼入れを行う方法が実施されている。
【0003】
他方、歯車等の鋼材部品の油焼入方法として、所定の焼入温度に保持した鋼材部品をマルテンサイト変態開始点(Ms点)より少し高い高温冷却剤に浸漬してマルテンサイト変態開始点(Ms点)より少し高い温度まで急速冷却し、鋼材部品全体がほぼ同一の温度になった時点で高温冷却剤から取り出して大気中で放冷することによりマルテンサイト変態させる方法(マルクエンチ処理)がある。この方法は、焼入歪みや焼入れのバラツキを軽減することができるが、大気中の放冷であるため、冷却速度が処理材のトレイ内での載置位置や被処理部材の部位間に温度差を生じ、その温度差に起因する焼入歪や焼入れバラツキが避けられないという問題がある。
【0004】
この問題を解決する方法として、所定の焼入温度に保持した鋼材部品をマルテンサイト変態開始温度以上の高温冷却剤中に浸漬して急冷し、鋼材部品全体がほぼ同一の温度になった時点でマルテンサイト変態開始温度以下の低温冷却剤中に浸漬する方法(特開平2‐101113号公報)、或いは焼入油を循環させる循環系を備え、かつ、被処理材を包囲するフードを有する焼入槽を用い、前記循環系を停止させた状態でフード内に被処理材を浸漬し、その熱でフード内の焼入油をマルテンサイト変態開始点(Ms点)近傍まで上昇させ、被処理材全体がほぼ同一の温度になった時点で前記循環系で焼入油を循環させてマルテンサイト変態点以下に急冷する方法(特開平6‐27938号公報)などが提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、焼入装置の構成及び構造の観点から見れば、前者は高温冷却剤と低温冷却剤とを必要とするばかりでなく、高温冷却剤用の焼入槽と低温冷却剤用の焼入槽とが必要であるため、焼入装置の大型化及び複雑化が避けられずメンテナンス性が悪いという問題がある。後者は、前者における問題を解決するものではあるが、焼入槽自体が複雑化するという問題がある。また、焼入歪及びバラツキの観点から見れば、両者はいずれも冷却剤中に浸漬して鋼材部品全体をほぼ同一温度にする方式であるため、熱媒体としての冷却剤をトレイ上の各被処理材及び被処理材全体に均一に、かつ、十分に接触させるのは困難で、均熱時に鋼材部品間若しくは鋼材部品の部位間に温度差が生じ、焼入歪及びバラツキの軽減に効果はあるが、満足できるものではない。
【0006】
前記課題を解決するため縷々研究した結果、これらの焼入歪及びバラツキはマルテンサイト変態時における鋼材部品間若しくは鋼材部品の部位間の温度差に起因すると同時に、高温域(約550℃以上)での冷却速度が速すぎることに起因することが明らかとなった。
【0007】
従って、本発明は、マルテンサイト変態時における鋼材部品間若しくは鋼材部品の部位間での温度差を軽減すると共に、高温域(約550℃以上)での冷却速度を熱歪を抑制するに十分な緩慢な速度にし、もって、焼入歪及び焼入れのバラツキを軽減することを課題とするものである。
【0008】
【課題を解決するための手段】
本発明は、前記課題を解決するための手段として、所定の焼入温度に保持された鋼材部品を高温焼入油中に浸漬して当該鋼材部品の所定部位がマルテンサイト変態開始点(Ms点)の直上温度に達するまで急冷した後、当該鋼材部品を前記高温焼入油中から取り出して当該鋼材部品の保有熱により均熱化し、引続き前記高温焼入油中に浸漬して冷却するようにしたものである。
【0009】
本発明の実施態様においては、急冷工程において、鋼材部品は、その所定部位、即ち、マルテンサイト変態に起因する歪みによる変形量が最も大きい部位、具体的には、鋼材部品の単位表面に対して内部体積の小さい部位(例えば、歯車の歯や角柱部品のコーナ部など、以下、先鋭部という)がその部位のMs点直上の温度に達するまで急冷することが行われる。
【0010】
これは次の知見に基づくものである。即ち、本発明方法においては、前記鋼材部品は、まず、高温焼入油中に浸漬してマルテンサイト変態開始点(Ms点)の直上温度にまで急冷されるが、この場合、鋼材部品全体が前記Ms点の直上の温度にまで冷却された時点で高温焼入油から取り出すのが好適である。しかしながら、実際の鋼材部品は、一般に焼入れ直前に浸炭処理を施されるため、鋼材部品内部に拡散した炭素の濃度が鋼材部品全体にわたって均一ではなく、部位によってMs点が異なる場合がある。例えば、鋼材部品の先鋭部は、その表層部の炭素濃度が当該先鋭部以外の部位(例えば、鋼材部品内部の浸炭されていない部位、即ち、非浸炭部)よりも高くなるため、前記先鋭部表層部のMs点(Ms)が前記非浸炭部のMs点(Ms)よりも低くなり、変形量にバラツキを生じる結果となる。ところが、鋼材部品の先鋭部以外の部位、即ち、前記非浸炭部については、通常焼入れした場合でも変形が小さく、その部位の温度が当該部位のMs点(Ms)直下となっても鋼材部品としての特性への悪影響が少なく、変形量が最も大きい部位である先鋭部の温度がその部位のMs点(Ms)直上であれば、均熱化により鋼材部品全体の変形量のバラツキを小さくできるという知見に基づくものである。
【0011】
前記焼入油は、被処理材に応じて種類、温度及び量が設定されるが、通常、JIS K2242 2種1号又は2号に相当する高温焼入油が採用される。また、焼入油の温度は、100〜170 ℃の範囲内の温度に設定される。なお、焼入油の量は、1次焼き入れにより前記設定温度が大きく変動しない量に設定すれば良い。
【0012】
また、急冷後、被処理材を均熱化するため油焼入室内の焼入油の上方空間に保持されるが、この上方空間の雰囲気温度は、通常、高温焼入油の温度とほぼ同温度である。1次焼入れされた被処理材は、油焼入室の上方空間内にそれ自体の保有熱により均熱されてマルテンサイト変態開始点(Ms点)の直上近傍の温度になるまで保持する時間は、被処理材の大きさ、材質等によって異なるため一義的に定めることは困難であるが、通常、30〜300秒に設定される。
【0013】
均熱化後、再度高温焼入油に浸漬する、所謂マルクエンチ処理により、被処理材のトレイ内での載置位置や被処理材の部位間の温度差をさらに小さくすることができる。
【0014】
本発明の実施態様においては、焼入れ時の油焼入室内の圧力が7〜75KPa、より好ましくは、8〜40KPaに設定される。これは、7KPaより高真空にすると蒸気膜段階が長くなりすぎて十分な焼入れ硬度が得難くなり、また、75KPaより低真空では十分な減圧効果が得られず、熱歪みを抑制できなくなるからである。
【0015】
【発明の実施の形態】
以下、添付の図面を参照して本発明の実施の形態について説明する。図1は本発明方法の実施に使用するバッチ式浸炭炉の構造を示し、当該炉は加熱室1と油焼入室8とで構成されている。加熱室1は、バルブ2aを備えた窒素供給ライン3aを介して窒素ガス供給源4aに接続されると共に、バルブ2bを備えた排気ライン5aを介して真空ポンプ6aに接続され、また、図示しない浸炭性ガス供給ラインを接続され、加熱室1は加熱室用扉7を介在させて油焼入室8に連結されている。
【0016】
他方、油焼入室8は、バルブ2cを備えた窒素供給ライン3bを介して窒素ガス供給源4bに接続されると共に、バルブ2dを備えた空気供給ライン9を介して大気に連通し、バルブ2eを備えた排気ライン5bを介して真空ポンプ6bに接続されている。また、油焼入室8は、その内部に焼入油槽11を有し、被処理材Wを昇降させて焼入油中に浸漬保持する一方、前記焼入油槽11の上方の空間14に保持する昇降手段(図示せず)とを備え、加熱室1側に中間扉15が、また、大気側に装入兼搬出用扉16がそれぞれ配設されている。
【0017】
本発明方法の実施に際しては、まず、加熱室1及び油焼入室8を約7〜75KPaの範囲内の所定の真空度にまで真空排気する。両室が所定の真空度に達した後、被処理材Wを加熱室1から油焼入室8内に移送し、高温焼入油13中に浸漬して当該被処理材Wの表面がマルテンサイト変態開始点(Ms点)の直上近傍の温度になるまで急冷して1次焼入れを行う。この時、焼入油13が高温焼入油であって、油焼入室8内が減圧された状態で浸漬冷却されるため、大気圧下での高温焼入油による焼入と比較して蒸気膜段階の冷却速度が遅く、しかも、蒸気膜段階の冷却時間が長くなるため、被処理材Wは高温域(850〜550℃)を緩慢に、かつ、均一に冷却される。
【0018】
次いで、焼入れを継続した場合には歪等が許容範囲外となる部位、例えば、被処理材の先鋭部表面の温度が表面マルテンサイト変態開始点(Ms点)の直上近傍の温度に達した時点で、被処理材Wを高温焼入油13中から取り出して油焼入室8内の上方空間14に放置し、被処理材Wの表面及び内部が表面マルテンサイト変態開始点(Ms点)の直上近傍の温度になるまで均熱化する。
【0019】
更に、均熱化後、被処理材Wを再度高温焼入油13中に浸漬して冷却し2次焼入れを行う。この際、被処理材Wは均熱処理工程を経ており、かつ、高温焼入油中に浸漬されるため、空冷するよりも均一に冷却できることから、マルクエンチ処理によりマルテンサイト変態が均一に行われる。また、高温焼入油は、低温焼入油に比較して冷温域の冷却速度が遅いため、被処理材Wをより均一に冷却できる。
【0020】
冷却が完了すると、前記被処理材Wを高温焼入油13から取り出し、バルブ2dを開いて空気供給ライン9から空気を油焼入室8内に導入して大気圧状態に復圧した後、油焼入室8から装入兼排出用扉16を経て炉外へ取り出す。
【0021】
被処理材Wは、焼入れ中、各部位において別々の温度履歴を示し、その部位におけるマルテンサイト変態開始点(Ms点)も炭素濃度(C%)に応じて異なっている。この炭素濃度とマルテンサイト変態開始点(Ms点)との関係は、例えば、公知の次式で与えられる。
Ms(℃)=550−361(%C)−39(%Mn)−35(%Cr)−17(%Ni)−10(%Cu)−5(%Mo+%W)+15(%Co)+30(%Al)
【0022】
従って、本発明が最も効果的なのは、被処理材Wの総ての部位において前記式で求められるマルテンサイト変態開始点(Ms点)直上の温度にて高温焼入油13から取り出すことである。しかしながら、図3には4点のみ示したが、被処理材Wの部位に応じて異なる一次冷却時の温度推移及びマルテンサイト変態開始点(Ms点)をあらゆる点に渡って求め、かつ、マルテンサイト変態開始点(Ms点)直上の温度で取り出すことは事実上不可能である。そこで、本発明においては、変形量が最も大きい部位である先鋭部の温度がその部位のMs点(Ms)直上の温度に達したところで高温焼入油13から取り出すようにしている。これは、通常焼入れした場合でも変形量の小さい部位については、その表層部の温度が当該部位のMs点(Ms)直下となっても、変形量が最も大きい部位である先鋭部の温度がその部位のMs点(Ms)直上であれば、均熱化により鋼材部品全体の変形量のバラツキを小さくできるからである。
【0023】
なお、焼入れを継続した場合に歪等が許容範囲外になる部位(具体的には、鋼材部品表面の焼入れの必要な部位)が表面マルテンサイト変態開始点(Ms点)の直上近傍の温度に到達する時点、すなわち、被処理材Wを高温焼入油13中から取り出すタイミングは浸漬時間により管理する。また、1次焼入れした被処理材Wがマルテンサイト変態開始点(Ms点)の直上近傍の温度に到達する時点、すなわち、再度、高温焼入油13中に浸漬するタイミングは油焼入室8の上方空間14での放置時間により管理する。
【0024】
前記実施態様においては、油焼入室8を減圧状態にした場合を例に挙げて説明したが、油焼入室8を大気圧状態で実施しても良い。この場合、一次焼入れ後、焼入油から引き上げて均熱処理を行うことにより、その後の二次焼入れでのマルテンサイト変態を均一に行わせることができるため、歪みのバラツキの低減に満足すべき効果がある。また、減圧状態では、高温域での被処理材Wの冷却をより均一に行うことができるため、歪みのバラツキ低減に、より一層の効果が得られる。
【0025】
【実施例1】
自動車変速機用ファイナルギヤ(SCM420H、直径180mm)を被処理材Wとしてトレイに40個積載し、加熱室1に入れて950 ℃の浸炭温度で浸炭処理(有効浸炭深さ:0.7 mm)した後、油焼入室8に移送し、下記の条件で焼入れ処理を行った。この時の冷却曲線の実測値を図3に示す。なお、図3中、▲1▼は上段歯部、▲2▼は上段肉厚部、▲3▼は下段歯部及び▲4▼は下段肉厚部をそれぞれ示す。
焼入条件
焼入開始温度: 850 ℃
焼入油温度: 120 ℃
油焼入室8内圧力: 大気圧
一次焼入(浸漬時間): 68秒
均熱(放置時間): 2分
二次焼入(浸漬時間): 7分
【0026】
【比較例1】
自動車変速機用ファイナルギヤ(材質:SCM420H、直径:180mm)を被処理材Wとし、均熱工程を省き連続浸漬とした以外は下記のように実施例1と同一条件下で焼入れ処理を行った。
焼入条件
焼入開始温度: 850 ℃
焼入油温度: 120 ℃
油焼入室8内圧力: 大気圧
焼入(浸漬時間): 10分
【0027】
実施例1及び比較例1で得た各処理材について、歯形及び歯筋変形量のバラツキを比較した結果は下記の通りであった。これらの結果から本発明方法により油焼入れしたものは、マルテンサイト変態時における鋼材部品間若しくは鋼材部品の部位間での温度差が軽減されると共に、高温域(約550℃以上)での冷却速度が緩慢で熱歪が抑制されバラツキが軽減されていることが判る。
【0028】

Figure 0003990917
【0029】
【実施例2】
自動車変速機用ハイポイドギヤ(材質:SCr420H、直径200mm)を被処理材Wとしてトレイに32個積載し、加熱室1に入れて950 ℃の浸炭温度で浸炭処理(有効浸炭深さ:0.9 mm)した後、油焼入室8に移送し、下記の条件で焼入れ処理を行った。
焼入条件
焼入開始温度: 850 ℃
焼入油温度: 120 ℃
油焼入室8内圧力: 13KPa
一次焼入(浸漬時間): 58秒
均熱(放置時間): 2分
二次焼入(浸漬時間): 10分
【0030】
【比較例2】
自動車変速機用ハイポイドギヤ(材質:SCr420H、直径200mm)を被処理材Wとし、焼入れをプレス焼入れとし、その他は実施例2と同一条件で下記の焼入れ処理を行った。
焼入条件
焼入開始温度: 850 ℃
焼入油温度: 120 ℃
油焼入室8内圧力: 大気圧
焼入(矯正型焼入れ)
焼入(浸漬時間): 10分
【0031】
実施例2及び比較例2で得た各処理材について、歯形及び歯筋変形量のバラツキを比較した結果は下記の通りであった。
Figure 0003990917
【0032】
これらの結果から本発明方法により油焼入れしたものは、マルテンサイト変態時における鋼材部品間若しくは鋼材部品の部位間での温度差が軽減されると共に、高温域(約550℃以上)での冷却速度が緩慢で熱歪が抑制されバラツキが軽減されていることが判る。
【0033】
なお、前記実施例及び比較例では、浸炭処理された鋼材部品について焼入れ処理を例に挙げているが、本発明方法は工具鋼、軸受鋼或いは機械構造用鋼の焼入処理にも適用することができる。また、焼入槽は一槽に限らず、二槽であっても良い。
【0034】
【発明の効果】
以上説明したように、本発明は、高温焼入油を用いて一次冷却を行うようにしたので高温域での冷却を緩慢な速度で行うことができ、高温域での熱歪を抑制すると共に、Ms点の直上温度で鋼材部品を一旦高温焼入油から取り出してその保有熱により均熱化し、その後、高温焼入油中に再浸漬して冷却するようにしたので、マルテンサイト変態時における鋼材部品間若しくは鋼材部品の部位間での温度差を軽減でき、焼入歪のバラツキを少なくすることができる。また、本発明方法は、油焼入室の内部を減圧状態にして焼入れを行うため、中温度域の冷却をある程度速く行うことができ、減圧による冷却能不足を補い、焼入れ時間が増大するのを防止できる。更に、一槽の焼入槽でマルクエンチ処理ができるとともに、油焼入室を簡単な構造とすることができる。
【図面の簡単な説明】
【図1】 本発明方法の実施に使用する浸炭炉の構造を示す説明図
【図2】 鋼材部品の各種雰囲気圧力下での冷却曲線を示すグラフ
【図3】 鋼材部品の各部位の冷却曲線を示すグラフ
【符号の説明】
1…加熱室
2…バルブ
3…窒素供給ライン
4…窒素ガス供給源
5…排気ライン
6…真空ポンプ
7…加熱室用扉
8…油焼入室
9…空気供給ライン
11…焼入油槽
13…焼入油
14…均熱空間
15…中間扉
16…装入兼搬出用扉
W…被処理材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oil quenching method for steel parts, and more particularly, to a method for marqueching a steel part.
[0002]
[Prior art]
In general, when steel parts maintained at the quenching temperature are immersed in quenching oil, the steel parts are cooled through three stages: a vapor film stage (high temperature area), a boiling stage (medium temperature area), and a convection stage (low temperature area). The It is known that the cooling rate in the vapor film stage is slow and the cooling rate in the boiling stage is 3 to 10 times faster than that. In addition, high-temperature quenching oil (hot quench oil) has a slower cooling rate at medium and low temperatures than low-temperature quenching oil (cold quench oil), so it can reduce distortion caused by quenching transformation, but it is a vapor film. It is known that the thermal strain caused by the temperature difference in the high temperature range is likely to occur because the stage time is short and the end temperature of the vapor film stage is high. On the other hand, when the quenching oil is placed under a reduced pressure, as shown in FIG. 2, the boiling point is lowered, so that the time of the vapor film stage becomes longer and the end temperature of the vapor film stage becomes lower. Therefore, using such a phenomenon, as a method of reducing deformation caused by quenching, a method of quenching by immersing a steel part held at a quenching temperature in high-temperature quenching oil, or under reduced pressure A method of quenching by immersing in quenching oil has been practiced.
[0003]
On the other hand, as a method of oil quenching of steel parts such as gears, the martensitic transformation start point (the martensitic transformation start point by immersing the steel part maintained at a predetermined quenching temperature in a high-temperature coolant slightly higher than the martensitic transformation start point (Ms point) ( There is a method of martensitic transformation (marquenching treatment) by rapidly cooling to a temperature slightly higher than the Ms point), and when the entire steel parts are at substantially the same temperature, taking out from the high-temperature coolant and allowing to cool in the atmosphere. . Although this method can reduce quenching distortion and quenching variation, since it is allowed to cool in the atmosphere, the cooling rate is the temperature between the placement position of the treatment material in the tray and the part of the treated member. There is a problem that a difference is generated, and quenching distortion and quenching variation due to the temperature difference cannot be avoided.
[0004]
As a method for solving this problem, a steel part maintained at a predetermined quenching temperature is immersed in a high-temperature coolant at a temperature higher than the martensite transformation start temperature and rapidly cooled, and when the entire steel part reaches almost the same temperature. A method of immersing in a low-temperature coolant below the martensitic transformation start temperature (Japanese Patent Laid-Open No. 2-101113), or a quenching system having a circulation system for circulating quenching oil and having a hood surrounding the material to be treated Using a tank, the material to be treated is immersed in the hood while the circulation system is stopped, and the heat is used to raise the quenching oil in the hood to the vicinity of the martensite transformation start point (Ms point). A method has been proposed in which quenching oil is circulated in the circulation system and rapidly cooled below the martensite transformation point (JP-A-6-27938) when the temperature reaches almost the same temperature as a whole.
[0005]
[Problems to be solved by the invention]
However, from the viewpoint of the structure and structure of the quenching apparatus, the former requires not only a high temperature coolant and a low temperature coolant, but also a quench bath for the high temperature coolant and a quench bath for the low temperature coolant. Therefore, there is a problem that the quenching apparatus cannot be increased in size and complexity, and maintenance is poor. Although the latter solves the problem in the former, there is a problem that the quenching tank itself becomes complicated. Further, from the viewpoint of quenching distortion and variation, both of them are immersed in a coolant so that the entire steel part is brought to substantially the same temperature. It is difficult to bring the treated material and treated material uniformly and sufficiently into contact with each other, and a temperature difference occurs between the steel parts or between the parts of the steel parts at the time of soaking, which is effective in reducing quenching distortion and variation. Yes, but not satisfactory.
[0006]
As a result of extensive research to solve the above problems, these quenching distortions and variations are caused by a temperature difference between steel parts or parts of steel parts during martensitic transformation, and at a high temperature range (about 550 ° C. or more). It was clarified that the cooling rate was too high.
[0007]
Therefore, the present invention reduces the temperature difference between the steel parts or the parts of the steel parts at the time of the martensitic transformation and is sufficient to suppress the thermal strain at the cooling rate in the high temperature range (about 550 ° C. or higher). The object is to reduce the quenching distortion and quenching variation by using a slow speed.
[0008]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, the present invention immerses a steel part maintained at a predetermined quenching temperature in high-temperature quenching oil, and the predetermined part of the steel part has a martensitic transformation start point (Ms point). The steel part is taken out of the high-temperature quenching oil and is soaked by the retained heat of the steel part, and subsequently immersed in the high-temperature quenching oil to be cooled. It is a thing.
[0009]
In the embodiment of the present invention, in the rapid cooling process, the steel material part is a predetermined part thereof, that is, a part where the amount of deformation due to strain caused by martensitic transformation is the largest, specifically, a unit surface of the steel part. Quenching is performed until a portion having a small internal volume (for example, a sharp portion such as a gear tooth or a corner portion of a prismatic part hereinafter) reaches a temperature just above the Ms point of the portion.
[0010]
This is based on the following knowledge. That is, in the method of the present invention, the steel part is first immersed in high-temperature quenching oil and rapidly cooled to a temperature just above the martensite transformation start point (Ms point). It is preferable to take out from the high-temperature quenching oil when it is cooled to a temperature just above the Ms point. However, since actual steel parts are generally carburized immediately before quenching, the concentration of carbon diffused inside the steel parts is not uniform throughout the steel parts, and the Ms point may differ depending on the part. For example, the sharp part of the steel part has a higher carbon concentration in the surface layer part than a part other than the sharp part (for example, a part that is not carburized inside the steel part, that is, a non-carburized part). The Ms point (Ms 2 ) of the surface layer part becomes lower than the Ms point (Ms 1 ) of the non-carburized part, resulting in variations in the amount of deformation. However, the part other than the sharp part of the steel part, that is, the non-carburized part is less deformed even when normally quenched, and the steel part even when the temperature of the part is directly below the Ms point (Ms 1 ) of the part. If the temperature of the sharpened portion, which is the portion with the largest deformation amount, is just above the Ms point (Ms 2 ) of the portion, the variation in the deformation amount of the entire steel part is reduced by soaking. It is based on the knowledge that it can be done.
[0011]
Although the kind, temperature, and quantity of the quenching oil are set according to the material to be treated, a high-temperature quenching oil corresponding to JIS K2242 Type 2 No. 1 or 2 is usually employed. Moreover, the temperature of hardening oil is set to the temperature within the range of 100-170 degreeC. The amount of quenching oil may be set to an amount that does not cause the set temperature to fluctuate greatly due to primary quenching.
[0012]
In addition, after quenching, the material to be treated is kept in the upper space of the quenching oil in the oil quenching chamber in order to equalize the temperature, and the ambient temperature in this upper space is usually almost the same as the temperature of the high temperature quenching oil. Temperature. The material that has been subjected to the primary quenching is held in the upper space of the oil quenching chamber until it reaches a temperature immediately above the martensite transformation start point (Ms point) by the heat retained by itself. Since it differs depending on the size, material, etc. of the material to be processed, it is difficult to define it uniquely, but it is usually set to 30 to 300 seconds.
[0013]
After soaking, the so-called marquenching process in which the material is soaked again in high-temperature quenching oil can further reduce the temperature difference between the placement position of the material to be treated in the tray and the part of the material to be treated.
[0014]
In the embodiment of the present invention, the pressure in the oil quenching chamber during quenching is set to 7 to 75 KPa, more preferably 8 to 40 KPa. This is because when the vacuum is higher than 7 KPa, the vapor film stage becomes too long and it is difficult to obtain sufficient quenching hardness, and when the vacuum is lower than 75 KPa, a sufficient decompression effect cannot be obtained and thermal distortion cannot be suppressed. is there.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows the structure of a batch-type carburizing furnace used for carrying out the method of the present invention. The furnace comprises a heating chamber 1 and an oil quenching chamber 8. The heating chamber 1 is connected to a nitrogen gas supply source 4a via a nitrogen supply line 3a provided with a valve 2a, and is connected to a vacuum pump 6a via an exhaust line 5a provided with a valve 2b. A carburizing gas supply line is connected, and the heating chamber 1 is connected to an oil quenching chamber 8 with a heating chamber door 7 interposed therebetween.
[0016]
On the other hand, the oil quenching chamber 8 is connected to the nitrogen gas supply source 4b via a nitrogen supply line 3b provided with a valve 2c and communicates with the atmosphere via an air supply line 9 provided with a valve 2d. Is connected to a vacuum pump 6b through an exhaust line 5b. The oil quenching chamber 8 has a quenching oil tank 11 inside thereof, and moves the workpiece W up and down so as to be immersed and held in the quenching oil, while holding it in a space 14 above the quenching oil tank 11. Elevating means (not shown) is provided, an intermediate door 15 is disposed on the heating chamber 1 side, and a loading / unloading door 16 is disposed on the atmosphere side.
[0017]
In carrying out the method of the present invention, first, the heating chamber 1 and the oil quenching chamber 8 are evacuated to a predetermined degree of vacuum within a range of about 7 to 75 KPa. After both chambers reach a predetermined degree of vacuum, the workpiece W is transferred from the heating chamber 1 into the oil quenching chamber 8 and immersed in the high temperature quenching oil 13 so that the surface of the workpiece W is martensite. First quenching is performed by rapid cooling until the temperature is just above the transformation start point (Ms point). At this time, since the quenching oil 13 is a high-temperature quenching oil and is cooled by immersion in a state where the inside of the oil quenching chamber 8 is depressurized, the steam is compared with quenching by high-temperature quenching oil under atmospheric pressure. Since the cooling rate in the film stage is slow and the cooling time in the vapor film stage is long, the material W to be processed is slowly and uniformly cooled in the high temperature region (850 to 550 ° C.).
[0018]
Next, when quenching is continued, the temperature of the surface where the strain or the like is outside the allowable range, for example, the surface of the sharpened portion of the material to be processed has reached a temperature immediately above the surface martensite transformation start point (Ms 2 point). At that time, the material to be treated W is taken out from the high-temperature quenching oil 13 and is left in the upper space 14 in the oil quenching chamber 8 so that the surface and the inside of the material to be treated W are surface martensite transformation start points (Ms 2 points). Soak until it reaches a temperature just above.
[0019]
Further, after soaking, the material W to be treated is again immersed in the high-temperature quenching oil 13 and cooled to perform secondary quenching. At this time, since the material W to be processed has undergone a soaking process and is immersed in the high-temperature quenching oil, it can be cooled more uniformly than air cooling, so that the martensitic transformation is uniformly performed by the marquenching process. Moreover, since the high temperature quenching oil has a slower cooling rate in the cold temperature region than the low temperature quenching oil, the workpiece W can be cooled more uniformly.
[0020]
When the cooling is completed, the material W to be treated is taken out from the high-temperature quenching oil 13, the valve 2d is opened, air is introduced into the oil quenching chamber 8 from the air supply line 9, and the pressure is restored to the atmospheric pressure. The material is taken out of the furnace through the charging / discharging door 16 from the quenching chamber 8.
[0021]
The to-be-processed material W shows separate temperature history in each site | part during hardening, and the martensitic transformation start point (Ms point) in the site | part also differs according to carbon concentration (C%). The relationship between the carbon concentration and the martensite transformation start point (Ms point) is given by, for example, the following known formula.
Ms (° C.) = 550-361 (% C) −39 (% Mn) −35 (% Cr) −17 (% Ni) −10 (% Cu) −5 (% Mo +% W) +15 (% Co) +30 (% Al)
[0022]
Therefore, the present invention is most effective when it is taken out from the high-temperature quenching oil 13 at a temperature immediately above the martensite transformation start point (Ms point) obtained by the above formula in all the parts of the material to be treated W. However, although only four points are shown in FIG. 3, the temperature transition and the martensitic transformation start point (Ms point) at the time of primary cooling, which differ depending on the part of the material to be processed W, are obtained over all points, and the martensite It is virtually impossible to take out at a temperature just above the site transformation start point (Ms point). Therefore, in the present invention, when the temperature of the sharpened portion, which is the portion having the largest deformation amount, reaches a temperature just above the Ms point (Ms 2 ) of the portion, the high temperature quenching oil 13 is taken out. This is because, even in the case of normal quenching, for a portion with a small amount of deformation, even if the temperature of the surface layer portion is just below the Ms point (Ms 1 ) of the portion, the temperature of the sharp portion that is the portion with the largest amount of deformation is This is because if the portion is just above the Ms point (Ms 2 ), the variation in the deformation amount of the entire steel part can be reduced by soaking.
[0023]
Note that the temperature at which the part where the strain, etc. is outside the allowable range when quenching is continued (specifically, the part that requires quenching on the surface of the steel part) is just above the surface martensite transformation start point (Ms 2 point). time to reach, i.e., the timing at which to eject the workpiece W from a high-temperature quenching oil 13 is controlled by the immersion time. Further, when the first-quenched workpiece W reaches a temperature immediately above the martensitic transformation start point (Ms 2 point), that is, when it is immersed again in the high-temperature quenching oil 13, the oil quenching chamber 8 It is managed by the leaving time in the upper space 14.
[0024]
In the said embodiment, although the case where the oil quenching chamber 8 was made into the pressure reduction state was mentioned as an example, you may implement the oil quenching chamber 8 in an atmospheric pressure state. In this case, after the primary quenching, the martensite transformation in the subsequent secondary quenching can be performed uniformly by pulling up from the quenching oil and performing a soaking treatment, so that the effect that should satisfy the reduction in distortion variation There is. Further, in the reduced pressure state, the material W to be processed can be more uniformly cooled in the high temperature region, and thus a further effect can be obtained in reducing the variation in distortion.
[0025]
[Example 1]
40 final gears for automobile transmission (SCM420H, diameter 180mm) are loaded on tray as material W to be processed, put into heating chamber 1 and carburized at carburizing temperature of 950 ° C (effective carburizing depth: 0.7 mm) After that, it was transferred to the oil quenching chamber 8 and subjected to quenching treatment under the following conditions. The measured value of the cooling curve at this time is shown in FIG. In FIG. 3, (1) indicates the upper tooth portion, (2) indicates the upper thick portion, (3) indicates the lower tooth portion, and (4) indicates the lower thick portion.
Quenching conditions Quenching start temperature: 850 ° C
Quenching oil temperature: 120 ℃
Oil quenching chamber 8 pressure: Atmospheric pressure primary quenching (immersion time): 68 seconds soaking (standing time): 2 minutes Secondary quenching (immersion time): 7 minutes [0026]
[Comparative Example 1]
A final gear for automobile transmission (material: SCM420H, diameter: 180 mm) was treated as material W, and the quenching process was performed under the same conditions as in Example 1 except that the soaking process was omitted and continuous immersion was performed. .
Quenching conditions Quenching start temperature: 850 ° C
Quenching oil temperature: 120 ℃
Oil quenching chamber 8 pressure: Atmospheric pressure quenching (immersion time): 10 minutes [0027]
About each processing material obtained in Example 1 and the comparative example 1, the result of having compared the variation of a tooth profile and the amount of deformation of a tooth trace was as follows. From these results, oil quenching by the method of the present invention reduces the temperature difference between steel parts or parts of steel parts during martensitic transformation, and cooling rate in a high temperature range (about 550 ° C. or higher). It can be seen that is slow, thermal strain is suppressed, and variation is reduced.
[0028]
Figure 0003990917
[0029]
[Example 2]
32 hypoid gears for automobile transmissions (material: SCr420H, diameter 200 mm) are loaded on the tray as material W to be processed, put into heating chamber 1 and carburized at a carburizing temperature of 950 ° C. (effective carburizing depth: 0.9 mm) ) And then transferred to the oil quenching chamber 8 for quenching treatment under the following conditions.
Quenching conditions Quenching start temperature: 850 ° C
Quenching oil temperature: 120 ℃
Pressure in oil quenching chamber 8: 13KPa
Primary quenching (immersion time): 58 seconds Soaking (standing time): 2 minutes Secondary quenching (immersion time): 10 minutes [0030]
[Comparative Example 2]
The hypoid gear for automobile transmission (material: SCr420H, diameter 200 mm) was treated material W, the quenching was press-quenched, and the following quenching treatment was performed under the same conditions as in Example 2.
Quenching conditions Quenching start temperature: 850 ° C
Quenching oil temperature: 120 ℃
Oil quenching chamber 8 pressure: Atmospheric pressure quenching (correction quenching)
Quenching (dipping time): 10 minutes [0031]
About each processing material obtained in Example 2 and the comparative example 2, the result of having compared the variation of a tooth profile and the amount of deformation of a tooth trace was as follows.
Figure 0003990917
[0032]
From these results, oil quenching by the method of the present invention reduces the temperature difference between steel parts or parts of steel parts during martensitic transformation, and cooling rate in a high temperature range (about 550 ° C. or higher). It can be seen that is slow, thermal strain is suppressed, and variation is reduced.
[0033]
In the examples and comparative examples, the carburized steel parts are exemplified as the quenching process, but the method of the present invention is also applicable to the quenching process of tool steel, bearing steel or machine structural steel. Can do. Further, the quenching tank is not limited to one tank and may be two tanks.
[0034]
【The invention's effect】
As described above, in the present invention, the primary cooling is performed using the high-temperature quenching oil, so that the cooling in the high temperature range can be performed at a slow rate, and the thermal distortion in the high temperature range is suppressed. The steel part is once taken out from the high-temperature quenching oil at a temperature just above the Ms point, soaked by the retained heat, and then cooled by reimmersing in the high-temperature quenching oil. It is possible to reduce the temperature difference between the steel parts or between the parts of the steel parts, and to reduce the variation in quenching strain. In addition, since the method of the present invention performs quenching with the inside of the oil quenching chamber under reduced pressure, the middle temperature range can be cooled to some extent faster, compensating for the lack of cooling capacity due to reduced pressure, and increasing the quenching time. Can be prevented. In addition, a marquenching process can be performed in one quenching tank, and the oil quenching chamber can have a simple structure.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the structure of a carburizing furnace used for carrying out the method of the present invention. FIG. 2 is a graph showing cooling curves of steel parts under various atmospheric pressures. FIG. 3 is a cooling curve of each part of the steel parts. Graph [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heating chamber 2 ... Valve 3 ... Nitrogen supply line 4 ... Nitrogen gas supply source 5 ... Exhaust line 6 ... Vacuum pump 7 ... Heating chamber door 8 ... Oil quenching chamber 9 ... Air supply line 11 ... Quenching oil tank 13 ... Burning Oil entry 14 ... Soaking space 15 ... Intermediate door 16 ... Door for loading and unloading W ... Material to be treated

Claims (3)

所定の焼入温度に保持された鋼材部品を高温焼入油中に浸漬して当該鋼材部品のマルテンサイト変態に起因する歪みによる変形量の最も大きい部位がマルテンサイト変態開始点(Ms点)の直上温度に達するまで急冷した後、当該鋼材部品を高温焼入油中から取り出して当該鋼材部品の保有熱により均熱化し、引続き高温焼入油中に浸漬して冷却することを特徴とする浸炭処理された鋼材部品の油焼入方法。 The largest part of the amount of deformation due to distortion caused by immersing the predetermined baked steel parts held by the entry temperature into the high temperature quenching oil in martensitic transformation of the steel component is martensitic transformation start point (Ms point) after quenched to reach just above the temperature, and soaking by the steel components of potential heat removed the steel part from a high-temperature quenching oil, characterized by cooling and subsequently immersed in hot quenching oil carburizing Oil quenching method for processed steel parts. 焼入れ時の油焼入室内の圧力が7KPa〜75KPaであることを特徴とする請求項1記載の方法 The method according to claim 1 , wherein the pressure in the oil quenching chamber during quenching is 7 KPa to 75 KPa. 前記高温焼入油の温度が100〜170℃の範囲内の温度である請求項1又は2記載の方法 The method according to claim 1 or 2, wherein the temperature of the high-temperature quenching oil is a temperature within a range of 100 to 170 ° C.
JP2002021142A 2001-02-08 2002-01-30 Oil quenching method for steel parts Expired - Lifetime JP3990917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002021142A JP3990917B2 (en) 2001-02-08 2002-01-30 Oil quenching method for steel parts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-32244 2001-02-08
JP2001032244 2001-02-08
JP2002021142A JP3990917B2 (en) 2001-02-08 2002-01-30 Oil quenching method for steel parts

Publications (2)

Publication Number Publication Date
JP2002309314A JP2002309314A (en) 2002-10-23
JP3990917B2 true JP3990917B2 (en) 2007-10-17

Family

ID=26609123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002021142A Expired - Lifetime JP3990917B2 (en) 2001-02-08 2002-01-30 Oil quenching method for steel parts

Country Status (1)

Country Link
JP (1) JP3990917B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321221A (en) * 2006-06-02 2007-12-13 Hirohisa Taniguchi Compound marquenching apparatus and controlling method therefor
JP6459697B2 (en) * 2015-03-25 2019-01-30 新日鐵住金株式会社 Carburizing and quenching control device and carburizing and quenching method
DE112018006225T5 (en) * 2017-12-06 2020-09-03 Ihi Corporation Heat treatment device
CN115125375B (en) * 2022-06-30 2023-05-30 东风商用车有限公司 Pressure quenching device for thin-wall annular gear

Also Published As

Publication number Publication date
JP2002309314A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP3387427B2 (en) Heat treatment method for steel
JP4041602B2 (en) Vacuum carburizing method for steel parts
CN108277449B (en) Heat treatment method for carburizing and quenching low-carbon alloy steel workpiece
WO2009131202A1 (en) Method for producing steel parts
US6723188B2 (en) Steel workpiece oil quenching method
JPH0288714A (en) Manufacture of steel member
JP4655528B2 (en) Manufacturing method of high-strength machine structure parts and high-strength machine structure parts
CN110846612A (en) Vacuum carburizing heat treatment processing technology
JP4876668B2 (en) Heat treatment method for steel members
JP2006200003A (en) Heat-treated article and heat treatment method
JP7163642B2 (en) Carburizing and quenching equipment and carburizing and quenching method
JP3990917B2 (en) Oil quenching method for steel parts
JP4837160B2 (en) Heat treatment method
JP3442447B2 (en) Carburizing or carbonitriding and quenching
CN115109899A (en) Heat treatment process of low-carbon alloy steel material
EP1149923B1 (en) Apparatus for quenching metallic material
JP6497446B2 (en) Gas quenching method
JP3009792B2 (en) Continuous gas carburizing and quenching furnace
KR100592757B1 (en) Method of gas carburizing
JPH062030A (en) Quenching method
JP6935326B2 (en) Gas carburizing method
JP2001152243A (en) Steel quenching method
CN115491633A (en) Heat treatment method of alloy steel workpiece
KR102494316B1 (en) Gas carburizing method for reductions of raw materials of carburizing and grain boundary oxidation
CN113846284B (en) Ion nitriding process for 25Cr2Ni3Mo material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3990917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term