JPH0754038A - Method for quenching by carburizing or carbo-nitriding - Google Patents

Method for quenching by carburizing or carbo-nitriding

Info

Publication number
JPH0754038A
JPH0754038A JP33314793A JP33314793A JPH0754038A JP H0754038 A JPH0754038 A JP H0754038A JP 33314793 A JP33314793 A JP 33314793A JP 33314793 A JP33314793 A JP 33314793A JP H0754038 A JPH0754038 A JP H0754038A
Authority
JP
Japan
Prior art keywords
quenching
oil
temperature
treatment
treated material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33314793A
Other languages
Japanese (ja)
Other versions
JP3442447B2 (en
Inventor
Hideo Aihara
秀雄 相原
Haruki Yamada
治樹 山田
Makoto Sumitomo
誠 住友
Kazuo Kanazawa
和雄 金沢
Yasuyuki Fujiwara
康之 藤原
Kazuto Fukuhara
和人 福原
Shigeru Asada
繁 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GURIISU KK
Toyota Motor Corp
Nippon Grease Co Ltd
Original Assignee
NIPPON GURIISU KK
Toyota Motor Corp
Nippon Grease Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GURIISU KK, Toyota Motor Corp, Nippon Grease Co Ltd filed Critical NIPPON GURIISU KK
Priority to JP33314793A priority Critical patent/JP3442447B2/en
Publication of JPH0754038A publication Critical patent/JPH0754038A/en
Application granted granted Critical
Publication of JP3442447B2 publication Critical patent/JP3442447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To effectively prevent the quenching-strain by the thermal stress strain by stably making the uniform steam film appear in the stage of steam film. CONSTITUTION:The material which is treated by carburizing or carbo-nitriding is quenched by using the quenching oil whole kinematic viscosity: x at 100 deg.C is 9-35cSt, at the temperature of the oil where the kinematic visccosity of the quenching oil is 3-8cSt in the pressure range on the oil level where the lower limit is 60Torr and the upper limit is given in the formula a. Formula a: oil bearing pressure (Torr)=-12.5x+650, (9<=x<=35). The stage of the steam film where the cooling speed is reduced by the circumference of the material to be treated being wrapped by the steam film is increased by the oil quenching under the vacuum condition. The uniform steam film can be stably obtained by the quenching in this condition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼材部品を浸炭又は浸
炭窒化焼入れする方法に関し、詳しくは浸炭又は浸炭窒
化処理した処理材を減圧下で油焼入れ処理する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of carburizing or carbonitriding steel parts, and more particularly to a method of oil quenching a carburized or carbonitrided material under reduced pressure.

【0002】[0002]

【従来の技術】鋼材部品は、耐摩耗性及び疲れ強さを向
上させるために、浸炭焼入れや浸炭窒化焼入れなどの表
面処理が施される。上記浸炭焼入れは、処理材を900
〜1000℃程度の浸炭温度に加熱し、COを含む雰囲
気にさらして処理材表面からCを拡散浸透させる浸炭処
理を施した後、浸炭温度から直接焼入れたり、あるいは
改めて焼きならしをして組織を微細化した後焼入れたり
して行われる。浸炭焼入れされた処理材は、通常200
℃付近で焼もどしを行ってから使用される。
2. Description of the Related Art Steel parts are subjected to surface treatment such as carburizing and carbonitriding quenching in order to improve wear resistance and fatigue strength. For the carburizing and quenching, the treated material is 900
After heating to a carburizing temperature of about 1000 ° C and exposing it to an atmosphere containing CO to diffuse and infiltrate C from the surface of the treated material, quenching is performed directly from the carburizing temperature, or normalizing is performed again It is performed by refining and then quenching. The treated material that has been carburized and quenched is usually 200
It is used after tempering at around ℃.

【0003】また、上記浸炭窒化焼入れは、上記した浸
炭焼入れにおいて、浸炭温度を900℃程度とし、CO
の他にさらにNH3 を含む雰囲気に処理材をさらすこと
により、処理材表面からC及びNを拡散浸透させること
により行われる。ところで、一般的な焼入処理において
は、オーステナイト化温度から処理材を急冷しなければ
ならないので、処理材の表面部と中心部との間に生じる
温度差が原因となって、処理材に熱応力が生じる。ま
た、鋼材はマルテンサイト変態を起こすことにより大き
く膨張し、処理材の表面が中心部よりも先に冷えてマル
テンサイト変態を起こす関係上、処理材に変態応力が生
じる。このように焼入れ処理した処理材には、熱応力及
び変態応力に起因した焼入歪みが発生する。
The carbonitriding and quenching described above is performed by setting the carburizing temperature to about 900.degree.
In addition, by exposing the treatment material to an atmosphere containing NH 3 , C and N are diffused and permeated from the surface of the treatment material. By the way, in a general quenching process, since the treated material must be rapidly cooled from the austenitizing temperature, the temperature difference between the surface portion and the central portion of the treated material causes heat treatment of the treated material. Stress is generated. Further, the steel material greatly expands due to the martensitic transformation, and the surface of the treated material cools before the center portion to undergo the martensitic transformation, so that transformation stress occurs in the treated material. In the treated material thus quenched, quenching strain occurs due to thermal stress and transformation stress.

【0004】このため、焼入硬さを維持しつつ上記焼入
歪みをいかにして防ぐかが焼入れ技術において大きな課
題となるが、金属臨時増刊号(株式会社アグネ出版社、
1985年5月号)には、減圧下で油焼入れ処理するこ
とにより、焼入油の蒸気泡の発生状況を変化させ、これ
により焼入歪の低減や焼入硬さの向上を図ることができ
る旨開示されている。
Therefore, how to prevent the above-mentioned quenching distortion while maintaining the quenching hardness is a major problem in the quenching technology. However, the special number of metal special edition (Agne Publishing Co., Ltd.,
(May 1985), oil quenching treatment under reduced pressure changes the generation state of vapor bubbles of quenching oil, thereby reducing quenching strain and improving quenching hardness. It is disclosed that it can be done.

【0005】この減圧焼入れは、油面圧を下げることに
より焼入油の蒸気泡の発生状況を変化させ、これにより
蒸気膜段階、沸騰段階、及び対流段階の3つの段階に順
に分けられる焼入油の冷却過程を変化させるものであ
る。つまり、油面圧が下がれば、焼入油の蒸気圧の上昇
により蒸気膜の発生量が多くなって、処理材の周囲が蒸
気膜で包まれて冷却速度が遅くなる蒸気膜段階が長くな
る。このため、急冷による熱応力の発生を抑えることが
でき、熱応力に起因する焼入歪みを抑制することができ
る。また、油面圧が下がれば、焼入油の沸点が低下する
ので、冷却速度が非常に速い沸騰段階が低温側に持ち越
されるようになり、より完全に硬化させることができ
る。したがって、減圧下での油焼入れにより、焼入歪み
の発生を抑えるとともに、焼入硬化を向上させることが
可能となる。
In this reduced pressure quenching, the occurrence of vapor bubbles in the quenching oil is changed by lowering the oil surface pressure, and as a result, quenching is divided into three stages, a vapor film stage, a boiling stage, and a convection stage. It changes the cooling process of oil. In other words, if the oil surface pressure decreases, the amount of steam film generated increases due to the increase in the steam pressure of the quenching oil, and the periphery of the treated material is covered with a steam film, and the cooling rate slows down. . Therefore, it is possible to suppress the occurrence of thermal stress due to rapid cooling, and it is possible to suppress quenching strain due to thermal stress. Further, when the oil surface pressure is lowered, the boiling point of the quenching oil is lowered, so that the boiling stage in which the cooling rate is very fast is carried over to the low temperature side, and the hardening can be completed more completely. Therefore, it is possible to suppress the occurrence of quenching strain and improve quench hardening by oil quenching under reduced pressure.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記したよ
うな従来の減圧油焼入れ方法によっても、処理材の焼入
歪みを効果的に防ぐことができなかった。特に、歯車部
品に代表される浸炭焼入れや浸炭窒化焼入れした処理材
は、上記した一般的な焼入れ処理と比較して焼入れ歪み
が発生しやすいので、これを効果的に防ぐことは困難で
ある。
However, even the conventional vacuum oil quenching method as described above could not effectively prevent quenching distortion of the treated material. In particular, the carburized and carbonitrided hardened materials represented by gear parts are more susceptible to quenching distortion than the above-mentioned general quenching treatments, so it is difficult to prevent this effectively.

【0007】本発明者は、減圧油焼入れによって焼入歪
みを効果的に防止することができない原因等について鋭
意研究した結果、上記蒸気膜段階で、処理材を包む蒸気
膜が膜厚の違い等により部分的に壊れたりし、これに起
因して処理材の冷却速度が場所により不均一となって熱
応力歪みが発生していることを突き止めた。本発明は、
上記蒸気膜段階で、均一な蒸気膜を安定に出現させ、熱
応力歪みによる焼入歪みを効果的に防止することのでき
る減圧油焼入れ方法を提供することを目的とするもので
ある。
The inventor of the present invention has made extensive studies as to the reason why quenching distortion cannot be effectively prevented by reduced pressure oil quenching, and as a result, in the above vapor film stage, the vapor film encapsulating the treated material has a different film thickness. It was found that the heat treatment strain was partially broken due to this, and the cooling rate of the treated material became non-uniform due to the location, causing thermal stress strain. The present invention is
It is an object of the present invention to provide a reduced pressure oil quenching method capable of causing a uniform vapor film to appear stably in the vapor film stage and effectively preventing quenching strain due to thermal stress strain.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本第
1発明の減圧油焼入れ方法は、浸炭又は浸炭窒化処理し
た処理材を、100℃における動粘度:xが9〜35c
Stである焼入油を用い、該焼入油の動粘度が3〜8c
Stとなる油温度で、下限が60Torrで上限が式a
で示される油面圧範囲の下で、焼入処理することを特徴
とする。
According to the first embodiment of the present invention, which is for solving the above-mentioned problems, there is provided a reduced pressure oil quenching method in which a treated material which is carburized or carbonitrided has a kinematic viscosity at 100 ° C .: x of 9 to 35 c.
A quenching oil of St is used, and the kinematic viscosity of the quenching oil is 3 to 8c.
At the oil temperature of St, the lower limit is 60 Torr and the upper limit is the formula a.
It is characterized in that quenching treatment is performed under the oil surface pressure range shown by.

【0009】式a:油面圧(Torr)=−12.5x
+650, (9≦x≦35) また上記課題を解決する本第2発明の減圧油焼入れ方法
は、上記第1発明の条件で、かつ、油温度を160℃以
上でマルテンサイト変態開始点(以下、MS 点という)
以下として焼入処理した処理材を、さらに少なくとも1
60℃未満の温度の焼入れ剤を用いて2段目の焼入処理
することを特徴とする。
Formula a: Oil surface pressure (Torr) =-12.5x
+650, (9 ≦ x ≦ 35) Further, the reduced pressure oil quenching method of the second invention for solving the above-mentioned problems is the martensitic transformation starting point (hereinafter , M S point)
A treated material that has been subjected to quenching treatment as described below, at least 1
It is characterized in that the quenching treatment in the second stage is performed by using a quenching agent having a temperature of less than 60 ° C.

【0010】本第1及び第2発明における浸炭又は浸炭
窒化処理の条件は特に限定されず、通常の浸炭処理又は
浸炭窒化処理の条件とすることができる。本第1及び第
2発明で、焼入油の動粘度、油温度、及び油面圧を上記
のように限定した理由を以下に示す。まず、用いる焼入
油の動粘度を限定したのは蒸気膜段階で均一な蒸気膜を
安定に出現させるためであり、また焼入剤としての性能
面を考慮したためである。すなわち、100℃における
動粘度:xが35cStより高くなると、上記の油温度
・油面圧の範囲下にて、均一な蒸気膜が出現困難とな
り、かつ、焼入油としての所望の焼入性能を発揮できな
くなる。一方、100℃における動粘度:xが9cSt
より低くなると、蒸気膜は出現しやすくなるものの、処
理材の下方表面から発生した蒸気が上側表面へまわり込
み、処理材の上部での蒸気膜段階が極端に長くなり、蒸
気膜が不均一となる。
The conditions of the carburizing or carbonitriding treatment in the first and second inventions are not particularly limited, and can be the usual conditions of carburizing or carbonitriding treatment. The reasons why the kinematic viscosity of the quenching oil, the oil temperature, and the oil surface pressure are limited as described above in the first and second inventions are shown below. First, the reason for limiting the kinematic viscosity of the quenching oil used is to allow a uniform vapor film to appear stably at the vapor film stage, and to consider the performance as a quenching agent. That is, when the kinematic viscosity x at 100 ° C. is higher than 35 cSt, it becomes difficult to form a uniform vapor film within the above oil temperature / oil surface pressure range, and the desired quenching performance as quenching oil is obtained. Cannot be demonstrated. On the other hand, kinematic viscosity at 100 ° C .: x is 9 cSt
When the temperature is lower, the vapor film is more likely to appear, but the vapor generated from the lower surface of the treated material wraps around to the upper surface, and the vapor film stage at the upper portion of the treated material becomes extremely long, resulting in non-uniform vapor film. Become.

【0011】また、焼入処理時の焼入油の動粘度が所定
の範囲内となるように油温度を限定したのは、蒸気膜段
階で均一な蒸気膜を安定に出現させるためであり、また
焼入油の性能を安定して発揮できることを考慮したため
である。すなわち、焼入油は、焼入時での動粘度が低い
ほど、粘性抵抗に対する泡の成長エネルギーの増大割合
が大きくなるので、泡を発生しやすくなり、蒸気膜の発
生量が多くなる。このため、油温度が低すぎて焼入油の
動粘度が8cStよりも高くなると、蒸気膜段階で均一
な蒸気膜が安定して出現しにくくなる。一方、焼入時の
油温度が高すぎて焼入油の動粘度が3cStよりも低く
なると、前述の蒸気の上側へのまわり込みが、100℃
における動粘度:xが9〜35cStの範囲内である焼
入油を用いた場合でも生じ、処理材の上部での蒸気膜段
階が長くなり、蒸気膜が不均一となる。したがって、焼
入時の油温度は、焼入油の動粘度が3〜8cStとなる
ように限定した。
The reason for limiting the oil temperature so that the kinematic viscosity of the quenching oil during quenching treatment is within a predetermined range is to allow a uniform vapor film to appear stably at the vapor film stage. This is also because it was considered that the performance of quenching oil can be stably exhibited. That is, in quenching oil, the lower the kinematic viscosity at the time of quenching, the larger the rate of increase in bubble growth energy with respect to the viscous resistance, so that bubbles tend to be generated, and the amount of vapor film generated increases. For this reason, if the oil temperature is too low and the kinematic viscosity of the quenching oil becomes higher than 8 cSt, it becomes difficult to stably form a uniform vapor film at the vapor film stage. On the other hand, when the oil temperature during quenching is too high and the kinematic viscosity of the quenching oil becomes lower than 3 cSt, the above-mentioned steam entrainment to the upper side is 100 ° C.
Kinematic viscosity in: x occurs even when quenching oil having a range of 9 to 35 cSt is used, and the vapor film stage in the upper portion of the treated material becomes long and the vapor film becomes nonuniform. Therefore, the oil temperature during quenching was limited so that the kinematic viscosity of the quenching oil was 3 to 8 cSt.

【0012】さらに、油面圧を上記のように限定したの
も蒸気膜段階で均一な蒸気膜を安定に出現させるためで
あり、また焼入油の蒸発による消耗を考慮したためであ
る。一般に、油面圧が低くなるほど、焼入油の蒸気圧が
上昇するので、(油面圧+油圧)に対する泡の蒸気圧の
増大割合が多くなり、泡が発生しやすくなって蒸気膜の
発生量が多くなる傾向にある。このため、油面圧が上記
式aで示される範囲より高くなると、蒸気膜段階で均一
な蒸気膜が安定して出現しにくくなる。一方、油面圧が
60Torrよりも低くなると、前述の蒸気の上側への
まわり込みが生じ、蒸気膜が不均一となり、かつ、油の
蒸発量も増え実用上適さなくなる。
Further, the reason why the oil surface pressure is limited as described above is to allow a uniform vapor film to appear stably at the vapor film stage, and also to consider consumption of the quenching oil due to evaporation. Generally, the lower the oil surface pressure, the higher the vapor pressure of the quenching oil, so the rate of increase in the vapor pressure of bubbles relative to (oil surface pressure + hydraulic pressure) increases, and bubbles tend to occur, and vapor film formation occurs. The amount tends to increase. For this reason, when the oil surface pressure becomes higher than the range represented by the above formula a, it becomes difficult for a uniform vapor film to appear stably in the vapor film stage. On the other hand, when the oil surface pressure is lower than 60 Torr, the above-mentioned steam wraps around to the upper side, the steam film becomes non-uniform, and the evaporation amount of oil increases, which is not suitable for practical use.

【0013】ここで、泡の蒸気圧は(油面圧+油圧)と
つり合う関係にある。つまり、油面圧が低いほど、また
油圧が低いほど、泡の蒸気圧が低くなり、泡が発生しや
すくなる。そして、泡の蒸気圧、つまり泡の発生状態
は、油面圧が低くなるほど、油圧により支配される割合
が大きくなる。したがって、油面圧を低くするほど、油
面から浅い部分で発生する泡の量と深い部分で発生する
泡の量との差が、泡の発生量に対して大きくなる。この
ため、本第1発明及び第2発明において、例えば油中に
複数の処理材を深さ方向に縦に並べて浸漬した場合、浅
い部分に浸漬された処理材と、深い部分に浸漬された処
理材との間で、蒸気膜の発生状況を揃えて、各処理材間
のバラツキを無くすためには、油面圧を200Torr
以上とすることが好ましく、より好ましくは300To
rr以上とすることである。
Here, the vapor pressure of bubbles is in balance with (oil surface pressure + hydraulic pressure). That is, the lower the oil surface pressure and the lower the oil pressure, the lower the vapor pressure of bubbles, and the more likely bubbles are to occur. The vapor pressure of bubbles, that is, the generation state of bubbles, is controlled by the hydraulic pressure as the oil surface pressure decreases. Therefore, the lower the oil surface pressure, the larger the difference between the amount of bubbles generated in the shallow portion and the amount of bubbles generated in the deep portion with respect to the amount of bubbles generated. For this reason, in the first and second inventions, for example, when a plurality of treatment materials are vertically aligned in the depth direction and immersed in oil, the treatment material immersed in a shallow portion and the treatment material immersed in a deep portion In order to make the generation conditions of vapor film uniform with the material and to eliminate the variation between each material, the oil surface pressure is 200 Torr.
The above is preferable, and more preferably 300 To
It is to be rr or more.

【0014】また、本第2発明において、最初の焼入段
階で、油温度として160℃以上でMs 点以下という限
定を加えたのは、油温度をこの範囲とすることにより、
後述するように、処理材内のマルテンサイト変態開始時
間を揃えてマルテンサイト変態の進行を均一化させ、こ
れにより変態歪みを低減させるためである(マルテンパ
ー効果)。そして、浸炭又は浸炭窒化処理した鋼材のM
s 点は160℃を越えており、最初の焼入段階での油温
度が160℃より低いと上記マルテンパー効果が小さく
なるので、油温度を160℃以上とした。
Further, in the second aspect of the present invention, in the first quenching step, the oil temperature is restricted to 160 ° C. or higher and the M s point or lower, because the oil temperature is within this range.
As will be described later, this is because the martensitic transformation start time in the treated material is made uniform to make the martensitic transformation progress evenly, thereby reducing transformation strain (martempering effect). Then, the M of the carburized or carbonitrided steel material
The s point exceeds 160 ° C., and if the oil temperature in the first quenching stage is lower than 160 ° C., the martempering effect becomes small, so the oil temperature was set to 160 ° C. or higher.

【0015】さらに本第2発明において、2段目の焼入
処理に用いる焼入剤としては、特に限定されず、油、ア
ルカリ洗浄液、水などを用いることが好ましい。なお、
焼入剤を油とする場合、最初の焼入処理で用いた焼入油
と同程度の100℃動粘度:xを有する油を用いること
が好ましく、またこの油の温度は120℃以下(常温ま
で)とすることが好ましい。焼入剤としての油の温度が
120℃よりも高いと2段目の焼入処理することによる
効果を大きく期待できない。また焼入剤をアルカリ洗浄
液とする場合、焼入剤の温度は該アルカリ洗浄液の沸点
以下とする必要があり、40〜80℃程度とすることが
好ましい。焼入剤としてのアルカリ洗浄液の温度が40
℃よりも低いと、洗浄作用が小さくなる。
Further, in the second aspect of the present invention, the quenching agent used in the second quenching treatment is not particularly limited, and oil, alkali cleaning liquid, water or the like is preferably used. In addition,
When the quenching agent is an oil, it is preferable to use an oil having a kinematic viscosity x of 100 ° C. which is similar to that of the quenching oil used in the first quenching treatment, and the temperature of this oil is 120 ° C. or lower (normal temperature). Up to) is preferred. If the temperature of the oil as the quenching agent is higher than 120 ° C., the effect of the second-stage quenching treatment cannot be expected to be large. When the quenching agent is an alkaline cleaning liquid, the temperature of the quenching agent needs to be not higher than the boiling point of the alkaline cleaning liquid, and is preferably about 40 to 80 ° C. The temperature of the alkaline cleaning solution as a quenching agent is 40
If the temperature is lower than ° C, the cleaning effect will be reduced.

【0016】本第1発明及び本第2発明の浸炭又は浸炭
窒化焼入れ方法において、軸対称部品を焼入処理する場
合は、軸対称部品をその中心軸と焼入油面とが垂直とな
るように保持した状態で焼入処理することが好ましい。
この理由を以下説明する。従来の大気圧下での焼入れで
は、蒸気膜段階がほとんどなく、焼入れ直後から泡を発
生しながら、いわゆる核沸騰の状態で処理材が冷却され
る。このような核沸騰状態での冷却の場合、処理材の上
部と下部とで、核沸騰の状況(泡の発生状況)が大きく
異なるため、冷却特性に大きな違いが生じる。したがっ
て、従来の大気圧下での焼入処理の場合、処理材の上下
方向の歪みが、全体歪みよりも大きくなり問題となる。
一方、本第1発明及び第2発明のように、減圧下で焼入
処理する場合、処理材の周囲が蒸気膜で包まれる蒸気膜
段階が延長されるので、上下方向での冷却速度のバラツ
キが低減される。したがって、減圧下での焼入処理の場
合、処理材の上下方向の歪みよりも、処理材の全体歪み
が大きくなり問題となる。ここで、軸対称部品を減圧下
で焼入れ処理する場合、部品をその中心軸と焼入油面と
が平行となるように保持すると、中心軸が湾曲するよう
に歪み、中心軸周りの全体歪みが大きくなる。これに対
し、軸対称部品をその中心軸と焼入油面とが垂直となる
ように保持すれば、平行に保持した場合と比較して、中
心軸周りに蒸気膜が均一に流れ易くなり、蒸気膜がより
均一に安定に出現し易くなるため、中心軸周りの全体歪
みを低減できる。このような効果は、減圧下で焼入する
ことで上下方向の冷却速度を均一化した際に顕在化する
効果である。したがって、本第1発明及び第2発明にお
いて、軸対称部品を処理する場合は、部品をその中心軸
と焼入油面とが垂直となるように保持した状態で焼入処
理することが好ましい。
In the carburizing or carbonitriding quenching methods of the first and second aspects of the present invention, when quenching an axisymmetric component, the central axis of the axisymmetric component should be perpendicular to the quenching oil surface. It is preferable to perform the quenching treatment in the state of being held at.
The reason for this will be described below. In conventional quenching under atmospheric pressure, there is almost no vapor film stage, and the treated material is cooled in a so-called nucleate boiling state while generating bubbles immediately after quenching. In the case of cooling in such a nucleate boiling state, since the state of nucleate boiling (state of generation of bubbles) is greatly different between the upper portion and the lower portion of the treatment material, a large difference occurs in cooling characteristics. Therefore, in the case of the conventional quenching treatment under atmospheric pressure, the vertical strain of the treated material becomes larger than the overall strain, which is a problem.
On the other hand, in the case of quenching treatment under reduced pressure as in the first and second inventions, since the vapor film stage in which the periphery of the treated material is covered with the vapor film is extended, the variation in the cooling rate in the vertical direction is increased. Is reduced. Therefore, in the case of quenching treatment under reduced pressure, the total strain of the treated material becomes larger than the strain in the vertical direction of the treated material, which becomes a problem. Here, when quenching an axisymmetric part under reduced pressure, if the part is held so that its central axis and the quenching oil surface are parallel to each other, the central axis is distorted so as to bend, and the overall distortion around the central axis is increased. Grows larger. On the other hand, if the central axis of the axially symmetric part is held perpendicular to the quenching oil surface, the vapor film will easily flow uniformly around the central axis as compared with the case of holding it in parallel, Since the vapor film is likely to appear more uniformly and stably, the total strain around the central axis can be reduced. Such an effect is an effect that appears when the cooling rate in the vertical direction is made uniform by quenching under reduced pressure. Therefore, in the first and second inventions, when processing an axially symmetric part, it is preferable to perform the hardening process while holding the part such that the central axis of the part is perpendicular to the quenching oil surface.

【0017】[0017]

【作用】本第1発明及び第2発明の浸炭又は浸炭窒化焼
入れ方法では、減圧下で油焼入処理することにより、焼
入油の蒸気圧の上昇により蒸気膜の発生量が多くなっ
て、処理材の周囲が蒸気膜で包まれて冷却速度が遅くな
る蒸気膜段階が長くなる。このため、焼入れ直後の急冷
による熱応力の発生を抑えることができ、熱応力に起因
する焼入歪みを抑制することができる。また、油面圧が
下がれば、焼入油の沸点が低下するので、冷却速度が非
常に速い沸騰段階が低温側に持ち越されるようになり、
より完全に硬化させることができる。したがって、減圧
下での油焼入れにより、焼入歪みの発生を抑えるととも
に、焼入硬化を向上させることが可能となる。
In the carburizing or carbonitriding quenching methods of the first and second aspects of the present invention, the oil quenching treatment under reduced pressure increases the vapor pressure of the quenching oil, increasing the amount of vapor film generated. The periphery of the treated material is covered with the vapor film, and the cooling rate becomes slow, so that the vapor film stage becomes long. Therefore, generation of thermal stress due to rapid cooling immediately after quenching can be suppressed, and quenching strain due to thermal stress can be suppressed. Further, if the oil surface pressure is lowered, the boiling point of the quenching oil is lowered, so that the boiling stage in which the cooling rate is very fast is carried over to the low temperature side,
It can be cured more completely. Therefore, it is possible to suppress the occurrence of quenching strain and improve quench hardening by oil quenching under reduced pressure.

【0018】そして、本第1発明の方法では、上記条件
で焼入処理することにより、つまり100℃における動
粘度:xが所定範囲の焼入油を用い、所定の油温度及び
油面圧で焼入処理することにより、蒸気膜段階で均一な
蒸気膜を安定に出現させることができる。処理材が均一
な蒸気膜で包まれている間は、処理材の各部における冷
却速度が均一化されるので、処理材の場所、例えば上、
中、下における冷却速度や冷却温度の差が小さくなる。
したがって、本第1発明の方法によれば、処理材の熱応
力に起因する焼入歪みを極めて効果的に防止することが
可能となる。
In the method of the first aspect of the present invention, quenching treatment is performed under the above conditions, that is, quenching oil having a kinematic viscosity x at 100 ° C. in a predetermined range is used, and a predetermined oil temperature and oil surface pressure are used. By performing the quenching treatment, a uniform vapor film can be stably appeared at the vapor film stage. While the treatment material is covered with a uniform vapor film, the cooling rate in each part of the treatment material is equalized, so that the location of the treatment material, for example, above,
The difference between the cooling rate and the cooling temperature in the middle and the bottom becomes small.
Therefore, according to the method of the first aspect of the present invention, it is possible to extremely effectively prevent quenching strain due to thermal stress of the treated material.

【0019】なお、本第1発明の方法では、焼入油の動
粘度が3〜8cStの範囲となるように油温度が限定さ
れるので、用いる焼入油の動粘度に応じて油温度の領域
が移行する。ここで、例えば100℃における動粘度:
xが高い焼入油を用いると油温度の許容範囲が高温側に
移るので、油温度が処理材のMS 点よりも高くなる場合
がある。この場合、油浸漬中においてはマルテンサイト
変態が起こらないが、焼入油から引き上げられた後、放
冷等によりマルテンサイト変態が開始〜完了される。ま
た、油温度が処理材のMs 点よりも低く、かつ、Mf
(マルテンサイト変態が完了する温度)よりも高い場合
には、処理材は油浸漬中にマルテンサイト変態が開始さ
れ、焼入油から引き上げられた後、放冷等によりマルテ
ンサイト変態が完了される。さらに、油温度がMf 点よ
りも低い場合には、処理材は油浸漬中にマルテンサイト
変態が開始〜完了される。
In the method of the first aspect of the present invention, the oil temperature is limited so that the kinematic viscosity of the quenching oil is in the range of 3 to 8 cSt. The area moves. Here, for example, kinematic viscosity at 100 ° C .:
When a quenching oil having a high x is used, the allowable range of the oil temperature shifts to the high temperature side, so the oil temperature may become higher than the M S point of the treated material. In this case, the martensite transformation does not occur during oil immersion, but after the martensite transformation is started from the quenching oil, the martensite transformation is started to completed by cooling. When the oil temperature is lower than the M s point of the treated material and higher than the M f point (the temperature at which the martensitic transformation is completed), the treated material starts the martensitic transformation during oil immersion, After being pulled up from the quenching oil, the martensitic transformation is completed by allowing it to cool. Further, when the oil temperature is lower than the Mf point, the martensitic transformation of the treated material is started and completed during the oil immersion.

【0020】本第2発明の方法では、上記第1発明の条
件で、かつ、油温度を160℃以上でMS 点以下とする
ことにより、処理材内のマルテンサイト変態開始時間を
揃え、変態の進行を均一化させることができる(以下、
マルテンパー効果という)。したがって、本第2発明で
は、上記熱応力に起因する焼入歪みの他に、変態応力に
起因する焼入歪みを低減することが可能となる。特に浸
炭焼入や浸炭窒化焼入した処理材の場合、高炭素層をも
つ表面部がマルテンサイト変態により大きく膨張するの
で、変態歪みが大きく発生するわけだが、本第2発明に
よれば、この変態歪みを効果的に抑制することができ
る。
In the method of the second aspect of the invention, the martensitic transformation start time in the treated material is made uniform by performing the transformation under the conditions of the first aspect of the invention and by setting the oil temperature at 160 ° C. or higher and at the M S point or lower. Can be made uniform (hereinafter,
The Martemper effect). Therefore, in the second aspect of the present invention, it is possible to reduce the quenching strain caused by the transformation stress in addition to the quenching strain caused by the thermal stress. In particular, in the case of the carburized and carbonitrided and quenched treated material, the surface portion having the high carbon layer expands greatly due to the martensitic transformation, so that transformation strain is largely generated. Transformation distortion can be effectively suppressed.

【0021】また、本第2発明の方法では、処理材のマ
ルテンサイト変態は、上記条件での最初の焼入段階で開
始され、2段目の焼入処理の段階で完了されるか、又は
ほぼ完了され、焼入油から引き上げられた後、放冷等に
より完了される。そして、2段目の焼入処理することに
より、最初の焼入処理の終了後における処理材の温度ば
らつきを抑えることができ、さらに変態歪みを抑制する
ことが可能となる。
Further, in the method of the second aspect of the present invention, the martensitic transformation of the treated material is started in the first quenching step under the above conditions and completed in the second quenching step, or It is almost completed, and after it is pulled out from the quenching oil, it is completed by allowing it to cool. Then, by performing the second quenching treatment, it is possible to suppress the temperature variation of the treated material after the completion of the first quenching treatment, and it is possible to further suppress the transformation strain.

【0022】さらに、本第1発明及び第2発明におい
て、軸対称部品を焼入処理する場合、軸対称部品をその
中心軸と焼入油面とが垂直となるように保持した状態で
焼入処理すれば、平行に保持した場合と比較して、中心
軸周りに蒸気膜が均一に流れ易くなり、蒸気膜がより均
一に安定に出現し易くなるため、中心軸周りの全体歪み
を低減できる。
Further, in the first and second inventions, when quenching an axially symmetric component, quenching is performed with the axially symmetric component held such that its central axis and the quenching oil surface are perpendicular to each other. Compared with the case of holding them in parallel, the treatment makes it easier for the vapor film to flow uniformly around the central axis and makes it easier for the vapor film to appear more uniformly and stably, thus reducing the overall strain around the central axis. .

【0023】[0023]

【実施例】以下、本発明の実施例を説明する。 (実施例1)焼入油として、100℃における動粘度:
xが8cSt(試験油)、12cSt(日本グリース
製、商品名:マルテンパV2500)、18cSt(日
本グリース製、商品名:マルテンパV2900)、25
cSt(日本グリース製、商品名:マルテンパNo
2)、32cSt(日本グリース製、商品名:マルテン
パV3200)、36cSt(試験油)の6種類を準備
した。
EXAMPLES Examples of the present invention will be described below. (Example 1) As quenching oil, kinematic viscosity at 100 ° C:
x is 8 cSt (test oil), 12 cSt (manufactured by Nippon Grease, trade name: Martempa V2500), 18 cSt (manufactured by Japan Grease, trade name: Martempa V2900), 25
cSt (manufactured by Nippon Grease, trade name: Martempa No.
2), 32 cSt (manufactured by Nippon Grease, trade name: Martempa V3200), and 36 cSt (test oil) were prepared.

【0024】そして、各焼入油を用いて、焼入時の油温
度を100℃、130℃、160℃、180℃、200
℃、220℃、240℃の7段階に変化させ、それぞれ
の油温度について油面圧を50Torr、100Tor
r、200Torr、300Torr、500Tor
r、760Torrの6段階に変化させて、以下に示す
浸炭焼入処理をした。
Then, using each quenching oil, the oil temperature during quenching is 100 ° C, 130 ° C, 160 ° C, 180 ° C, 200
℃, 220 ℃, 240 ℃ is changed in seven stages, the oil surface pressure for each oil temperature 50 Torr, 100 Tor
r, 200 Torr, 300 Torr, 500 Tor
The carburizing and quenching treatment shown below was carried out by changing to 6 stages of r and 760 Torr.

【0025】処理材としては、歯車部品(ドライブピニ
オン、SCM420)を準備した。12個の処理材を一
つのトレイに上下に配置し、予熱室で500℃程度で予
熱した後、CO:20〜23%、H2 :31〜40%か
らなる吸熱型雰囲気ガスとプロパンガスからなる浸炭雰
囲気ガスが供給された浸炭処理室に装入した。浸炭処理
室では、まず昇温ゾーンで処理材を約950℃まで加熱
した後、浸炭ゾーン、拡散ゾーンで浸炭・拡散処理し
た。浸炭ゾーンでの処理時間は160分であり、拡散ゾ
ーンでの処理時間は80分である。また、浸炭時の炭素
ポテンシャル値は1.0%、拡散時の炭素ポテンシャル
値は0.85%である。
Gear parts (drive pinion, SCM420) were prepared as treatment materials. Twelve treatment materials are placed on one tray vertically and preheated at about 500 ° C. in a preheating chamber. Then, from endothermic atmosphere gas consisting of CO: 20-23% and H 2 : 31-40% and propane gas The carburizing atmosphere gas was supplied to the carburizing treatment chamber. In the carburizing chamber, the treated material was first heated to about 950 ° C. in the temperature rising zone, and then carburized and diffused in the carburizing zone and the diffusion zone. The treatment time in the carburizing zone is 160 minutes and the treatment time in the diffusion zone is 80 minutes. The carbon potential value during carburization is 1.0%, and the carbon potential value during diffusion is 0.85%.

【0026】浸炭処理された処理材を、大気圧下の減圧
降温室に送り込んだ後、この減圧降温室を所定の圧力に
減圧し、850℃程度まで降温した。そして、所定の圧
力に減圧された減圧油焼入室に処理材を装入した。この
減圧油焼入室に装入された処理材は、所定の油温度とさ
れた所定の油が入れられた油槽に浸漬され、油焼入され
る。浸漬してから4分経過後、処理材は油槽から引き上
げられ、減圧油焼入室をN2 ガスで大気圧程度に復圧し
てから炉外に抽出されて、浸炭焼入処理を終了した。
After the carburized treatment material was fed into a reduced pressure greenhouse under atmospheric pressure, the reduced pressure greenhouse was decompressed to a predetermined pressure and cooled to about 850 ° C. Then, the treatment material was charged into the reduced pressure oil quenching chamber that was depressurized to a predetermined pressure. The treatment material charged in the reduced pressure oil quenching chamber is immersed in an oil tank containing a predetermined oil at a predetermined oil temperature and oil-quenched. Four minutes after the immersion, the treated material was pulled up from the oil tank, the pressure-reduced oil quenching chamber was restored to the atmospheric pressure with N 2 gas, and then extracted outside the furnace to complete the carburizing and quenching treatment.

【0027】(冷却カーブによる評価)上記浸炭焼入処
理において、処理材を油槽中に浸漬する焼入処理時に、
処理材の上部、中部、下部の3つの部分について、最大
冷却速度V0 と、その最大冷却速度V0 を示す時の温度
0 とを測定した。そして、上部、中部、下部の最大冷
却速度V0 の差、及び最大冷却速度V0 を示す温度T0
の差を計算した。
(Evaluation by Cooling Curve) In the above carburizing and quenching treatment, at the time of quenching treatment in which the treated material is immersed in an oil tank,
The maximum cooling rate V 0 and the temperature T 0 when the maximum cooling rate V 0 was measured were measured for the upper, middle and lower portions of the treated material. The upper temperature T 0 shown central, difference between the maximum cooling rate V 0 which lower, and the maximum cooling rate V 0
Was calculated.

【0028】これらの結果に基づき、焼入油の100℃
における動粘度:xと油面圧、油温度との関係で、各焼
入油について、最大冷却速度V0 の差が30℃/sec
以下で、かつ最大冷却速度V0 を示す温度T0 の差が5
0℃以下となったときの油面圧、油温度の範囲を図1及
び図2に示す。図1及び図2に斜線で示す範囲が上記条
件を満たす油面圧及び油温度の範囲であり、これらの範
囲は同時に満たされなければならない。
Based on these results, the quenching oil at 100 ° C.
Kinematic viscosity: x, the oil surface pressure, and the oil temperature, the difference in maximum cooling rate V 0 between the quenching oils was 30 ° C./sec.
Below, and the difference in temperature T 0 showing the maximum cooling rate V 0 is 5
The ranges of the oil surface pressure and the oil temperature when the temperature becomes 0 ° C. or less are shown in FIGS. 1 and 2. The range indicated by the diagonal lines in FIGS. 1 and 2 is the range of the oil surface pressure and the oil temperature that satisfy the above conditions, and these ranges must be satisfied at the same time.

【0029】これらの結果からも明らかなように、10
0℃における動粘度:xが9〜35cStの焼入油を用
い、焼入油の動粘度が3〜8cStとなる油温度で、下
限が60Torrで上限が前記式aで示される範囲の油
面圧で焼入処理することにより、処理材の上部、中部、
下部における最大冷却速度V0 の差を30℃/sec以
下とし、かつ、最大冷却速度V0 を示す温度T0 の差を
50℃以下とすることができることがわかる。また、減
圧下にて焼入油中の処理材の焼入状態を撮影観察できる
装置を開発し、上記条件で焼入処理することにより、焼
入時の蒸気膜段階で、均一な蒸気膜が安定に出現するこ
とが確認できた。
As is clear from these results, 10
Kinematic viscosity at 0 ° C .: x is 9 to 35 cSt, the quenching oil has a kinematic viscosity of 3 to 8 cSt at an oil temperature, the lower limit is 60 Torr, and the upper limit is the oil surface in the range represented by the formula a. By quenching with pressure, the upper, middle, and
It can be seen that the difference in the maximum cooling rate V 0 in the lower portion can be set to 30 ° C./sec or less and the difference in the temperature T 0 indicating the maximum cooling rate V 0 can be set to 50 ° C. or less. In addition, we have developed a device that can observe the quenching state of the treated material in quenching oil under reduced pressure, and by quenching under the above conditions, a uniform vapor film can be formed at the vapor film stage during quenching. It was confirmed that it appeared stably.

【0030】そして、上記最大冷却速度V0 の30℃/
sec以下で、かつ、最大冷却速度V0 を示す温度T0
の差が50℃以下であった場合、歯車部品の精度のばら
つきを極めて効果的に抑制することができた。これに対
し、最大冷却速度V0 の差が30℃/secを越えた
り、最大冷却速度V0 を示す温度T0 の差が50℃を越
えた場合は、歯車部品の精度のばらつきが抑制できなか
った。
Then, the maximum cooling rate V 0 is 30 ° C. /
sec or less, and the temperature T 0 indicating the maximum cooling rate V 0
When the difference was less than 50 ° C., it was possible to extremely effectively suppress the variation in accuracy of the gear parts. On the other hand, when the difference in the maximum cooling rate V 0 exceeds 30 ° C./sec or the difference in the temperature T 0 indicating the maximum cooling rate V 0 exceeds 50 ° C., the variation in the accuracy of the gear parts can be suppressed. There wasn't.

【0031】ここで、鋼の丸棒試験片(φ20×長さ4
0mm、SCr420)を準備し、表1に示すように、
種々の焼入油を用い、かつ、油温度及び油面圧を種々変
更して、上記実施例1と同様に浸炭焼入処理し、そのと
きの最大冷却速度の差及び最大冷却速度を示す温度の差
をそれぞれ表1に示す。また、表1の試験No.1〜8
について、冷却速度と温度との関係、及び冷却時間と温
度との関係を示す冷却カーブの結果を順に図3〜図10
に示す。なお、図3〜図10中、実線、点線、一点鎖線
は、それぞれ処理材の上部、中部、下部での冷却カーブ
を示す。
Here, a steel round bar test piece (φ20 × length 4
0mm, SCr420) is prepared, and as shown in Table 1,
Using various quenching oils, and varying the oil temperature and the oil surface pressure, the carburizing and quenching treatment was performed in the same manner as in Example 1 above, and the difference in the maximum cooling rate at that time and the temperature showing the maximum cooling rate. The differences are shown in Table 1. In addition, the test No. 1-8
3 to 10 in order of the results of cooling curves showing the relationship between the cooling rate and the temperature, and the relationship between the cooling time and the temperature.
Shown in. In addition, in FIGS. 3 to 10, solid lines, dotted lines, and alternate long and short dash lines indicate cooling curves at the upper portion, middle portion, and lower portion of the treated material, respectively.

【0032】[0032]

【表1】 No.1の試験片では、用いる焼入油の100℃におけ
る動粘度:xが36cStと高すぎるため、最大冷却速
度V0 の差が大きかった。No.2の試験片では、油面
圧が高すぎて前記式aで示される範囲を越えるため、最
大冷却速度V0の差及びこのV0 を示す温度差T0 がい
ずれも大きかった。No.4の試験片では、油面圧が低
すぎるため、最大冷却速度V0 の差が大きかった。N
o.5の試験片では、油面圧が高すぎて前記式aで示さ
れる範囲を越え、かつ、油温度が低すぎるため、最大冷
却速度V0 の差及びこのV0 を示す温度差T0 がいずれ
も大きかった。No.6の試験片では、油温度が低すぎ
るため、最大冷却速度V0 の差が大きかった。No.8
の試験片では、用いる焼入油の100℃における動粘
度:xが8cStと低すぎるため、最大冷却速度V0
示す温度差T0 が大きかった。
[Table 1] No. In the test piece of No. 1, since the kinematic viscosity x of the quenching oil used at 100 ° C. was 36 cSt, which was too high, the difference in the maximum cooling rate V 0 was large. No. The second test piece, since beyond the scope of the oil surface pressure is shown in too high above formula a, the temperature difference T 0 indicating the difference and the V 0 which maximum cooling rate V 0 are both large. No. In the test piece of No. 4, since the oil surface pressure was too low, the difference in the maximum cooling rate V 0 was large. N
o. The 5 specimens, the oil surface pressure is too high beyond the range indicated by the formula a, and since the oil temperature is too low, the temperature difference T 0 indicating the difference and the V 0 which maximum cooling rate V 0 Both were great. No. In the test piece of No. 6, since the oil temperature was too low, the difference in the maximum cooling rate V 0 was large. No. 8
The specimens, kinematic viscosity at 100 ° C. for quenching oil used: x because 8cSt and too low, larger temperature difference T 0 indicating the maximum cooling rate V 0.

【0033】一方、用いる焼入油の100℃における動
粘度:x、油温度及び油面圧がいずれも本発明の範囲内
にあるNo.3及びNo.7の試験片では、最大冷却速
度V 0 の差及びこのV0 を示す温度差T0 がいずれも小
さかった。また、本発明の処理条件で、かつ、油面圧を
200Torr以上とした場合に、一つのトレイ内に上
下に2個配設された処理材間で、上記最大冷却速度の差
0 及び上記最大冷却速度V0 を示す温度の差T0 がい
ずれも小さくなった。これは、焼入油としてマルテンパ
ーNo.2(100℃での動粘度:xが25cSt)を
用い、油温度を180℃としたときの、油面圧と蒸気圧
比P50/P100 との関係を図11に示すように、油面圧
が低くなるほど、上記蒸気圧比P50/P100が小さくな
り、油面からの深さに応じて泡の発生状況が変化しやす
くなるためである。なお、P50は油面から50cmの深
さでの泡の平衡蒸気圧を示し、P100は油面から100
cmの深さでの泡の平衡蒸気圧を示す。したがって、こ
の蒸気圧比P50/P100 が小さくなるほど、油面からの
深さにより泡の発生量の差が大きくなる(浅いほど泡の
発生量が多くなる)。これにより、上記条件で、かつ、
油面圧を200Torr以上とすることにより、より好
ましくは油面圧を300Torr以上とすることによ
り、浅い部分に浸漬された処理材と、深い部分に浸漬さ
れた処理材との間で、蒸気膜の発生状況の差が小さくな
ることが確認できた。
On the other hand, the movement of the quenching oil used at 100 ° C.
Viscosity: x, oil temperature and oil surface pressure are all within the scope of the present invention
No. 3 and No. The maximum cooling speed was 7 test pieces.
Degree V 0Difference and this V0Temperature difference T0Is small
It was good. Also, under the processing conditions of the present invention,
If it is over 200 Torr, it will be
The difference in the maximum cooling rate between the two processing materials arranged below
V 0And the maximum cooling rate V0Temperature difference T0Gargling
The gap has become smaller. This is Martempa as a quenching oil.
-No. 2 (Kinematic viscosity at 100 ° C: x is 25 cSt)
Oil surface pressure and vapor pressure when the oil temperature is 180 ° C
Ratio P50/ P100As shown in Fig. 11, the oil surface pressure
Becomes lower, the vapor pressure ratio P becomes higher.50/ P100Is smaller
Therefore, the generation status of bubbles tends to change depending on the depth from the oil surface.
This is because Note that P50Is 50 cm deep from the oil surface
Equilibrium vapor pressure of bubbles in100Is 100 from the oil level
The equilibrium vapor pressure of the foam at a depth of cm is shown. Therefore, this
Vapor pressure ratio P of50/ P100The smaller the
The difference in the amount of foam generated increases depending on the depth (the shallower the
A large amount will be generated). As a result, under the above conditions, and
By setting the oil surface pressure to 200 Torr or more, better
More preferably, by setting the oil surface pressure to 300 Torr or more.
The treated material immersed in the shallow part and the deeper part.
Between the treated material and the treated material
I was able to confirm that

【0034】なお、100℃における動粘度が8cSt
である焼入油を用いた場合、又は焼入油の動粘度が3c
Stより低くなるほど油温度を高くした場合、油面圧に
よらず、蒸気膜段階にて処理材の下部及び側面から生成
した蒸気が上端面にまわり込み、処理材上部での核沸騰
への移行が遅れ、最大冷却速度を示す温度の差が50〜
165℃となった。一方、100℃における動粘度が3
6cStである焼入油を用いた場合、又は焼入油の動粘
度が8cStより高くなるほどほど油温度を低くした場
合、油面圧によらず、蒸気の発生が不十分で蒸気膜が不
均一となり、処理材上部の冷却が早くなり、最大冷却速
度の差が30〜60℃/secとなった。
The kinematic viscosity at 100 ° C. is 8 cSt.
When using quenching oil that is, or the kinematic viscosity of quenching oil is 3c
When the oil temperature becomes higher as it becomes lower than St, the steam generated from the lower and side surfaces of the treated material at the vapor film stage wraps around the upper end surface regardless of the oil surface pressure, and shifts to nucleate boiling at the upper portion of the treated material. Is delayed and the temperature difference showing the maximum cooling rate is 50 ~
It reached 165 ° C. On the other hand, the kinematic viscosity at 100 ° C is 3
When quenching oil of 6 cSt is used, or when the oil temperature is so low that the kinematic viscosity of quenching oil is higher than 8 cSt, steam is not sufficiently generated and the steam film is uneven, regardless of the oil surface pressure. The cooling of the upper part of the treated material was accelerated, and the difference in maximum cooling rate was 30 to 60 ° C./sec.

【0035】また、油面圧を上記式aで示される範囲よ
り高くした場合は、蒸気がほとんど発生せず、最大冷却
速度の差が40℃/sec以上となり、減圧焼入れの効
果がなかった。一方、油面圧を60Torrよりも低く
した場合、蒸気膜段階が長くなり過ぎて、蒸気膜段階か
ら沸騰段階へ移行する温度(特性温度)が低くなり過
ぎ、この結果最大冷却速度を示す温度の差が50℃より
も大きくなった。これは、処理材の下部及び側面から生
成した蒸気が上端面にまわり込み、処理材の上部でのみ
油との熱交換が遅れ核沸騰への移行が低温側へずれ込ん
だためと考えられる。
When the oil surface pressure was set higher than the range represented by the above expression a, steam was scarcely generated, the difference in maximum cooling rate was 40 ° C./sec or more, and the effect of reduced pressure quenching was not effective. On the other hand, when the oil surface pressure is lower than 60 Torr, the vapor film stage becomes too long, and the temperature (characteristic temperature) at which the vapor film stage transitions to the boiling stage becomes too low. The difference became larger than 50 ° C. It is considered that this is because the steam generated from the lower portion and the side surface of the treated material went around to the upper end surface, the heat exchange with the oil was delayed only in the upper portion of the treated material, and the transition to nucleate boiling was shifted to the low temperature side.

【0036】さらに、本実施例に係る浸炭焼入方法で
は、浸炭拡散処理した処理材を減圧下で所定時間保持し
て850℃程度まで降温させているので、O2 分圧の低
下によって処理材表面のOが解離し、また煤の付着が除
去されるので、処理材表面を光輝肌とすることができ、
焼入品質の向上に寄与する。 (実施例2)処理材として、上記実施例1と同様の歯車
部品(ドライブピニオン、SCM420)を準備し、1
00℃における動粘度が25cStの焼入油を用い、油
温度を220℃とし、油面圧を300Torrとして、
上記実施例1と同様の浸炭焼入処理をした。
Further, in the carburizing and quenching method according to the present embodiment, since the treated material subjected to the carburizing diffusion treatment is held under reduced pressure for a predetermined time and cooled to about 850 ° C., the treated material is reduced due to a decrease in O 2 partial pressure. O on the surface is dissociated and soot is removed, so that the surface of the treated material can have a bright skin,
Contributes to the improvement of quenching quality. (Example 2) As a processing material, a gear component (drive pinion, SCM420) similar to that of Example 1 was prepared.
Using a quenching oil with a kinematic viscosity of 25 cSt at 00 ° C., an oil temperature of 220 ° C., an oil surface pressure of 300 Torr,
The same carburizing and quenching treatment as in Example 1 was performed.

【0037】上記浸炭焼入処理終了後、1分以内に、N
2 復圧下で、100℃の焼入油(100℃における動粘
度が25cSt)中に4分間浸漬して、2段目の焼入処
理をした。本実施例2により浸炭焼入処理した処理材に
おいては、最初の焼入処理で油温度を220℃として処
理材のMs 点に近づけているため、処理材内のマルテン
サイト変態の進行が均一化されており、しかも2段目の
焼入処理により最初の焼入終了時の温度ばらつきも抑え
られるので、変態歪みを極めて効果的に抑えることがで
きた。
Within 1 minute after completion of the above carburizing and quenching treatment, N
2 Under recompression, the steel was immersed in a quenching oil at 100 ° C. (kinematic viscosity at 100 ° C. was 25 cSt) for 4 minutes to carry out a second quenching treatment. In the treated material subjected to the carburizing and quenching treatment according to the second embodiment, the oil temperature was 220 ° C. in the first quenching treatment and the temperature was close to the M s point of the treated material, so that the martensite transformation in the treated material proceeded uniformly. In addition, since the second quenching treatment can suppress the temperature variation at the end of the first quenching, the transformation strain can be suppressed extremely effectively.

【0038】(実施例3)処理材として、上記実施例1
と同様の歯車部品(ドライブピニオン、SCM420)
を準備し、100℃における動粘度が25cStの焼入
油を用い、油温度を220℃とし、油面圧を300To
rrとして、上記実施例1と同様の浸炭焼入処理をし
た。
(Example 3) As a treating material, the above-mentioned Example 1 was used.
Gear parts similar to (Drive pinion, SCM420)
Prepared by using a quenching oil having a kinematic viscosity of 25 cSt at 100 ° C., an oil temperature of 220 ° C., and an oil surface pressure of 300 To.
As rr, the same carburizing and quenching treatment as in Example 1 was performed.

【0039】上記浸炭焼入処理終了後、2分以内に、大
気圧下で80℃のアルカリ洗浄液(メタクリアCL−5
700、ソーダニッカ製)中に5分間浸漬して、2段目
の焼入処理をした。本実施例3により浸炭焼入処理した
処理材も、上記実施例2と同様に、変態歪みを極めて効
果的に抑えることができた。また、本実施例では、2段
目の焼入処理時の焼入剤をアルカリ洗浄液としたため、
2段目の焼入処理をしながら最初の焼入処理時の焼入油
を洗浄することができた。
Within 2 minutes after completion of the above carburizing and quenching treatment, an alkaline cleaning liquid (methacryl CL-5 at 80 ° C. under atmospheric pressure).
700, made by Soda Nicka) for 5 minutes to perform second quenching treatment. The treated material carburized and quenched in Example 3 was also able to extremely effectively suppress the transformation strain, as in Example 2 above. Further, in this embodiment, since the quenching agent used in the second quenching treatment was the alkaline cleaning liquid,
It was possible to wash the quenching oil during the first quenching treatment while performing the second quenching treatment.

【0040】(歯車部品の歯車精度評価)前記実施例1
に係る歯車部品(ドライブピニオン、SCM420)を
前記表1に示す試験No.1〜8と同じ条件で焼入処理
した歯車部品No.1〜8、上記実施例2で焼入処理し
た歯車部品No.9、上記実施例3で焼入処理した歯車
部品No.10、及び従来の大気圧焼入処理した歯車部
品No.0について、歯車精度評価をした。これは、図
12に示すように、歯面のうち加速面において、ねじれ
角(歯すじ)誤差Aと、圧力角(歯形)誤差Bとを、そ
れぞれ12個の試験部品について測定し、その平均値:
m及び標準偏差:σを求めることにより行った。ねじれ
角誤差Aの変化量の測定結果を図13に、圧力角誤差B
の変化量の測定結果を図14にそれぞれ示す。なお、歯
車部品No.0の従来の大気圧での焼入処理は、焼入
油:マルテンパーNo.2(100℃での同粘度:xが
25cSt)、油温度:130℃、油面圧:760To
rrの条件で行った。
(Evaluation of Gear Accuracy of Gear Parts) Example 1
The gear parts (drive pinion, SCM420) according to No. 1 of the test No. Gear parts No. No. 1 to 8, gear part Nos. No. 9, gear part No. subjected to the quenching treatment in Example 3 above. No. 10 and the conventional gear part No. subjected to atmospheric pressure quenching treatment. About 0, the gear precision was evaluated. As shown in FIG. 12, the twist angle (tooth line) error A and the pressure angle (tooth profile) error B were measured for each of 12 test parts on the acceleration surface of the tooth surface, and the average thereof was measured. value:
m and standard deviation: σ was determined. The measurement result of the change amount of the torsion angle error A is shown in FIG.
FIG. 14 shows the measurement results of the amount of change of each. Gear part No. The conventional quenching treatment at atmospheric pressure of 0 is a quenching oil: Martemper No. 2 (same viscosity at 100 ° C: x is 25 cSt), oil temperature: 130 ° C, oil surface pressure: 760To
It was performed under the condition of rr.

【0041】この結果、焼入処理条件が本発明の範囲内
にある試料No.3、7、9、10では、いずれも歯車
精度のばらつきを極めて効果的に抑制できることが確認
できた。 (実施例4)処理材として、軸対称部品である歯車部品
(モジュール3.0、ヘリカルギア、材質SCM42
0)を多数準備し、100℃における動粘度が25cS
tの焼入油を用い、油温度を220℃とし、油面圧を3
00Torrとして、上記実施例1と同様の浸炭焼入処
理をした。
As a result, the sample No. whose quenching condition is within the range of the present invention is obtained. It was confirmed that in Nos. 3, 7, 9, and 10, variations in gear precision could be suppressed extremely effectively. (Example 4) As a treatment material, a gear component (module 3.0, helical gear, material SCM42) which is an axisymmetric component.
0) are prepared, and the kinematic viscosity at 100 ° C is 25 cS.
Using quenching oil of t, oil temperature is 220 ° C, oil surface pressure is 3
The same carburizing and quenching treatment as in Example 1 was performed at 00 Torr.

【0042】そして、焼入処理する際、多数の歯車部品
を縦積みした場合と、横置きした場合とで、歯車精度を
比較した。また、100℃における動粘度が25cSt
の焼入油を用い、油温度を130℃とし、油面圧を76
0Torrとして、大気圧下で焼入したものも、同様に
歯車精度を比較した。その結果を表2に示す。なお、各
精度のバラツキ範囲(6σの幅)で表は記載している。
Then, in the quenching process, the gear precision was compared between the case where a large number of gear parts were vertically stacked and the case where they were placed horizontally. Moreover, the kinematic viscosity at 100 ° C. is 25 cSt.
Using quenching oil, set the oil temperature to 130 ° C and the oil surface pressure to 76
The gear accuracy was similarly compared for the case of 0 Torr and quenching under atmospheric pressure. The results are shown in Table 2. Note that the table is described in the range of variation in accuracy (width of 6σ).

【0043】[0043]

【表2】 表2からも明らかなように、従来の大気圧下での焼入処
理では、軸対称部品をその中心軸と焼入油面とが平行と
なるように保持する横置きのセット方法の方が、軸対称
部品をその中心軸と焼入油面とが垂直となるように保持
する縦積みのセット方法よりも、歯車精度の変化量のば
らつきが小さい。これは、大気圧下での焼入の場合、上
下方向における冷却速度のバラツキが大きくて支配的と
なる。縦積みにした場合、各部品の一つ一つの歯が上下
方向にバラツキを伴って変形し、それぞれの歯において
上下方向に大きな歪みのバラツキが発生した結果であ
る。
[Table 2] As is clear from Table 2, in the conventional quenching treatment under atmospheric pressure, the horizontal setting method of holding the axially symmetric component so that its central axis and the quenching oil surface are parallel to each other is better. The variation in gear precision variation is smaller than that in the vertical stacking method in which the central axis of the axially symmetric component is held vertically to the quenching oil surface. This is dominated by the large variation in the cooling rate in the vertical direction when quenching under atmospheric pressure. In the case of vertical stacking, each tooth of each component is deformed in the vertical direction with variations, and a large vertical variation is generated in each tooth.

【0044】一方、減圧下での焼入処理では、軸対称部
品をその中心軸と焼入油面とが垂直となるように保持す
る縦積みのセット方法の方が、軸対称部品をその中心軸
と焼入油面とが平行となるように保持する横置きのセッ
ト方法よりも、歯車精度の変化量のばらつきが小さい。
これは、減圧焼入の場合、上下方向における冷却速度が
均一化されているので、上下方向における歪みのバラツ
キは小さくなり、中心軸周りの全体歪みが支配的となっ
た結果である。つまり、減圧焼入の場合、上下方向にお
ける冷却速度が均一化されているので、上下方向におけ
る歪みのバラツキは小さくなり、縦積みしても各部品の
一つ一つの歯において上下方向に大きな歪みは発生しな
い。また、中心軸と焼入油面とが垂直となる縦積みの場
合は、中心軸と焼入油面とが平行となる横置きの場合よ
りも、中心軸周りに蒸気膜が均一、かつ、安定に発現し
易いため、中心軸周りの全体歪みのバラツキが低減され
る。
On the other hand, in the quenching treatment under reduced pressure, the vertically stacking setting method in which the central axis of the axially symmetric component is held perpendicular to the quenching oil surface is the center of the axially symmetric component. The variation in the amount of change in gear precision is smaller than in the horizontal setting method in which the shaft and the quenching oil surface are held in parallel.
This is because, in the case of vacuum quenching, since the cooling rate in the vertical direction is uniform, the variation in strain in the vertical direction becomes small, and the overall strain around the central axis becomes dominant. That is, in the case of reduced pressure quenching, the cooling rate in the vertical direction is uniform, so the variation in the vertical strain is small, and even if stacked vertically, each tooth of each component has a large vertical strain. Does not occur. Further, in the case of vertical stacking in which the central axis and the quenching oil surface are vertical, the vapor film is more uniform around the central axis than in the case of horizontal placement in which the central axis and the quenching oil surface are parallel, and Since it is likely to be stably expressed, variations in the total strain around the central axis are reduced.

【0045】なお、上述の実施例では、浸炭処理した処
理材を減圧下で油焼入処理する例について示したが、浸
炭処理する代わりに浸炭窒化処理した場合も同様の結果
を得ることができた。
In the above-mentioned embodiment, an example in which the carburized material is oil-quenched under reduced pressure has been shown, but the same result can be obtained when carbonitriding instead of carburizing. It was

【0046】[0046]

【発明の効果】以上詳述したように本第1発明及び第2
発明の方法は、熱応力歪みを低減しつつ、処理材の焼入
硬化性を向上させることができるという減圧下で焼入処
理することによる効果に加えて、以下に示す効果も奏す
る。つまり、本第1発明及び第2発明の方法によれば、
用いる焼入油の動粘度、焼入時の油温度及び油面圧を所
定条件とすることにより、蒸気膜段階で均一な蒸気膜を
安定に出現させることができ、熱応力歪みをより効果的
に防止することが可能となる。
As described above in detail, the first and second inventions of the present invention
The method of the invention has the following effects in addition to the effect of quenching treatment under reduced pressure, which can improve the quench-hardenability of a treated material while reducing thermal stress strain. That is, according to the methods of the first invention and the second invention,
By setting the kinematic viscosity of the quenching oil to be used, the oil temperature during quenching, and the oil surface pressure as predetermined conditions, a uniform vapor film can be stably appeared at the vapor film stage, and thermal stress strain is more effective. Can be prevented.

【0047】また、本第2発明の方法では、第1発明の
焼入条件を満たしつつ、さらに焼入時の油温度を160
℃以上とすることによるマルテンパー効果を奏するとと
もに、2段目の焼入処理することにより最初の焼入処理
の終了後における処理材の温度ばらつきを抑えることが
できるので、処理材の変態歪みをも極めて効果的に抑制
することが可能となる。
Further, in the method of the second aspect of the present invention, while satisfying the quenching conditions of the first aspect of the invention, the oil temperature during quenching is further increased to 160
A tempering effect of 2 ° C. or more can be obtained, and the second quenching treatment can suppress the temperature variation of the treated material after the completion of the first quenching treatment. It becomes possible to suppress very effectively.

【0048】さらに、本第1発明及び第2発明の方法に
おいて、軸対称部品を焼入処理する場合、軸対称部品を
その中心軸と焼入油面とが垂直となるように保持した状
態で焼入処理すれば、平行に保持した場合と比較して、
中心軸周りの全体歪みを低減できる。
Further, in the method of the first and second aspects of the present invention, when the axially symmetric part is subjected to quenching treatment, the axially symmetric part is held with its central axis and the quenching oil surface being perpendicular to each other. By quenching, compared to the case of holding in parallel,
The overall strain around the central axis can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】焼入油の100℃における動粘度と油面圧との
関係で、各焼入油について、処理材の各部位における最
大冷却速度の差が30℃/sec以下で、かつ最大冷却
速度を示す温度の差が50℃以下となったときの油面圧
の範囲を示す。
FIG. 1 shows the relationship between the kinematic viscosity of quenching oil at 100 ° C. and the oil surface pressure. The difference in the maximum cooling rate between the quenching oils at each part of the treated material is 30 ° C./sec or less, and the maximum cooling is achieved. The range of the oil surface pressure when the temperature difference indicating the speed is 50 ° C. or less is shown.

【図2】焼入油の100℃における動粘度と油温度との
関係で、各焼入油について、処理材の各部位における最
大冷却速度の差が30℃/sec以下で、かつ最大冷却
速度を示す温度の差が50℃以下となったときの油温度
の範囲を示す。
FIG. 2 shows the relationship between the kinematic viscosity of quenching oil at 100 ° C. and the oil temperature, and for each quenching oil, the difference in maximum cooling rate at each part of the treated material is 30 ° C./sec or less, and the maximum cooling rate is Indicates the range of oil temperature when the temperature difference is 50 ° C. or less.

【図3】試験No.1の冷却カーブの評価結果を示す線
図である。
FIG. 3 Test No. It is a diagram which shows the evaluation result of the cooling curve of No. 1.

【図4】試験No.2の冷却カーブの評価結果を示す線
図である。
FIG. 4 Test No. It is a diagram which shows the evaluation result of the cooling curve of 2.

【図5】試験No.3の冷却カーブの評価結果を示す線
図である。
FIG. 5: Test No. It is a diagram which shows the evaluation result of the cooling curve of FIG.

【図6】試験No.4の冷却カーブの評価結果を示す線
図である。
FIG. 6 Test No. It is a diagram which shows the evaluation result of the cooling curve of FIG.

【図7】試験No.5の冷却カーブの評価結果を示す線
図である。
FIG. 7: Test No. It is a diagram which shows the evaluation result of the cooling curve of FIG.

【図8】試験No.6の冷却カーブの評価結果を示す線
図である。
FIG. 8: Test No. It is a diagram which shows the evaluation result of the cooling curve of No. 6.

【図9】試験No.7の冷却カーブの評価結果を示す線
図である。
FIG. 9: Test No. It is a diagram which shows the evaluation result of the cooling curve of FIG.

【図10】試験No.8の冷却カーブの評価結果を示す
線図である。
FIG. 10: Test No. It is a diagram which shows the evaluation result of the cooling curve of No. 8.

【図11】油面圧と蒸気圧比P50/P100 との関係を示
す線図である。
FIG. 11 is a diagram showing a relationship between an oil surface pressure and a vapor pressure ratio P 50 / P 100 .

【図12】歯車部品について、Aねじれ角誤差とB圧力
角誤差とを説明する図である。
FIG. 12 is a diagram illustrating an A twist angle error and a B pressure angle error in a gear part.

【図13】歯車部品について、Aねじれ角誤差の変化量
を示す図である。
FIG. 13 is a diagram showing a change amount of an A twist angle error in a gear part.

【図14】歯車部品について、B圧力角誤差の変化量を
示す図である。
FIG. 14 is a diagram showing a change amount of a B pressure angle error for a gear part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 治樹 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 住友 誠 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 金沢 和雄 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 藤原 康之 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 福原 和人 大阪市北区茶屋町18番21号 豊崎ビル 日 本グリース株式会社内 (72)発明者 朝田 繁 大阪市北区茶屋町18番21号 豊崎ビル 日 本グリース株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Haruki Yamada 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Corporation (72) Inventor Makoto Sumitomo 1 Toyota Town, Toyota City, Aichi Prefecture, Toyota Motor Corporation ( 72) Inventor Kazuo Kanazawa 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Yasuyuki Fujiwara 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Kazuto Fukuhara Osaka 18-21 Chayacho, Kita-ku, Toyosaki Building Nihon Grease Co., Ltd. (72) Inventor Shigeru Asada 18-21 Chaya-cho, Kita-ku, Osaka Toyosaki Building Nihon Grease Co., Ltd

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 浸炭又は浸炭窒化処理した処理材を、1
00℃における動粘度:xが9〜35cStである焼入
油を用い、該焼入油の動粘度が3〜8cStとなる油温
度で、下限が60Torrで上限が式aで示される油面
圧範囲の下で、焼入処理することを特徴とする浸炭又は
浸炭窒化焼入れ方法。 式a:油面圧(Torr)=−12.5x+650,
(9≦x≦35)
1. A treated material that has been carburized or carbonitrided is 1
Kinematic viscosity at 00 ° C .: A quenching oil having x of 9 to 35 cSt is used, the oil temperature is such that the kinematic viscosity of the quenching oil is 3 to 8 cSt, the lower limit is 60 Torr, and the upper limit is the oil surface pressure represented by the formula a. A carburizing or carbonitriding quenching method characterized by performing quenching treatment in a range. Formula a: Oil surface pressure (Torr) =-12.5x + 650,
(9 ≦ x ≦ 35)
【請求項2】 浸炭又は浸炭窒化処理した処理材を、1
00℃における動粘度:xが9〜35cStである焼入
油を用い、該焼入油の動粘度が3〜8cStとなる油温
度で、かつ、160℃以上でマルテンサイト変態開始点
以下の油温度で、下限が60Torrで上限が式aで示
される油面圧範囲の下で、焼入処理した後、さらに少な
くとも160℃未満の温度の焼入れ剤を用いて2段目の
焼入処理することを特徴とする浸炭又は浸炭窒化焼入れ
方法。 式a:油面圧(Torr)=−12.5x+650,
(9≦x≦35)
2. A treated material which has been carburized or carbonitrided is 1
Kinematic viscosity at 00 ° C .: A quenching oil having x of 9 to 35 cSt is used, at an oil temperature at which the kinematic viscosity of the quenching oil is 3 to 8 cSt, and at 160 ° C. or higher and below the martensitic transformation start point. In the temperature range, the lower limit is 60 Torr and the upper limit is the oil surface pressure range represented by the formula a. After the quenching treatment, a second quenching treatment is further performed using a quenching agent having a temperature of at least less than 160 ° C. A carburizing or carbonitriding quenching method characterized by the above. Formula a: Oil surface pressure (Torr) =-12.5x + 650,
(9 ≦ x ≦ 35)
【請求項3】 前記処理材は軸対称部品であり、該軸対
称部品をその中心軸と焼入油面とが垂直となるように保
持した状態で前記焼入処理することを特徴とする請求項
1又は2記載の浸炭又は浸炭窒化焼入れ方法。
3. The quenching treatment is performed while the treatment material is an axially symmetric component, and the axially symmetric component is held in a state where the central axis of the axially symmetric component is perpendicular to the quenching oil surface. Item 3. A carburizing or carbonitriding quenching method according to Item 1 or 2.
JP33314793A 1993-01-20 1993-12-27 Carburizing or carbonitriding and quenching Expired - Lifetime JP3442447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33314793A JP3442447B2 (en) 1993-01-20 1993-12-27 Carburizing or carbonitriding and quenching

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-7759 1993-01-20
JP775993 1993-01-20
JP33314793A JP3442447B2 (en) 1993-01-20 1993-12-27 Carburizing or carbonitriding and quenching

Publications (2)

Publication Number Publication Date
JPH0754038A true JPH0754038A (en) 1995-02-28
JP3442447B2 JP3442447B2 (en) 2003-09-02

Family

ID=26342105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33314793A Expired - Lifetime JP3442447B2 (en) 1993-01-20 1993-12-27 Carburizing or carbonitriding and quenching

Country Status (1)

Country Link
JP (1) JP3442447B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316722A (en) * 2000-03-02 2001-11-16 Idemitsu Kosan Co Ltd Heat treatment method
WO2002090602A1 (en) * 2001-05-02 2002-11-14 Idemitsu Kosan Co., Ltd. Oil composition for heat treatment
JP2008045200A (en) * 2005-04-28 2008-02-28 Aisin Aw Co Ltd Method for cooling steel member
US7998282B2 (en) 2005-09-26 2011-08-16 Aisin Aw Co., Ltd. Heat treatment method of steel components, steel components and manufacture method of steel components
WO2012111527A1 (en) * 2011-02-14 2012-08-23 ヤマハ発動機株式会社 Steel part, single-cylinder internal combustion engine, saddled vehicle, and process for manufacture of steel part
FR2977897A1 (en) * 2011-07-15 2013-01-18 Hydromecanique & Frottement PROCESS FOR COOLING METALLIC PARTS HAVING FURTHER PROCESSED NITRURATION / NITROCARBURIZATION IN MELT SALT BATH, INSTALLATION FOR CARRYING OUT THE PROCESS AND PROCESSED METAL PARTS
DE112005000546B4 (en) * 2004-03-10 2015-01-29 Idemitsu Kosan Co., Ltd. Quenching oil for quenching under reduced pressure and quenching method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2771090C (en) 2009-08-07 2017-07-11 Swagelok Company Low temperature carburization under soft vacuum
US9617632B2 (en) 2012-01-20 2017-04-11 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001316722A (en) * 2000-03-02 2001-11-16 Idemitsu Kosan Co Ltd Heat treatment method
WO2002090602A1 (en) * 2001-05-02 2002-11-14 Idemitsu Kosan Co., Ltd. Oil composition for heat treatment
US7347927B2 (en) 2001-05-02 2008-03-25 Idemitsu Kosan Co., Ltd. Oil composition for heat treatment
DE112005000546B4 (en) * 2004-03-10 2015-01-29 Idemitsu Kosan Co., Ltd. Quenching oil for quenching under reduced pressure and quenching method
JP2008045200A (en) * 2005-04-28 2008-02-28 Aisin Aw Co Ltd Method for cooling steel member
US7998282B2 (en) 2005-09-26 2011-08-16 Aisin Aw Co., Ltd. Heat treatment method of steel components, steel components and manufacture method of steel components
JP2012184502A (en) * 2011-02-14 2012-09-27 Yamaha Motor Co Ltd Steel component, single-cylinder internal combustion engine, saddled vehicle, and method for manufacturing the steel component
WO2012111527A1 (en) * 2011-02-14 2012-08-23 ヤマハ発動機株式会社 Steel part, single-cylinder internal combustion engine, saddled vehicle, and process for manufacture of steel part
FR2977897A1 (en) * 2011-07-15 2013-01-18 Hydromecanique & Frottement PROCESS FOR COOLING METALLIC PARTS HAVING FURTHER PROCESSED NITRURATION / NITROCARBURIZATION IN MELT SALT BATH, INSTALLATION FOR CARRYING OUT THE PROCESS AND PROCESSED METAL PARTS
WO2013011228A1 (en) * 2011-07-15 2013-01-24 H.E.F. Method for cooling metal parts having undergone a nitriding/nitrocarburising treatment in a molten salt bath, unit for implementing said method and the treated metal parts
CN103732784A (en) * 2011-07-15 2014-04-16 H.E.F.公司 Method for cooling metal parts that have undergone a nitriding/nitrocarburizing treatment in a molten salt bath, apparatus for implementing said method and treated metal parts
JP2014520960A (en) * 2011-07-15 2014-08-25 アッシュ・ウー・エフ Method for cooling metal parts that have undergone nitriding / carbonitriding in a molten salt bath, unit for carrying out the method, and processed metal parts
RU2596539C2 (en) * 2011-07-15 2016-09-10 Х.Э.Ф. Method for cooling metal parts having undergone a nitriding/nitrocarburising treatment in a molten salt bath, unit for implementing said method and the treated metal parts
US9464346B2 (en) 2011-07-15 2016-10-11 H.E.F. Method for cooling metal parts having undergone a nitriding/nitrocarburising treatment in a molten salt bath, unit for implementing said method and the treated metal parts
TWI580793B (en) * 2011-07-15 2017-05-01 Hef公司 Method for cooling metal parts that have been subjected to a molten salt bath nitriding or nitrocarburizing treatment, the facility for implementing the method and the metal parts treated

Also Published As

Publication number Publication date
JP3442447B2 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP3387427B2 (en) Heat treatment method for steel
JPWO2009054530A1 (en) Carbonitriding induction-hardened steel parts with excellent surface pressure fatigue strength at high temperatures and methods for producing the same
JPH0288714A (en) Manufacture of steel member
JP5207805B2 (en) Steel parts with excellent bending fatigue strength and manufacturing method thereof
JP3442447B2 (en) Carburizing or carbonitriding and quenching
JP4354277B2 (en) Method for manufacturing carburized and quenched members
JP2007262505A (en) Heat treatment method of steel member
KR102463834B1 (en) Method of carbonitriding process for metal products
JP4837160B2 (en) Heat treatment method
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JP3436459B2 (en) Heat treatment method for steel
JP5408465B2 (en) Method of carburizing steel
JP5358875B2 (en) Steel member cooling method
US10894992B2 (en) Method for producing steel member
JP4152281B2 (en) Heat treatment method for bearing parts
JP2001020016A (en) Heat treatment method of metallic member
KR100681505B1 (en) Method for austempering heat treatment by controlling surfaces pressure of salt
JP3990917B2 (en) Oil quenching method for steel parts
JP2921235B2 (en) Carburizing and quenching method
JP2005023399A (en) Method for producing steel parts excellent in pitting fatigue strength and bending fatigue strength, and steel parts
JPH062030A (en) Quenching method
RU2052536C1 (en) Method for thermochemical treatment of steel products
JPH02156063A (en) Carburization hardening method
JP3196304B2 (en) Method of carburizing and quenching chromium-containing steel members
RU2058421C1 (en) Method for nitriding parts of structural alloyed steels

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110620

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120620

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term