JP5358875B2 - Steel member cooling method - Google Patents

Steel member cooling method Download PDF

Info

Publication number
JP5358875B2
JP5358875B2 JP2006257025A JP2006257025A JP5358875B2 JP 5358875 B2 JP5358875 B2 JP 5358875B2 JP 2006257025 A JP2006257025 A JP 2006257025A JP 2006257025 A JP2006257025 A JP 2006257025A JP 5358875 B2 JP5358875 B2 JP 5358875B2
Authority
JP
Japan
Prior art keywords
cooling
steel member
pressure
carburizing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006257025A
Other languages
Japanese (ja)
Other versions
JP2008045200A (en
Inventor
孝男 谷口
久雄 白井
巧治 大林
一晃 岡田
秀雄 蟹澤
修司 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2006257025A priority Critical patent/JP5358875B2/en
Publication of JP2008045200A publication Critical patent/JP2008045200A/en
Application granted granted Critical
Publication of JP5358875B2 publication Critical patent/JP5358875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for cooling a steel member capable of suppressing the development of strain after high temperature heat treatment more than the conventional method. <P>SOLUTION: In the method for cooling the steel member after performing the heat treatment, with which the steel member is raised to austenizing temperature or higher; in a prescribed period from the start of cooling to the steel member, a decompressed cooling which cools the atmospheric gas in the decompressed state at lower than the atmospheric pressure, is performed. The decompressed cooling is desirable to be performed while stirring the atmospheric gas in the decompressed state at lower than the atmospheric pressure. The decompressed cooling is desirable to be performed at least till wholly completing the transformation of the structure in the steel member. The decompressed state of the atmospheric gas in the decompressed cooling is desirable to be in the range of 0.1-0.65 bar. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、鋼部材を高温熱処理した後の冷却方法に関する。   The present invention relates to a cooling method after high-temperature heat treatment of a steel member.

例えば、歯車等の鋼部材は、靱性を維持しつつ表面硬度を高めるための処理として浸炭焼入れ処理が施されることが多い。浸炭焼入れ処理は、鋼部材をオーステナイト化温度以上に加熱した状態で表面の炭素濃度を増大させる浸炭処理を行った後に、焼入れ処理を行って芯部の靱性を確保すると共に、表面硬度を高める処理である。   For example, steel members such as gears are often subjected to carburizing and quenching as a process for increasing the surface hardness while maintaining toughness. The carburizing and quenching process is a process of increasing the surface hardness while securing the toughness of the core by performing a quenching process after performing a carburizing process to increase the surface carbon concentration in a state where the steel member is heated to the austenitizing temperature or higher. It is.

従来の浸炭焼入れ処理としては、出側に油焼入れ槽を備えた大型の熱処理炉を用いて、長時間浸炭処理した直後に油焼入れする方法がとられていた。焼入れ時の冷却剤を油とする理由は、水の場合よりも比較的緩やかな冷却が行えることによる歪みの抑制を目的としたものである。しかしながら、油焼入れを行っても、上記従来の方法で浸炭焼入れ処理を行った鋼部材は、歪みの発生の問題を解消することが困難であり、高い寸法精度が必要な部材については、浸炭焼入れ後に切削、研削、研磨等の工程が必要となっていた。   As a conventional carburizing and quenching process, an oil quenching method has been employed immediately after carburizing for a long time using a large heat treatment furnace equipped with an oil quenching tank on the outlet side. The reason for using oil as the coolant during quenching is to suppress distortion due to relatively gentle cooling compared to water. However, even with oil quenching, steel members that have been carburized and quenched by the above-described conventional methods are difficult to eliminate the problem of distortion, and carburizing and quenching is required for members that require high dimensional accuracy. Later, processes such as cutting, grinding and polishing were required.

また、従来の浸炭焼入れ処理は、上記のごとく大型の熱処理炉を用いた長時間の浸炭処理を必須とするために、処理時間が長く、消費エネルギーも多い。そのため、浸炭焼入れ処理に必要な処理時間の短縮および消費エネルギーの低減、さらには、浸炭焼入れ設備そのものの小型化が望まれていた。   In addition, the conventional carburizing and quenching process requires a long time carburizing process using a large heat treatment furnace as described above, and thus the processing time is long and the energy consumption is large. For this reason, it has been desired to shorten the processing time and energy consumption required for carburizing and quenching, and to further reduce the size of the carburizing and quenching equipment itself.

このような背景のもと、浸炭処理後の焼入れ処理として、部品全体に焼入れ処理を行うのではなく局部的に焼入れを行う高周波焼入れ方法(特許文献1参照)を適用することが考えられる。しかしながら、単純に高周波焼入れ処理を適用しただけでは、歪み発生を十分に抑制することができない。これは、浸炭処理直後、焼入れ前の冷却時に生じる歪みによる。   Under such a background, it is conceivable to apply an induction hardening method (refer to Patent Document 1) in which the entire part is quenched instead of being quenched as a quenching process after the carburizing process. However, the distortion generation cannot be sufficiently suppressed by simply applying the induction hardening process. This is due to distortion that occurs immediately after the carburizing process and during cooling before quenching.

特開平11−131133号公報Japanese Patent Laid-Open No. 11-131133

本発明は、かかる従来の問題点に鑑みてなされたもので、高温熱処理後の歪み発生を従来よりも抑制することができる鋼部材の冷却方法を提供しようとするものである。   This invention is made | formed in view of this conventional problem, and it aims at providing the cooling method of the steel member which can suppress generation | occurrence | production of the distortion after high temperature heat processing compared with the past.

本発明の第1の側面は、鋼部材に高周波焼入れ処理を施す前に行う冷却方法であって、上記鋼部材をオーステナイト化温度以上に昇温する熱処理を行った後に少なくともA1変態点以下の温度まで上記鋼部材を徐冷する冷却方法において、
上記鋼部材の冷却開始から所定の期間は、雰囲気ガスを大気圧よりも低く減圧した状態で徐冷する減圧冷却(以下、適宜、減圧徐冷ともいう)を行い、
該減圧冷却中には、上記鋼部材の温度がA1変態点以下となった後に上記雰囲気ガスの撹拌速度を高めた条件で冷却を行うことを特徴とする鋼部材の冷却方法にある。
本発明の第2の側面は、鋼部材に高周波焼入れ処理を施す前に行う冷却方法であって、上記鋼部材をオーステナイト化温度以上に昇温する熱処理を行った後に少なくともA1変態点以下の温度まで上記鋼部材を徐冷する冷却方法において、
上記鋼部材の冷却開始から所定の期間は、雰囲気ガスを大気圧よりも低く減圧した状態で徐冷する減圧冷却を行い、
該減圧冷却中には、上記鋼部材の温度がA1変態点以下となった後に上記雰囲気ガスの圧力を高めた条件で冷却を行うことを特徴とする鋼部材の冷却方法にある。
The first aspect of the present invention is a cooling method that is performed before subjecting a steel member to induction hardening , and after performing a heat treatment to raise the temperature of the steel member to an austenitizing temperature or higher , at least below the A1 transformation point. In the cooling method of gradually cooling the steel member to a temperature,
For a predetermined period from the start of cooling of the steel member, vacuum cooling is performed in which the atmospheric gas is gradually cooled in a state where the pressure is lower than atmospheric pressure (hereinafter also referred to as reduced pressure slow cooling as appropriate),
During the cooling under reduced pressure, the steel member cooling method is characterized in that the steel member is cooled under a condition in which the stirring speed of the atmospheric gas is increased after the temperature of the steel member becomes equal to or lower than the A1 transformation point.
The second aspect of the present invention is a cooling method performed before subjecting a steel member to induction hardening , and after performing a heat treatment to raise the temperature of the steel member to an austenitizing temperature or higher , at least below the A1 transformation point. In the cooling method of gradually cooling the steel member to a temperature,
For a predetermined period from the start of cooling of the steel member, vacuum cooling is performed in which the atmospheric gas is gradually cooled in a state where the pressure is lower than atmospheric pressure,
During the cooling under reduced pressure, the steel member cooling method is characterized in that cooling is performed under a condition in which the pressure of the atmospheric gas is increased after the temperature of the steel member becomes equal to or lower than the A1 transformation point.

本発明の冷却方法では、上記のごとく、鋼部材の冷却開始から所定の期間において、雰囲気ガスを大気圧よりも減圧した状態で冷却する減圧冷却を行う。これにより、雰囲気ガスを大気圧状態で冷却する場合に比べて、鋼部材の歪みの発生を抑制することができる。
すなわち、減圧状態で雰囲気ガスを撹拌する場合には、大気圧状態で雰囲気ガスを撹拌する場合に比べ、循環する雰囲気ガスの風上と風下での冷却効果の差を低減させることができる。つまり、通常大気圧で徐冷する場合、大気圧中の冷却ガスに被冷却部材に接触させただけで熱交換が進み被冷却部材の冷却が開始する。この場合、積極的なガス攪拌または熱によるガス対流により風上と風下が生じ、冷却速度差が生じる。冷却速度差により被冷却部材の温度差が生じ、熱処理歪を発生する。これに対し、冷却ガスを減圧状態とすることによって、風上・風下のいずれであっても、そもそも熱交換速度が遅く、冷却速度差が生じ難い。それ故、冷却ガスを減圧状態とする減圧徐冷を採用した場合には、比較的均一に冷却が進む為、熱処理歪の発生が少ない。また、撹拌を全くしない場合であっても、減圧状態の場合には、大気圧の場合よりも、温度の異なる雰囲気ガスの滞留による冷却効果の差を低減させることができる。
In the cooling method of the present invention, as described above, reduced-pressure cooling is performed in a predetermined period from the start of cooling of the steel member to cool the atmospheric gas in a state where the atmospheric gas is reduced from the atmospheric pressure. Thereby, compared with the case where atmospheric gas is cooled in an atmospheric pressure state, generation | occurrence | production of the distortion of a steel member can be suppressed.
That is, when the atmospheric gas is stirred in a reduced pressure state, the difference in the cooling effect between the upstream and the downstream of the circulating atmospheric gas can be reduced compared to the case where the atmospheric gas is stirred in an atmospheric pressure state. That is, when cooling slowly at normal atmospheric pressure, heat exchange proceeds and cooling of the member to be cooled starts just by bringing the member to be cooled into contact with the cooling gas in atmospheric pressure. In this case, the upwind and the downwind are caused by aggressive gas agitation or gas convection by heat, resulting in a difference in cooling rate. Due to the difference in cooling rate, a temperature difference of the member to be cooled occurs, and heat treatment distortion occurs. On the other hand, by setting the cooling gas in a reduced pressure state, the heat exchange rate is slow in the first place, and it is difficult for a difference in cooling rate to occur. Therefore, when reduced pressure gradual cooling in which the cooling gas is in a reduced pressure state is employed, the cooling proceeds relatively uniformly, so that heat treatment distortion is less likely to occur. Even in the case where stirring is not performed at all, in the reduced pressure state, the difference in cooling effect due to retention of atmospheric gases having different temperatures can be reduced as compared with the case of atmospheric pressure.

したがって、本発明の冷却方法を用いれば、歪みの発生を従来よりも抑制することができ、寸法精度の厳しい鋼部材の品質をさらに向上させることができる。
そして、この冷却方法は、後述する浸炭処理を前提とした熱処理に限らず、浸炭処理を行わない種々の熱処理の場合における冷却工程を実施する場合に適用することができる。
Therefore, if the cooling method of this invention is used, generation | occurrence | production of distortion can be suppressed rather than before and the quality of the steel member with severe dimensional accuracy can further be improved.
And this cooling method is applicable not only to the heat processing presupposing the carburizing process mentioned later but when implementing the cooling process in the case of the various heat processing which does not perform a carburizing process.

本発明の冷却方法を減圧冷却工程として利用した鋼部材の熱処理方法として、鋼部材を減圧下の浸炭ガス中において浸炭処理する真空浸炭工程と、
該真空浸炭工程を終えた上記鋼部材を、冷却ガス中において冷却するに当たり、該冷却ガスを大気圧よりも低く減圧した状態で冷却する減圧冷却工程と、
冷却された上記鋼部材の所望部分を高周波加熱した後に水焼入れする高周波焼き入れ工程とを含むことを特徴とする鋼部材の熱処理方法がある。
As a heat treatment method of a steel member using the cooling method of the present invention as a reduced pressure cooling step, a vacuum carburizing step of carburizing the steel member in a carburizing gas under reduced pressure,
In cooling the steel member that has finished the vacuum carburizing step in a cooling gas, a reduced pressure cooling step for cooling the cooling gas in a state where the cooling gas is reduced to a pressure lower than the atmospheric pressure;
There is a heat treatment method for a steel member, including a high-frequency quenching step in which a desired portion of the cooled steel member is induction-heated and then water-quenched.

上記鋼部材の熱処理方法は、浸炭処理工程として上記真空浸炭処理を採用すると共に、焼入れ処理工程として上記高周波焼入れ工程を採用し、かつ、両工程の間に本発明の冷却方法である上記減圧冷却工程を積極的に取り入れた方法である。これによって、従来と同等以上の浸炭焼入れ処理を施すことができると共に、歪み発生を大幅に抑制することができ、さらに従来よりも処理時間を短くすることも可能となる。   The heat treatment method for the steel member employs the vacuum carburization treatment as the carburization treatment step, the induction hardening step as the quenching treatment step, and the vacuum cooling that is the cooling method of the present invention between both steps. This is a method that actively incorporates processes. This makes it possible to perform carburizing and quenching that is equal to or higher than that of the prior art, greatly suppress the occurrence of distortion, and further shorten the processing time compared to the prior art.

即ち、浸炭処理工程としては、鋼部材を減圧下の浸炭ガス中において浸炭処理する真空浸炭工程を行う。この真空浸炭では、高温の浸炭炉の内部を減圧状態に維持しながら比較的少量の浸炭ガスによって浸炭処理を行うことができるので、従来よりも効率よく浸炭処理を行うことができる。   That is, as the carburizing process, a vacuum carburizing process is performed in which the steel member is carburized in a carburizing gas under reduced pressure. In this vacuum carburizing, the carburizing process can be performed with a relatively small amount of carburizing gas while maintaining the inside of the high-temperature carburizing furnace in a reduced pressure state, so that the carburizing process can be performed more efficiently than in the past.

また、焼入れ処理工程としては、鋼部材の所望部分を高周波加熱した後に水焼入れする高周波焼き入れ工程を行う。この高周波焼き入れ工程では、鋼部材全体を加熱するのではなく、高周波加熱の特性を活かして所望部分、つまり、焼入れにより強度向上させたい部分のみを急速に加熱し、その部分を焼入れする。これにより、従来のように鋼部材全体を焼入れ処理する場合よりも、焼入れ処理時の歪みの発生を大幅に抑制することができ、高周波焼き入れ工程前の形状を焼入れ後もほぼ維持することが可能となる。   Moreover, as a hardening process, the induction hardening process of water quenching is performed after the desired part of a steel member is induction-heated. In this induction hardening process, the entire steel member is not heated, but only the desired portion, that is, the portion whose strength is to be improved by quenching, is rapidly heated by utilizing the characteristics of induction heating, and the portion is quenched. As a result, it is possible to greatly suppress the occurrence of distortion during the quenching process compared to the case of quenching the entire steel member as in the prior art, and the shape before the induction quenching process can be substantially maintained even after quenching. It becomes possible.

また、この高周波焼入れ工程では、急冷の冷却剤として水を採用して水焼入れを行う。これにより、従来の油焼入れの場合に比べて冷却能を向上させることができ、焼入れによる強度向上効果を高めることが可能となる。また、この焼入れ能の向上が得られるので、上記真空浸炭工程における浸炭深さ等の浸炭処理の度合いを低下させたとしても、これを上記焼入れ能の向上によって補うことが可能となる。それ故、この高周波焼き入れ工程と上記真空浸炭工程とを組み合わせることによって、上記真空浸炭工程における浸炭処理時間を短縮してより効率化することも可能となる。   In this induction hardening process, water is used as a quenching coolant and water quenching is performed. Thereby, compared with the case of the conventional oil hardening, a cooling capability can be improved and it becomes possible to heighten the strength improvement effect by quenching. Moreover, since the improvement of this quenching ability is obtained, even if the degree of carburizing treatment such as the carburizing depth in the vacuum carburizing process is reduced, this can be compensated by the improvement of the quenching ability. Therefore, by combining the induction hardening process and the vacuum carburizing process, it is possible to shorten the carburizing time in the vacuum carburizing process and improve efficiency.

一方、たとえ歪み抑制効果の高い上記高周波焼入れ工程を採用しても、その工程の前の鋼部材そのものが歪んでいる場合には、高精度の鋼部材を得ることは困難となる。このような問題を解決するのが真空浸炭工程と高周波焼き入れ工程の間に行う上記減圧冷却工程となる本発明の冷却方法である。
即ち、上記減圧冷却工程、つまり本発明の冷却方法では、真空浸炭工程を終えた高温状態の上記鋼部材を、冷却ガス中において冷却するに当たり、該冷却ガスを大気圧よりも低く減圧した状態で冷却する。これにより、冷却ガスを大気圧状態で冷却する場合に比べて、鋼部材の歪みの発生を抑制することができる。
On the other hand, even if the induction hardening process having a high distortion suppressing effect is employed, if the steel member itself before the process is distorted, it is difficult to obtain a highly accurate steel member. Such a problem is solved by the cooling method of the present invention, which is the above-described reduced-pressure cooling step performed between the vacuum carburizing step and the induction hardening step.
That is, in the reduced pressure cooling step, that is, the cooling method of the present invention, in cooling the steel member in a high temperature state after the vacuum carburizing step in the cooling gas, the cooling gas is reduced in pressure below atmospheric pressure. Cooling. Thereby, compared with the case where cooling gas is cooled in an atmospheric pressure state, generation | occurrence | production of distortion of a steel member can be suppressed.

すなわち、冷却時に冷却ガスを撹拌する場合には、冷却ガスを減圧状態とすることによって、大気圧状態の場合に比べ、循環する冷却ガスの風上と風下での冷却速度の差を低減させることができる。つまり、通常大気圧で徐冷する場合、大気圧中の冷却ガスに被冷却部材に接触させただけで熱交換が進み被冷却部材の冷却が開始する。この場合、積極的なガス攪拌または熱によるガス対流により風上と風下が生じ、冷却速度差が生じる。冷却速度差により被冷却部材の温度差が生じ、熱処理歪を発生する。これに対し、冷却ガスを減圧状態とすることによって、風上・風下のいずれであっても、そもそも熱交換速度が遅く、冷却速度差が生じ難い。それ故、冷却ガスを減圧状態とする減圧徐冷を採用した場合には、比較的均一に冷却が進む為、熱処理歪の発生が少ない。また、撹拌を全くしない場合であっても、減圧状態の場合には、大気圧の場合よりも、温度の異なる冷却ガスの滞留による冷却速度の差を低減させることができる。   In other words, when the cooling gas is stirred during cooling, the cooling gas is reduced in pressure to reduce the difference between the cooling rate of the circulating cooling gas on the upstream side and the downstream side as compared to the atmospheric pressure state. Can do. That is, when cooling slowly at normal atmospheric pressure, heat exchange proceeds and cooling of the member to be cooled starts just by bringing the member to be cooled into contact with the cooling gas in atmospheric pressure. In this case, the upwind and the downwind are caused by aggressive gas agitation or gas convection due to heat, resulting in a difference in cooling rate. Due to the difference in cooling rate, a temperature difference of the member to be cooled occurs, and heat treatment distortion occurs. On the other hand, by setting the cooling gas in a reduced pressure state, the heat exchange rate is slow in the first place, and it is difficult for a difference in cooling rate to occur. Therefore, when reduced pressure gradual cooling in which the cooling gas is in a reduced pressure state is employed, the cooling proceeds relatively uniformly, so that heat treatment distortion is less likely to occur. Even in the case where stirring is not performed at all, in the reduced pressure state, the difference in cooling rate due to the residence of the cooling gas having different temperatures can be reduced as compared with the case of atmospheric pressure.

このような冷却ガスの減圧による効果を利用することにより、上記減圧冷却工程を施した鋼部材は、歪み発生を抑制することができ、高精度の寸法精度を維持したまま上記高周波焼き入れ工程に進めることができる。そして、これにより、上述した高周波焼き入れ工程によるメリットを活かして、焼入れ後の鋼部材も歪みの少ない高精度のものとすることができる。
したがって、上記熱処理方法を用いれば、歪みの発生を従来よりも大幅に抑制し、効率的に浸炭焼入れの効果を得ることができる。
By utilizing the effect of the reduced pressure of the cooling gas, the steel member subjected to the reduced pressure cooling process can suppress the occurrence of distortion, and the high frequency quenching process can be performed while maintaining high dimensional accuracy. Can proceed. And thereby, the steel member after hardening can also be made highly accurate with few distortions, utilizing the merit by the induction hardening process mentioned above.
Therefore, if the above heat treatment method is used, the occurrence of distortion can be significantly suppressed as compared with the conventional case, and the effect of carburizing and quenching can be obtained efficiently.

上述した真空浸炭工程は、上記のごとく、鋼部材を減圧下の浸炭ガス中において浸炭処理する工程である。この場合の減圧状態は、0.001〜0.1barの範囲とすることが好ましい。浸炭時の減圧が0.001bar未満の場合には真空度維持のために高価な設備が必要となるという問題が生じる。一方、0.1barを超える場合には浸炭中にススが発生し、浸炭濃度ムラが生じるという問題が生じるおそれがある。
また、上記浸炭ガスとしては、例えば、アセチレン、プロパン、ブタン、メタン、エチレン、エタン等を適用することができる。
また、上記高周波焼き入れ工程としては、公知の方法を適用できる。
The vacuum carburizing step described above is a step of carburizing the steel member in a carburizing gas under reduced pressure as described above. In this case, the reduced pressure state is preferably in the range of 0.001 to 0.1 bar. When the pressure reduction during carburization is less than 0.001 bar, there arises a problem that expensive equipment is required to maintain the degree of vacuum. On the other hand, when it exceeds 0.1 bar, soot is generated during carburizing, which may cause a problem of uneven carburization concentration.
As the carburizing gas, for example, acetylene, propane, butane, methane, ethylene, ethane, or the like can be applied.
Moreover, a well-known method is applicable as the said induction hardening process.

また、上記減圧冷却工程は、真空浸炭工程を終えた高温状態の鋼部材に対して行うが、必ずしも冷却完了まで続ける必要はない。少なくとも歪み発生にほとんど影響がない低温域に入ってからは、上記減圧冷却ではなく、減圧状態を解除した大気圧での冷却、あるいは積極的に大気圧以上に増圧した状態での冷却を行ってもよい。
また、上記減圧冷却中においても、減圧条件を途中で緩めたり、撹拌条件を変更したりすることも可能である。むしろ、歪み発生のおそれが減少する低温域においては、冷却効率を向上できる条件に変更することが工業的には好ましい。
Moreover, although the said pressure reduction cooling process is performed with respect to the steel member of the high temperature state which finished the vacuum carburizing process, it does not necessarily need to continue until completion of cooling. At least after entering a low temperature range where there is almost no effect on the occurrence of distortion, perform cooling at atmospheric pressure after releasing the reduced pressure state, or cooling in a state of positively increasing the pressure above atmospheric pressure instead of the above reduced pressure cooling. May be.
Further, even during the above-mentioned reduced-pressure cooling, it is possible to relax the reduced-pressure conditions in the middle or change the stirring conditions. Rather, it is industrially preferable to change the conditions so that the cooling efficiency can be improved in a low temperature range where the risk of occurrence of distortion is reduced.

上記減圧冷却の終了時期は、鋼部材の温度または冷却時間によって管理することが可能である。その最適な条件は、鋼部材の種類、一度に処理する量、冷却ガスの種類、冷却ガスの撹拌装置の能力等に応じて変化するので、実験によって管理値を求め、それに従うことが好ましい。
上記減圧冷却の終了時期を温度によって定める場合には、例えば、500℃以下の所定の温度になった時期とすることができる。少なくとも500℃まで歪み発生抑制可能な条件で徐冷すれば、上記の作用効果を十分に発揮することができる。
The end time of the reduced pressure cooling can be managed by the temperature of the steel member or the cooling time. The optimum conditions vary depending on the type of steel member, the amount to be processed at one time, the type of cooling gas, the capacity of the cooling gas agitator, etc. Therefore, it is preferable to obtain the control value by experiment and follow it.
When the end time of the above-mentioned decompression cooling is determined by temperature, for example, it can be set as a time when a predetermined temperature of 500 ° C. or lower is reached. If the cooling is performed under conditions that can suppress the occurrence of strain to at least 500 ° C., the above-described effects can be sufficiently exhibited.

また、上記減圧冷却は、減圧状態の冷却ガスを撹拌しなくても、大気圧状態の場合と比較すると歪み抑制効果が高くなるが、より好ましくは、適度な撹拌を行って、冷却ガスの滞留を防止するのがよい。
すなわち、上記減圧冷却は、上記冷却ガスを大気圧よりも低く減圧した状態で、該冷却ガスを撹拌しながら行うことが好ましいこれにより、よりいっそう歪み抑制効果を高めることができる。
Further, the above-mentioned reduced-pressure cooling has a higher distortion suppressing effect than that in the atmospheric pressure state without stirring the reduced-pressure cooling gas. It is good to prevent.
That is, the reduced pressure cooling is preferably performed while stirring the cooling gas in a state where the cooling gas is reduced to a pressure lower than the atmospheric pressure . Thereby, the distortion suppression effect can be further enhanced.

また、上記減圧冷却は、少なくとも、上記鋼部材の冷却による組織変態が始まる前からすべての組織変態が完了するまで行うことが好ましい即ち、鋼部材をオーステナイト状態から常温まで冷却する場合には、必ず組織変態を伴うが、その組織変態中に歪みが生じやすい。特に、組織変態中の冷却条件が部位によってばらつけば、歪みが出やすくなる。そのため、上記減圧冷却の期間中に鋼部材の組織変態を完了させることが好ましい。 Moreover, it is preferable to perform the said pressure reduction cooling until all the structure transformation is completed at least before the structure transformation by the cooling of the said steel member starts . That is, when a steel member is cooled from an austenite state to room temperature, it always involves a structural transformation, but distortion is likely to occur during the structural transformation. In particular, if the cooling conditions during the tissue transformation vary from site to site, distortion is likely to occur. For this reason, it is preferable to complete the structural transformation of the steel member during the period of the reduced-pressure cooling.

また、上記減圧冷却における上記冷却ガスの減圧状態は、0.1bar〜0.65barの範囲とすることが好ましい上記減圧状態を0.1bar未満にするには減圧装置が非常に高価となりすぎるという問題がある。一方、0.65barを超える場合には、冷却ガスの減圧による上記作用効果が少なくなるという問題がある。
そのため、上記減圧冷却における上記冷却ガスの減圧状態は、0.1bar〜0.3barの範囲とすることがより好ましい。特に0.3bar以下とすることによって、上記の減圧による効果を高めることができる。
Further, the reduced pressure state of the cooling gas in the reduced pressure cooling is preferably in the range of 0.1 bar to 0.65 bar . There is a problem that the decompression device becomes too expensive to make the decompression state less than 0.1 bar. On the other hand, when it exceeds 0.65 bar, there exists a problem that the said effect by the pressure_reduction | reduced_pressure of cooling gas decreases.
Therefore, the reduced pressure state of the cooling gas in the reduced pressure cooling is more preferably in the range of 0.1 bar to 0.3 bar. The effect by said pressure reduction can be heightened especially by setting it as 0.3 bar or less.

また、上記減圧冷却中には、上記鋼部材の温度がA1変態点以下となった後に上記冷却ガスの撹拌速度を高める条件で冷却を行うことができるすなわち、上記減圧冷却は、減圧状態で行うので、大気圧以上の状態で行う場合よりも冷却効率が低下する。そのため、上記鋼部材の温度が歪み発生に影響しないA1変態点以下の温度領域に入ってからは、冷却ガスの撹拌速度を高めることにより冷却効率を少しでも向上させることができる。最も容易な方法としては、減圧冷却工程の初期においては撹拌速度を0または最低限の速度に落としておき、その後、上記鋼部材の温度がA1変態点以下となった後に撹拌速度を高める方法がある。これにより、上記鋼部材の温度がA1変態点以下となった後に冷却能力が向上し、全体の冷却時間を短縮させることができる。また、撹拌速度を高める方法としては、一気に高める方法でもよいが、徐々に高める方法の方がより好ましい。 Moreover, during the said reduced pressure cooling, after the temperature of the said steel member becomes below A1 transformation point, it can cool on the conditions which raise the stirring speed of the said cooling gas . That is, since the reduced pressure cooling is performed in a reduced pressure state, the cooling efficiency is lower than that in a case where the reduced pressure cooling is performed at a pressure higher than atmospheric pressure. Therefore, after the temperature of the steel member enters the temperature range below the A1 transformation point that does not affect the occurrence of distortion, the cooling efficiency can be improved even slightly by increasing the stirring speed of the cooling gas. As the simplest method, there is a method in which the stirring speed is reduced to 0 or the minimum speed at the initial stage of the vacuum cooling process, and then the stirring speed is increased after the temperature of the steel member becomes equal to or lower than the A1 transformation point. is there. Thereby, after the temperature of the said steel member becomes below A1 transformation point, a cooling capability improves and the whole cooling time can be shortened. Moreover, as a method of increasing the stirring speed, a method of increasing at a stretch may be used, but a method of gradually increasing is more preferable.

また、上記減圧冷却中には、上記鋼部材の温度がA1変態点以下となった後に上記冷却ガスの圧力を高める条件で冷却を行うこともできるこの場合には、上記鋼部材の温度が歪み発生に影響しないA1変態点以下の温度領域に入ってから、冷却ガスの圧力増大によって冷却速度を高めることができ、全体の冷却時間を短縮することができる。もちろん、上記の撹拌速度を高める方法と合わせて冷却ガスの圧力を高める方法をとることもできる。
また、この減圧冷却中の圧力増大は、あくまでも大気圧よりも低い範囲で行う。また、圧力増大は、一気に行ってもよいが、徐々に行う方がより好ましい。なお、上述したように、減圧冷却を完了させた後に、大気圧あるいはそれ以上に増圧することは妨げられない。
Further, during the reduced-pressure cooling, the cooling can be performed under the condition of increasing the pressure of the cooling gas after the temperature of the steel member becomes equal to or lower than the A1 transformation point . In this case, the cooling rate can be increased by increasing the pressure of the cooling gas after the temperature of the steel member enters the temperature region below the A1 transformation point at which the strain generation is not affected, and the overall cooling time is shortened. Can do. Of course, a method of increasing the pressure of the cooling gas can be taken together with the method of increasing the stirring speed.
Further, the pressure increase during the reduced pressure cooling is performed in a range lower than the atmospheric pressure. Moreover, although the pressure increase may be performed at a stretch, it is more preferable to gradually increase the pressure. As described above, it is not hindered to increase the pressure to atmospheric pressure or higher after completing the reduced-pressure cooling.

また、上記減圧冷却では、上記冷却ガスとして、上記真空浸炭工程における上記浸炭ガスと異なる様々な冷却ガスを用いることができる。特に、上記冷却ガスは窒素ガス(N2ガス)であることが好ましい。この場合には、鋼部材の酸化を抑制しつつ冷却することができる。
もちろん、上記冷却ガスとしては、鋼部材に求められる品質に応じて、公知の様々なガスを選択することができる。
In the reduced pressure cooling, various cooling gases different from the carburizing gas in the vacuum carburizing step can be used as the cooling gas. In particular, the cooling gas is preferably nitrogen gas (N 2 gas). In this case, it can cool, suppressing the oxidation of a steel member.
Of course, as the cooling gas, various known gases can be selected according to the quality required for the steel member.

また、上記鋼部材は、上記真空浸炭工程及び上記減圧冷却工程後にバナジウム炭窒化物の析出強化もしくはベイナイト組織の変態強化により、機械的強度もしくは硬度を得る非調質鋼であることが好ましい。上記のようないわゆる非調質鋼が、上記熱処理方法の適用による効果を有効に発揮させることができる。   The steel member is preferably a non-tempered steel that obtains mechanical strength or hardness by precipitation strengthening of vanadium carbonitride or transformation strengthening of bainite structure after the vacuum carburizing step and the vacuum cooling step. The so-called non-tempered steel as described above can effectively exert the effect by the application of the heat treatment method.

また、上記鋼部材は、上記真空浸炭工程および上記減圧冷却工程後において、浸炭の及ばない部材内部の硬度が、ビッカース硬度Hvの値において50〜150上昇する非調質鋼であることが好ましい。即ち、上記真空浸炭工程および上記減圧冷却工程を行う前における上記鋼部材のビッカース硬度と、これらの工程を行った後の上記鋼部材のビッカース硬度との差が、50〜150Hvとなる非調質鋼を用いることが好ましい。これにより、従来の浸炭用の鋼を従来の方法で浸炭焼入れした場合と同等以上の強度特性を容易に得ることができる。   Moreover, it is preferable that the steel member is a non-tempered steel whose hardness inside the member that does not reach carburization increases by 50 to 150 in the value of Vickers hardness Hv after the vacuum carburizing step and the vacuum cooling step. That is, the non-tempering in which the difference between the Vickers hardness of the steel member before performing the vacuum carburizing step and the vacuum cooling step and the Vickers hardness of the steel member after performing these steps is 50 to 150 Hv It is preferable to use steel. Thereby, the strength characteristics equivalent to or higher than those obtained when carburizing and quenching conventional steel for carburizing by a conventional method can be easily obtained.

上記非調質鋼としては、具体的には次のような化学成分を有する鋼を適用できる。
すなわち、上記鋼部材の化学成分が、質量%において、C:0.1〜0.6%、Si:0.1〜0.6%、Mn:0.5〜3.0%、Cr:0.1〜2.0%、Mo:0〜0.3%、V:0〜0.3%、S:0〜0.05%を含有し、残部がFe及び不可避的不純物よりなる非調質鋼(以下、基本鋼という)を用いることができる。
Specifically, steel having the following chemical components can be applied as the non-heat treated steel.
That is, the chemical composition of the steel member is, in mass%, C: 0.1 to 0.6%, Si: 0.1 to 0.6%, Mn: 0.5 to 3.0%, Cr: 0 0.1 to 2.0%, Mo: 0 to 0.3%, V: 0 to 0.3%, S: 0 to 0.05%, with the balance being Fe and inevitable impurities Steel (hereinafter referred to as basic steel) can be used.

C含有量は、上記のごとく0.1〜0.6%とすることが好ましい。C含有量が0.1%未満の場合には十分な炭窒化物が生成しないという問題があり、一方、0.6%を超える場合には、硬度が高くなり、切削加工性が低下するという問題がある。   The C content is preferably 0.1 to 0.6% as described above. When the C content is less than 0.1%, there is a problem that sufficient carbonitrides are not generated. On the other hand, when the C content exceeds 0.6%, the hardness increases and the machinability decreases. There's a problem.

また、Si含有量は、0.1〜0.6%とすることが好ましい。Siは焼入層の焼戻軟化抵抗を向上させることにより、歯車のピッチング寿命を向上させる硬化がある。Si含有量が0.1%未満の場合にはその硬化があまり得られない。一方、浸炭性を劣化させることを防止するためにはSi添加量を抑制することが好ましく、その観点からSi含有量を0.6%以下とすることが好ましい。   Moreover, it is preferable that Si content shall be 0.1-0.6%. Si has hardening which improves the pitching life of a gear by improving the temper softening resistance of the hardened layer. When the Si content is less than 0.1%, the curing is not obtained so much. On the other hand, in order to prevent the carburizing property from being deteriorated, it is preferable to suppress the amount of Si added, and from this viewpoint, the Si content is preferably set to 0.6% or less.

また、Mn含有量は、0.5〜3.0%とすることが好ましい。Mnは焼入性を向上させるのに有効な元素である。その効果はMn含有量を0.5%以上とすることで得ることができる。一方、Mn含有量が3.0%を超える場合には芯部組織にマルテンサイト組織が生じて歪みが大きくなるおそれがある。   Moreover, it is preferable that Mn content shall be 0.5 to 3.0%. Mn is an element effective for improving hardenability. The effect can be obtained by setting the Mn content to 0.5% or more. On the other hand, when the Mn content exceeds 3.0%, a martensite structure is generated in the core structure, and there is a possibility that the strain becomes large.

また、Cr含有量は、0.1〜2.0%とすることが好ましい。Cr含有量を0.1%以上とすることによって焼入層の焼戻軟化抵抗を向上させることができる。一方、Cr含有量が2.0%を超える場合には、Cr系炭化物の生成による靱性劣化が生じるおそれがある。   Further, the Cr content is preferably 0.1 to 2.0%. By setting the Cr content to 0.1% or more, the temper softening resistance of the quenched layer can be improved. On the other hand, when the Cr content exceeds 2.0%, the toughness may deteriorate due to the formation of Cr-based carbides.

また、Mo含有量は、0〜0.3%とすることが好ましい。Moは添加しなくてもよい。添加すれば焼入層を強靱化して曲げ疲労強度を向上する硬化がある。その硬化を得るには、0.01%以上とすることが好ましい。一方、Mo含有量が0.3%を超えて添加してもその効果が飽和するため、上限は0.3%とすることが好ましい。   Further, the Mo content is preferably 0 to 0.3%. Mo may not be added. If added, the hardened layer is toughened and the bending fatigue strength is improved. In order to obtain the curing, the content is preferably 0.01% or more. On the other hand, even if the Mo content exceeds 0.3%, the effect is saturated, so the upper limit is preferably 0.3%.

また、上記V含有量は0〜0.3%とすることが好ましい。Vは添加しなくてもよいが、添加すれば炭窒化物の析出効果もしくはベイナイト組織の変態強化効果が得られ鋼を強化する。この効果を発揮するには0.01%の添加が必要である。一方、V含有量が0.3%を超えてもその効果が飽和して経済性を損ねるおそれがある。   The V content is preferably 0 to 0.3%. V does not need to be added, but if it is added, the effect of precipitation of carbonitride or the effect of transformation strengthening of the bainite structure is obtained and the steel is strengthened. In order to exert this effect, addition of 0.01% is necessary. On the other hand, even if the V content exceeds 0.3%, the effect may be saturated and the economy may be impaired.

また、上記S含有量は0〜0.05%とすることが好ましい。Sは含有させなくてもよいが、被削性を向上させる場合には0.005%以上含有させることが好ましい。しかし、0.05%を超えると鍛造性を阻害するため、0.05%以下とすることが好ましい。   The S content is preferably 0 to 0.05%. S may not be included, but 0.005% or more is preferable for improving machinability. However, if it exceeds 0.05%, forgeability is impaired, so 0.05% or less is preferable.

さらに好ましい非調質鋼としては、上記鋼部材の化学成分が、質量%において、C:0.22〜0.26%、Si:0.15〜0.35%、Mn:1.40〜1.60%、Cr:0.40〜0.60%、Mo:0〜0.3%、V:0〜0.3%、S:0〜0.05%を含有し、残部がFe及び不可避的不純物よりなる非調質鋼がある。   As a more preferable non-tempered steel, the chemical composition of the steel member is, in mass%, C: 0.22 to 0.26%, Si: 0.15 to 0.35%, Mn: 1.40 to 1 .60%, Cr: 0.40 to 0.60%, Mo: 0 to 0.3%, V: 0 to 0.3%, S: 0 to 0.05%, the balance being Fe and inevitable There are non-tempered steels made of mechanical impurities.

また、上記鋼部材の化学成分が、質量%において、C:0.11〜0.15%、Si:0.15〜0.35%、Mn:2.10〜2.30%、Cr:0.90〜1.10%、Mo:0〜0.3%、V:0〜0.3%、S:0〜0.05%を含有し、残部がFe及び不可避的不純物よりなる非調質鋼も好適に適用できる。   Further, the chemical composition of the steel member is, in mass%, C: 0.11 to 0.15%, Si: 0.15 to 0.35%, Mn: 2.10 to 2.30%, Cr: 0 .90 to 1.10%, Mo: 0 to 0.3%, V: 0 to 0.3%, S: 0 to 0.05%, with the balance being Fe and inevitable impurities Steel can also be suitably applied.

さらに、上記鋼部材の化学成分が、質量%において、C:0.2〜0.3%、Si:0.2〜0.6%、Mn:1.4〜2.0%、Cr:0.2〜0.6%、Mo:0〜0.4%、V:0.05〜0.25%、S:0〜0.05%を含有し、残部がFe及び不可避的不純物よりなる非調質鋼を用いることもできる。   Furthermore, the chemical composition of the steel member is, in mass%, C: 0.2 to 0.3%, Si: 0.2 to 0.6%, Mn: 1.4 to 2.0%, Cr: 0 2 to 0.6%, Mo: 0 to 0.4%, V: 0.05 to 0.25%, S: 0 to 0.05%, with the balance being Fe and inevitable impurities Tempered steel can also be used.

また、上記鋼部材の化学成分が、質量%において、C:0.2〜0.3%、Si:0.4〜0.6%、Mn:1.4〜2.0%、Cr:0.4〜0.6%、Mo:0〜0.1%、V:0.05〜0.25%、S:0〜0.05%を含有し、残部がFe及び不可避的不純物よりなる非調質鋼を用いることも好ましい。   Further, the chemical composition of the steel member is, in mass%, C: 0.2 to 0.3%, Si: 0.4 to 0.6%, Mn: 1.4 to 2.0%, Cr: 0 .4 to 0.6%, Mo: 0 to 0.1%, V: 0.05 to 0.25%, S: 0 to 0.05%, with the balance being Fe and inevitable impurities It is also preferable to use tempered steel.

また、上記鋼部材の化学成分が、質量%において、C:0.2〜0.3%、Si:0.4〜0.6%、Mn:1.4〜2.0%、Cr:0.4〜0.6%、Mo:0.3〜0.4%、V:0.05〜0.25%、S:0〜0.05%を含有し、残部がFe及び不可避的不純物よりなる非調質鋼を用いることも好ましい。   Further, the chemical composition of the steel member is, in mass%, C: 0.2 to 0.3%, Si: 0.4 to 0.6%, Mn: 1.4 to 2.0%, Cr: 0 4 to 0.6%, Mo: 0.3 to 0.4%, V: 0.05 to 0.25%, S: 0 to 0.05%, the balance being Fe and inevitable impurities It is also preferable to use non-tempered steel.

これらの非調質鋼は、上述した基本鋼の化学成分をさらに限定したものであり、各元素の添加による効果がより明確に発揮されるようにしたものである。
即ち、C含有量は、0.22〜0.26%、0.11〜0.15%、又は0.2〜0.3%の範囲にさらに限定することが好ましい。これらの範囲に限定することによって、芯部の強度の確保と靱性及び切削性の低下の抑制効果をより一層確実に得ることができる。
These non-tempered steels further limit the chemical components of the basic steel described above, so that the effects of the addition of each element are more clearly exhibited.
That is, the C content is preferably further limited to a range of 0.22 to 0.26%, 0.11 to 0.15%, or 0.2 to 0.3%. By limiting to these ranges, the strength of the core portion can be ensured, and the effect of suppressing the deterioration of toughness and machinability can be obtained more reliably.

また、Siは、0.15〜0.35%、または0.2〜0.6%、さらには0.4〜0.6%の範囲に限定することがより好ましい。これらの範囲に限定することによって、焼入層の焼戻軟化抵抗の向上効果の確保と浸炭性低下の抑制効果をより一層確実に得ることができる。   Si is more preferably limited to a range of 0.15 to 0.35%, or 0.2 to 0.6%, and more preferably 0.4 to 0.6%. By limiting to these ranges, the effect of improving the temper softening resistance of the hardened layer and the effect of suppressing the deterioration of carburization can be obtained more reliably.

また、Mnは、1.40〜1.60%、2.10〜2.30%、又は1.4〜2.0%の範囲にさらに限定することが好ましい。これらの範囲に限定することによって、焼入性及び焼戻軟化抵抗の向上の確保とマルテンサイト組織生成の抑制効果をより一層確実に得ることができる。   Further, Mn is preferably further limited to a range of 1.40 to 1.60%, 2.10 to 2.30%, or 1.4 to 2.0%. By limiting to these ranges, it is possible to more reliably obtain improvement in hardenability and temper softening resistance and suppress martensite structure formation.

また、Crは、0.40〜0.60%、0.90〜1.00%、又は0.2〜〜0.6%、さらには0.4〜0.6%の範囲に限定することが好ましい。これらの範囲に限定することによって、焼入性及び焼戻軟化抵抗の向上の確保とCr系炭化物の生成による靱性劣化の抑制効果をより一層確実に得ることができる。   Moreover, Cr is limited to the range of 0.40 to 0.60%, 0.90 to 1.00%, or 0.2 to 0.6%, and further 0.4 to 0.6%. Is preferred. By limiting to these ranges, it is possible to more reliably obtain an effect of ensuring improvement in hardenability and temper softening resistance and suppressing toughness deterioration due to generation of Cr-based carbides.

また、Mo含有量は、0〜0.3%、さらに0〜0.1%、または0.3〜0.4%に限定することが好ましい。この範囲に限定することによって、経済性の低下をより一層抑制することができる。   Further, the Mo content is preferably limited to 0 to 0.3%, more preferably 0 to 0.1%, or 0.3 to 0.4%. By limiting to this range, it is possible to further suppress the economic deterioration.

また、V含有量は、0.01〜0.3%、さらに0.05〜0.25%に限定することが好ましい。この範囲に限定することによって、組織の微細化効果をより一層確実に得ることができる。   Further, the V content is preferably limited to 0.01 to 0.3%, more preferably 0.05 to 0.25%. By limiting to this range, the effect of refining the structure can be obtained more reliably.

なお、上述した非調質鋼に代えて、例えば機械構造用鋼として使用されるS15C、S20C、S35C、S45C、SCM415、SCM420、SCM440、SCr415、SCr420、SCr440、SNCM220等のJIS規格鋼を適用することができることは言うまでもない。   In place of the above-mentioned non-heat treated steel, for example, JIS standard steel such as S15C, S20C, S35C, S45C, SCM415, SCM420, SCM440, SCr415, SCr420, SCr440, SNCM220, etc., used as steel for machine structure is applied. It goes without saying that it can be done.

また、上記鋼部材が自動車の駆動系部品である場合には、特に上記熱処理方法が有効である。自動車の駆動系部品としては、例えば自動変速機における歯車、リング状部材、その他の部品があるが、これらは部分的な高強度特性と高い寸法精度の両方が求められる部品である。そのため、上述した優れた熱処理方法を適用することによって、製造工程の合理化、低コスト化を図ることができると共に、製品の高品質化を図ることができる。   Further, when the steel member is an automobile drive system component, the heat treatment method is particularly effective. As drive system parts for automobiles, for example, there are gears, ring-shaped members, and other parts in an automatic transmission. These parts are required to have both high partial strength characteristics and high dimensional accuracy. Therefore, by applying the above-described excellent heat treatment method, the manufacturing process can be rationalized and the cost can be reduced, and the quality of the product can be improved.

次に、鋼部材の発明として、上記本発明の鋼部材の熱処理方法による熱処理を施してなり、最表面の残留応力が200〜1500MPaの圧縮残留応力となっていることを特徴とする鋼部材がある。この鋼部材は、上記の優れた熱処理方法を用いて作製することにより、強度特性および寸法精度に優れたものとなる。そして、特に、高周波加熱した後に水焼入れしているので、通常の浸炭焼入れの場合よりも上記範囲の高い圧縮残留応力を得ることができる。そして、この200〜1500MPaという高い圧縮残留応力により、曲げ疲労強度等が従来よりも優れたものとなる。   Next, as a steel member invention, there is provided a steel member characterized in that the steel member according to the present invention is subjected to a heat treatment by the heat treatment method, and the residual stress on the outermost surface is a compressive residual stress of 200 to 1500 MPa. is there. This steel member is excellent in strength characteristics and dimensional accuracy by being manufactured using the above-described excellent heat treatment method. In particular, since water quenching is performed after induction heating, a compressive residual stress in the above range can be obtained as compared with the case of normal carburizing quenching. And by this high compressive residual stress of 200-1500 MPa, the bending fatigue strength and the like become superior to the conventional one.

(実施例1)
本実施例に係る鋼部材の冷却方法を減圧冷却工程として適用した熱処理方法につき、図1〜図6を用いて説明する。
本例では、自動変速機の部品として用いられるリング状の鋼部材8(リングギア)について、本実施例の熱処理方法(本実施例方法)および比較のための従来の浸炭焼入れ方法(比較方法)を実施して、歪み発生状況等を評価した。本例において処理する鋼部材8は、図3に示すごとく、筒状の本体部80の内周面に歯面81を備えたものであり、歯面の硬度が高く、また真円度が非常に重要な部品である。
Example 1
A heat treatment method in which the steel member cooling method according to the present embodiment is applied as a reduced pressure cooling step will be described with reference to FIGS.
In this example, a ring-shaped steel member 8 which is used as part of an automatic transmission for (ring gear), a conventional carburizing method (comparative method) for the heat treatment method (the inventive method) and a comparison of this example To evaluate the occurrence of distortion. As shown in FIG. 3, the steel member 8 to be treated in this example is provided with a tooth surface 81 on the inner peripheral surface of the cylindrical main body 80, and the tooth surface has a high hardness and a very roundness. It is an important part.

まず、図1に示すごとく、本実施例方法におけるヒートパターンAと、比較方法におけるヒートパターンBとを比較する。同図は、横軸に時間を、縦軸に温度を取り、浸炭焼入れ処理中における鋼部材の温度をヒートパターンA、Bとして示したものである。 First, as shown in FIG. 1, the heat pattern A in the method of this embodiment is compared with the heat pattern B in the comparison method. In the figure, time is plotted on the horizontal axis and temperature is plotted on the vertical axis, and the temperature of the steel member during the carburizing and quenching process is shown as heat patterns A and B.

本実施例方法は、同図のヒートパターンAより知られるように、浸炭温度である950℃まで加熱した後、その温度で49分間保持して真空浸炭工程a1を行い、その後、40分かけて150℃以下の温度まで減圧冷却する減圧冷却工程a2を行い、その後、再度焼入れ温度である950℃まで高周波加熱により急速加熱した後水焼入れする高周波焼き入れ工程a3を行うというものである。 As is known from the heat pattern A in the figure, this example method is heated to 950 ° C. which is a carburizing temperature, and then held at that temperature for 49 minutes to perform the vacuum carburizing step a1, and then over 40 minutes. A vacuum cooling step a2 is performed in which the vacuum is cooled to a temperature of 150 ° C. or lower, followed by a high-frequency quenching step a3 in which rapid quenching is performed by high-frequency heating to a quenching temperature of 950 ° C., followed by water quenching.

一方、比較方法は、同図のヒートパターンBより知られるように、浸炭温度である950℃まで加熱した後、その温度で220分間保持して通常の浸炭工程b1を行い、その後焼入れ温度である850℃に保持した後、油焼入れする焼入れ工程b2を行うというものである。また、比較方法では、油焼入れ時に付着した冷却剤(油)を洗い落とす後洗工程b3と残留応力除去も目的とした焼き戻し工程b4を行うが、その際にも若干の昇温を行う。なお、後述する歪み評価、強度評価、および残留応力評価においては、この焼き戻し工程b4を行った後の状態で行った。   On the other hand, as is known from heat pattern B in the figure, the comparative method is heated to 950 ° C., which is a carburizing temperature, and held at that temperature for 220 minutes to perform a normal carburizing step b1, and then the quenching temperature. After holding at 850 ° C., a quenching step b2 of oil quenching is performed. Further, in the comparative method, the post-washing step b3 for washing off the coolant (oil) adhering during oil quenching and the tempering step b4 for the purpose of removing residual stress are performed. It should be noted that the strain evaluation, strength evaluation, and residual stress evaluation described later were performed in a state after the tempering step b4.

次に、本実施例方法を実施するための熱処理設備5と、比較方法を実施するための浸炭焼入れ設備9について、簡単に説明する。
図2(a)に示すごとく、本実施例方法を実施するための熱処理設備5は、浸炭焼入れ処理前に鋼部材を洗浄するための前洗槽51と、加熱室521、真空浸炭室522、および減圧冷却室523を備えた真空浸炭徐冷装置52と、高周波焼き入れ機53と、欠陥を検査するための磁気探傷装置54とを備えたものである。
Next, the heat treatment equipment 5 for carrying out the present embodiment method and the carburizing and quenching equipment 9 for carrying out the comparison method will be briefly described.
As shown in FIG. 2 (a), the heat treatment equipment 5 for carrying out the method of this embodiment includes a pre-washing tank 51 for washing steel members before carburizing and quenching, a heating chamber 521, a vacuum carburizing chamber 522, And a vacuum carburizing and slow cooling device 52 provided with a reduced pressure cooling chamber 523, an induction hardening machine 53, and a magnetic flaw detector 54 for inspecting defects.

図2(b)に示すごとく、比較方法を実施するための浸炭焼入れ設備9は、浸炭焼入れ処理前に鋼部材を洗浄するための前洗槽91と、加熱・浸炭・拡散を行うための浸炭炉921および焼入れ油槽922とを備えた長大な浸炭炉92と、浸炭焼入れ処理後に鋼部材を洗浄するための後洗槽93と、焼き戻し処理を行うための焼き戻し炉94とを備えたものである。   As shown in FIG. 2 (b), the carburizing and quenching equipment 9 for carrying out the comparison method includes a pre-washing tank 91 for cleaning steel members before carburizing and quenching, and carburizing for heating, carburizing and diffusing. A long carburizing furnace 92 provided with a furnace 921 and a quenching oil tank 922, a post-washing tank 93 for cleaning steel members after the carburizing and quenching process, and a tempering furnace 94 for performing a tempering process It is.

次に、上記各設備を用いて、それぞれ上記鋼部材8の浸炭焼入れ処理を行い、強度特性、歪み発生状況、および残留応力発生状況についての比較を行った。
本実施例方法では、図1のヒートパターンAにも示すごとく、鋼部材を減圧下の浸炭ガス中において浸炭処理する真空浸炭工程a1と、該真空浸炭工程を終えた上記鋼部材を、冷却ガス中において冷却するに当たり、該冷却ガスを大気圧よりも低く減圧した状態で冷却する減圧冷却工程a2と、冷却された上記鋼部材の所望部分を高周波加熱した後に水焼入れする高周波焼き入れ工程a3とを行った。
Next, carburizing and quenching of the steel member 8 was performed using each of the above facilities, and the strength characteristics, the strain occurrence state, and the residual stress occurrence state were compared.
In this embodiment method, as shown in the heat pattern A of FIG. 1, the vacuum carburizing step a1 in which the steel member is carburized in a carburizing gas under reduced pressure, and the steel member after the vacuum carburizing step is used as a cooling gas. A vacuum cooling step a2 for cooling the cooling gas in a state where the cooling gas is reduced to a pressure lower than atmospheric pressure, and an induction quenching step a3 for quenching with water after high-frequency heating of a desired portion of the cooled steel member, Went.

上記真空浸炭工程a1は、浸炭および拡散処理として950℃×49分の処理行ったが、その際の浸炭室の真空度は0.001bar、浸炭ガスの種類はアセチレンという条件とした。上記減圧冷却工程a2は、冷却ガスは窒素(N2)、減圧状態は0.2bar、冷却ガスの撹拌は有り、減圧冷却工程の期間は浸炭処理直後のオーステナイト化温度以上の温度から150℃以下の温度となるまで、冷却速度は10℃/分という条件とした。高周波焼き入れ工程a3は、高周波加熱によって鋼部材8の内周部である歯面81を、950℃に加熱し、その後水を吹き付けて水焼入れするという条件で行った。 The vacuum carburizing step a1 was performed at 950 ° C. for 49 minutes as carburizing and diffusion treatment, and the degree of vacuum in the carburizing chamber at that time was 0.001 bar and the type of carburizing gas was acetylene. In the reduced pressure cooling step a2, the cooling gas is nitrogen (N 2 ), the reduced pressure state is 0.2 bar, the cooling gas is stirred, and the duration of the reduced pressure cooling step is 150 ° C. or lower from the temperature above the austenitizing temperature immediately after the carburizing treatment. The cooling rate was 10 ° C./min until the temperature reached Induction hardening process a3 was performed on the conditions that the tooth surface 81 which is the inner peripheral part of the steel member 8 is heated to 950 ° C. by high frequency heating, and then water quenching is performed by spraying water.

比較方法では、図1のヒートパターンBからも知られるように、浸炭温度である950℃まで加熱した後、その温度で220分間保持して通常の浸炭工程b1を行い、その後焼入れ温度である850℃に保持した後、油焼入れする焼入れ工程b2を行うというものである。なお、比較例では、焼入れ工程b2後に後洗工程を実施し、更に、後洗工程b3後に焼き戻し工程b4を実施した。   In the comparative method, as is known from the heat pattern B of FIG. 1, after heating to 950 ° C. which is a carburizing temperature, the carburizing temperature is maintained at that temperature for 220 minutes to perform the normal carburizing step b1, and then the quenching temperature is 850. After holding at ° C., a quenching step b2 of oil quenching is performed. In the comparative example, a post-washing step was performed after the quenching step b2, and a tempering step b4 was further performed after the post-washing step b3.

また、上記比較方法では、浸炭に適したSCM420(JIS)を素材として用いた。
上記本実施例方法では、上記の浸炭に適したSCM420(JIS)に代えて、化学成分が、質量%において、C:0.22〜0.26%、Si:0.15〜0.35%、Mn:1.40〜1.60%、Cr:0.40〜0.60%、Mo:0〜0.3%、V:0〜0.3%、S:0〜0.05%を含有し、残部がFe及び不可避的不純物よりなる非調質鋼、より具体的には、質量%において、C:0.23%、Si:0.22%、Mn:1.45%、Cr:0.46%、Mo:0.17%、V:0.09%、S:0.016%、残部がFe及び不可避的不純物よりなる非調質鋼(試料E1)を素材として用いた。
Moreover, in the said comparison method, SCM420 (JIS) suitable for carburizing was used as a raw material.
In the method of the present embodiment , instead of SCM420 (JIS) suitable for carburization, the chemical components are C: 0.22 to 0.26%, Si: 0.15 to 0.35% in mass%. Mn: 1.40 to 1.60%, Cr: 0.40 to 0.60%, Mo: 0 to 0.3%, V: 0 to 0.3%, S: 0 to 0.05% Non-tempered steel containing Fe and unavoidable impurities, more specifically, in mass%, C: 0.23%, Si: 0.22%, Mn: 1.45%, Cr: Non-heat treated steel (sample E1) comprising 0.46%, Mo: 0.17%, V: 0.09%, S: 0.016%, the balance consisting of Fe and inevitable impurities was used as a raw material.

浸炭焼入れ処理を終えた鋼部材に対して、歯車の歯底815(図3)部分の表面からの距離に対するビッカース硬さ(Hv)を測定し、これを強度評価とした。測定結果を図4に示す。同図は横軸に表面からの距離(mm)を、縦軸にビッカース硬さ(Hv)をとったものである。そして、本実施例方法により処理した鋼部材の結果を符号E1、比較方法により処理した鋼部材の結果を符号C1として示した。 The Vickers hardness (Hv) with respect to the distance from the surface of the tooth bottom 815 (FIG. 3) portion of the gear was measured for the steel member that had undergone the carburizing and quenching treatment, and this was used as the strength evaluation. The measurement results are shown in FIG. In the figure, the horizontal axis represents the distance (mm) from the surface, and the vertical axis represents the Vickers hardness (Hv). And the result of the steel member processed by the present Example method was shown as code | symbol E1, and the result of the steel member processed by the comparison method was shown as code | symbol C1.

同図から知られるように、本実施例方法(E1)の場合は、内部に行くにつれて比較方法(C1)の場合よりも若干硬度が低くなるが、最表面ではむしろ比較方法よりも高い硬度が得られた。これらの結果から、本実施例方法を適用することにより、従来と同等以上の優れた熱処理を施すことができることがわかる。
また、本実施例方法(E1)の場合には、従来と同様の浸炭処理に適した材料を用いた場合には、浸炭時間を大幅に短くした分だけ浸炭深さが浅くなることによる強度低下が考えられる。しかし、本例のように、適用材料の変更と、水焼入れの採用によって、これらの強度的な問題を解消することができた。また、内部強度の従来品並までの向上は、素材の成分改良によって解決できる可能性がある。
As can be seen from the figure, in the case of the method (E1) of this example, the hardness becomes slightly lower as compared with the case of the comparative method (C1) as it goes inside, but the hardness on the outermost surface is rather higher than that of the comparative method. Obtained. From these results, it can be seen that by applying the method of this example , an excellent heat treatment equivalent to or better than the conventional one can be performed.
Further, in the case of the present embodiment method (E1), when a material suitable for carburizing treatment similar to the conventional one is used, the strength is reduced due to the carburizing depth becoming shallower by the amount of carburizing time significantly shortened. Can be considered. However, as in this example, these strength problems could be solved by changing the applied material and adopting water quenching. Moreover, there is a possibility that the improvement of the internal strength to the level of the conventional product can be solved by improving the ingredients of the material.

次に、浸炭焼入れ処理を終えた鋼部材の寸法を測定することにより歪み発生量を比較した。
寸法の測定は、「BBD」と「BBDだ円」の2種類を行った。「BBD」は、図3に示すごとく、歯面81の谷部分に接触するように所定の直径の鋼球88を配置し、対向する硬球88同士の内径寸法を測定して得られた寸法である。そして、この測定を軸方向3箇所(同図(b)のa位置、b位置及びc位置)において、全周に対して行い、その測定値の平均値(Ave)、最大値(Max)、最小値(Min)を求めた。
次に、軸方向の各測定位置における上記「BBD」の最大値と最小値の差を「BBDだ円(μm)」として求めた。そして、上記と同様に、その測定値の平均値(Ave)、最大値(Max)、最小値(Min)を求めた。
Next, the amount of distortion was compared by measuring the dimensions of the steel members that had been carburized and quenched.
Two types of measurement were performed: “BBD” and “BBD ellipse”. As shown in FIG. 3, “BBD” is a dimension obtained by arranging steel balls 88 having a predetermined diameter so as to be in contact with the valley portion of the tooth surface 81 and measuring the inner diameter of the opposing hard balls 88. is there. Then, this measurement is performed on the entire circumference at three positions in the axial direction (a position, b position and c position in FIG. 5B), and the average value (Ave), maximum value (Max) of the measured values, The minimum value (Min) was determined.
Next, the difference between the maximum value and the minimum value of “BBD” at each measurement position in the axial direction was determined as “BBD ellipse (μm)”. Then, in the same manner as described above, the average value (Ave), maximum value (Max), and minimum value (Min) of the measured values were obtained.

図5には、上記の「BBD」と「BBDだ円」の測定結果を示す。同図左側の欄には、本実施例方法の結果として、真空浸炭前、真空浸炭+減圧冷却後、高周波焼き入れ後の3つのタイミングにおける結果を示した。また、同図右側の欄には、比較方法の結果として、浸炭焼入れ前、浸炭焼入れ後2つのタイミングにおける結果を示した。また、各欄に示した表記は、左から図3(b)におけるa位置、b位置、c位置の3箇所についてそれぞれ最大値、最小値平均値をプロットして最大値と最小値を太線で縦に結んだものである。また、3箇所の位置の平均値は細線により結んだ。
同図より知られるごとく、本実施例方法を採用すれば、焼入れ後においても歪み発生が抑制されることがわかる。また、その歪み発生の抑制効果は真空浸炭後の減圧徐冷によってすでに得られていることもわかる。
これに対し、比較例は、浸炭焼入れ処理によって大きな歪みが発生していることがわかる。
FIG. 5 shows the measurement results of the above “BBD” and “BBD ellipse”. In the column on the left side of the figure, the results at the three timings before vacuum carburizing, after vacuum carburizing + vacuum cooling, and after induction hardening are shown as the results of the method of this example . In the right column of the figure, as a result of the comparison method, results at two timings before carburizing and quenching are shown. In addition, the notation shown in each column is that the maximum value and the minimum value average value are plotted for the three positions a, b, and c in FIG. It is tied vertically. Moreover, the average value of the position of 3 places was tied with the thin line.
As can be seen from the figure, if the method of this embodiment is adopted, the occurrence of distortion is suppressed even after quenching. It can also be seen that the effect of suppressing the occurrence of distortion has already been obtained by reduced-pressure slow cooling after vacuum carburization.
In contrast, in the comparative example, it can be seen that large distortion occurs due to the carburizing and quenching process.

次に、浸炭焼入れ処理を終えた鋼部材の残留応力を測定し、比較した。測定結果を図6に示す。同図は、横軸に歯底815の表面からの距離をとり、縦軸に残留応力を、引張を+、圧縮を−としてとった。
本実施例方法(E1)の場合には、少なくとも最表面から圧縮残留応力状態となっており、一方、比較方法(C1)の場合には、最表面が引張残留応力となっていることがわかる。最表面の残留応力が引張応力である場合には、様々な問題が生じるおそれがあるので、例えば熱処理あるいは表面改質処理を行って引張残留応力を緩和することが必要となる。したがって、本実施例の方法は、そのような残留応力を改善するための処理を特に設ける必要がないという効果も得られることがわかる。
Next, the residual stress of the steel member which finished the carburizing quenching process was measured and compared. The measurement results are shown in FIG. In this figure, the horizontal axis is the distance from the surface of the tooth bottom 815, the vertical axis is the residual stress, the tension is +, and the compression is-.
In the case of the method (E1) of the present example, the compressive residual stress state is at least from the outermost surface, whereas in the case of the comparative method (C1), it is understood that the outermost surface is the tensile residual stress. . When the residual stress on the outermost surface is a tensile stress, various problems may occur. For example, it is necessary to reduce the tensile residual stress by performing a heat treatment or a surface modification treatment. Therefore, it can be seen that the method of the present embodiment also provides an effect that it is not necessary to provide such a process for improving the residual stress.

(実施例2)
本例では、上記実施例1における減圧冷却工程について、さらに複数種類の方法(試験1〜3)を実施し、歪みの発生状況を把握した。
(Example 2)
In this example, a plurality of types of methods (Tests 1 to 3) were further performed for the reduced pressure cooling process in Example 1 to grasp the occurrence of distortion.

試験1:
試験1では、図7に示すごとく、上記鋼部材をオーステナイト化温度以上の950℃に昇温する浸炭処理を行った後に、鋼部材を150℃以下まで冷却する。
図1は、横軸に時間、縦軸に温度を取り、鋼部材の温度履歴を示したものである(後述する図8〜図10も同様である)。上記熱処理は、同図A点〜B点の期間が熱処理の期間であり、B点以降が冷却の期間である。そして、試験1では、鋼部材の冷却開始から冷却完了まで、冷却ガスを大気圧よりも低く減圧した状態で冷却する減圧冷却を行った。
減圧冷却の条件は、冷却ガスとしてN2を用い、0.3bar一定の減圧状態とし、冷却ガスの撹拌を行う条件とした。撹拌速度は、冷却に用いた装置における撹拌ファンを定格回転数の550rpm一定で運転して得られる条件とした。
Test 1:
In Test 1, as shown in FIG. 7, the steel member is cooled to 150 ° C. or lower after performing the carburizing process for raising the temperature of the steel member to 950 ° C. above the austenitizing temperature.
FIG. 1 shows time history on the horizontal axis and temperature on the vertical axis, and shows the temperature history of the steel member (the same applies to FIGS. 8 to 10 described later). In the heat treatment, the period from point A to point B is the heat treatment period, and the period after point B is the cooling period. In Test 1, from the start of cooling of the steel member to the completion of cooling, reduced-pressure cooling was performed in which the cooling gas was cooled in a state where the pressure was lower than atmospheric pressure.
The vacuum cooling conditions were such that N 2 was used as the cooling gas, the pressure was kept constant at 0.3 bar, and the cooling gas was stirred. The stirring speed was a condition obtained by operating the stirring fan in the apparatus used for cooling at a constant rotational speed of 550 rpm.

試験2:
試験2では、図8に示すごとく、鋼部材の冷却開始から冷却完了まで、冷却ガスを大気圧よりも低く減圧した状態で冷却する減圧冷却を行ったが、詳細条件を試験1と変えた。すなわち、減圧冷却の条件として、冷却ガスとしてN2を用い、0.3bar一定の減圧状態とした点は試験1と同様であるが、撹拌速度の条件を、最初は撹拌ファンの回転数を250rpm一定に落として運転し、その後、15分後(図8のC点)に550rpm一定に変更するという条件とした。その他は試験1と同様である。
Test 2:
In Test 2, as shown in FIG. 8, the cooling gas was cooled in a state where the cooling gas was reduced to a pressure lower than the atmospheric pressure from the start of cooling of the steel member to the completion of cooling, but the detailed conditions were changed to Test 1. That is, as the conditions for reduced pressure cooling, N 2 was used as the cooling gas and the pressure was reduced to a constant pressure of 0.3 bar, which was the same as in Test 1, but the stirring speed conditions were initially set at 250 rpm. The operation was performed with a constant drop, and then the condition was changed to 550 rpm constant after 15 minutes (point C in FIG. 8). Others are the same as those in Test 1.

試験3:
試験3では、図9に示すごとく、鋼部材の冷却開始から冷却完了まで、冷却ガスを大気圧よりも低く減圧した状態で冷却する減圧冷却を行ったが、詳細条件を試験1と変えた。すなわち、減圧冷却の条件として、冷却ガスとしてN2を用い、その減圧状態を0.65bar一定とした。その上で、最初は冷却ガスの撹拌を行わず、その後、15分後(図9のC点)に550rpm一定に変更するという条件とした。その他は試験1と同様である。
Test 3:
In Test 3, as shown in FIG. 9, the cooling gas was cooled under reduced pressure below atmospheric pressure from the start of cooling of the steel member to the completion of cooling, but the detailed conditions were changed to Test 1. In other words, as a condition for cooling under reduced pressure, N 2 was used as a cooling gas, and the reduced pressure state was kept constant at 0.65 bar. In addition, the cooling gas was not initially stirred, and then the condition was changed to a constant 550 rpm after 15 minutes (point C in FIG. 9). Others are the same as those in Test 1.

試験4(比較試験):
試験4では、図10に示すごとく、鋼部材の冷却開始から冷却完了まで、冷却ガスを大気圧のままの状態で冷却した。すなわち、冷却条件は、冷却ガスの圧力は1.0bar(大気圧)一定とし、撹拌条件は、撹拌ファンの回転数を定格より落とした250rpm一定とした。冷却前の熱処理条件は試験1と同様である。
Test 4 (Comparative test):
In Test 4, as shown in FIG. 10, the cooling gas was cooled at atmospheric pressure from the start of cooling of the steel member to the completion of cooling. In other words, the cooling conditions were such that the pressure of the cooling gas was constant at 1.0 bar (atmospheric pressure), and the stirring conditions were constant at 250 rpm with the rotational speed of the stirring fan being reduced from the rating. The heat treatment conditions before cooling are the same as in Test 1.

上記の試験1〜3と試験4の冷却方法によって複数の鋼部材8であるリングギアを処理し、その寸法を測定することにより歪み発生量を比較した。
本例で処理したリングギア8は、図3に示すごとく、実施例1と同様に、リング状の本体部80の内周面に歯面81を備えたものであり、その真円度が非常に重要である。そこで、軸方向3箇所(同図(b)のa位置、b位置及びc位置)において、全周のBBD寸法を測定し、それぞれ最大値と最小値の差を「BBDだ円(μm)」として求めた。上記BBD寸法は、図3に示すごとく、歯面81の谷部分に接触するように所定の直径の鋼球88を配置し、対向する硬球88同士の内径寸法を測定して得られた寸法である。そして、このBBDだ円の測定を処理したすべての鋼部材について行い、得られたBBDだ円の平均値(Ave)、最大値(Max)、最小値(Min)を求め、図11中に数値及びグラフを示した。なお、処理した鋼部材の数(n)は、それぞれ、10個〜25個である。
The ring gears that are the plurality of steel members 8 were processed by the cooling methods of Tests 1 to 3 and Test 4 described above, and the amounts of distortion were compared by measuring the dimensions.
As shown in FIG. 3, the ring gear 8 processed in this example is provided with a tooth surface 81 on the inner peripheral surface of the ring-shaped main body 80 as in the first embodiment, and its roundness is extremely high. Is important to. Therefore, the BBD dimensions of the entire circumference were measured at three locations in the axial direction (position a, position b and position c in FIG. 5B), and the difference between the maximum value and the minimum value was determined as “BBD ellipse (μm)”. As sought. As shown in FIG. 3, the BBD dimension is a dimension obtained by arranging steel balls 88 having a predetermined diameter so as to contact the valley portion of the tooth surface 81 and measuring the inner diameter dimensions of the opposing hard balls 88. is there. Then, the measurement of the BBD ellipse is performed for all the steel members processed, and the average value (Ave), maximum value (Max), and minimum value (Min) of the obtained BBD ellipse are obtained. And a graph is shown. In addition, the number (n) of the processed steel member is 10-25 pieces, respectively.

図11より知られるごとく、試験1〜3の場合には、いずれの場合もBBDだ円の値が試験4(比較試験)よりも小さく、歪み抑制効果が非常に高いことがわかる。   As can be seen from FIG. 11, in each of Tests 1 to 3, the value of the BBD ellipse is smaller than that of Test 4 (Comparative Test), indicating that the distortion suppression effect is very high.

(実施例3)
本例は、図12に示すごとく、実施例1と同様の歪み評価を、リング状本体部70の外周側に歯面71を有するリング状の鋼部材7(デフリングギア)に対して行った。この鋼部材7も、自動車の自動変速機に用いられる部品である。
本例で行う本実施例方法および比較方法は、いずれも実施例1と同じ方法とし、素材の材質も実施例1と同じとした。
(Example 3)
In this example, as shown in FIG. 12, the same strain evaluation as that of Example 1 was performed on the ring-shaped steel member 7 (diff ring gear) having the tooth surface 71 on the outer peripheral side of the ring-shaped main body 70. This steel member 7 is also a part used for an automatic transmission of an automobile.
The method of this example and the comparison method performed in this example are the same as those of Example 1, and the material of the material is the same as that of Example 1.

歪みの評価は、鋼部材7の軸方向3箇所(a位置、b位置、c位置)における「OBD」を測定して評価した。「OBD」は、各軸方向位置において、歯面71の谷部分に接触するように所定の直径の鋼球を配置し、対向する硬球同士の外径寸法を測定して得られた寸法である。そして、この測定を周方向4箇所において行い、その平均値を評価値として用いた。得られたOBDの平均値(Ave)、最大値(Max)、最小値(Min)を求め、図12中に数値及びグラフを示した。なお、処理した鋼部材の数(n)は、それぞれ、10個〜25個である。また、本実施例方法においては、真空浸炭前、真空浸炭+減圧冷却後、高周波焼入れ後の3つのタイミングにおいて評価した。比較方法においては、浸炭焼入れ前、浸炭焼入れ後の2つのタイミングにおいて評価した。 The strain was evaluated by measuring “OBD” at three locations (a position, b position, and c position) in the axial direction of the steel member 7. “OBD” is a dimension obtained by disposing steel balls having a predetermined diameter so as to be in contact with the valley portion of the tooth surface 71 at each axial position and measuring the outer diameter of the opposing hard balls. . And this measurement was performed in four places of the circumferential direction, and the average value was used as an evaluation value. The average value (Ave), maximum value (Max), and minimum value (Min) of the obtained OBD were determined, and the numerical values and graphs are shown in FIG. In addition, the number (n) of the processed steel member is 10-25 pieces, respectively. Further, in this example method, evaluation was performed at three timings before vacuum carburizing, after vacuum carburizing + cooling under reduced pressure, and after induction hardening. In the comparative method, evaluation was performed at two timings before carburizing and quenching and after carburizing and quenching.

図12から知られるように、本実施例方法を採用すれば、焼入れ後においても歪み発生が抑制されることがわかる。
これに対し、比較方法の場合には、浸炭焼入れ処理によって大きな歪みが発生していることがわかる。
As can be seen from FIG. 12, if the method of this embodiment is employed, the occurrence of distortion is suppressed even after quenching.
On the other hand, in the case of the comparative method, it can be seen that a large distortion is generated by the carburizing and quenching process.

(実施例4)
本例では、実施例1における素材(試料E1)に代えて、化学成分が異なる複数の素材(試料E2〜E4)を用いた歯車(図3)に対して本実施例方法を実施した。
試料E2は、化学成分が、質量%において、C:0.11〜0.15%、Si:0.15〜0.35%、Mn:2.10〜2.30%、Cr:0.90〜1.10%、Mo:0〜0.3%、V:0〜0.3%、S:0〜0.05%を含有し、残部がFe及び不可避的不純物よりなる非調質鋼、より具体的には、質量%において、C:0.13%、Si:0.24%、Mn:2.20%、Cr:1.00%、Mo:0.18%、V:0.07%、S:0.018%を含有し、残部がFe及び不可避的不純物よりなる非調質鋼である。
Example 4
In this example, the method of this example was performed on a gear (FIG. 3) using a plurality of materials (samples E2 to E4) having different chemical components instead of the material (sample E1) in Example 1.
Sample E2 has chemical components in mass% of C: 0.11 to 0.15%, Si: 0.15 to 0.35%, Mn: 2.10 to 2.30%, Cr: 0.90. -1.10%, Mo: 0-0.3%, V: 0-0.3%, S: 0-0.05%, the balance of non-tempered steel consisting of Fe and inevitable impurities, More specifically, in mass%, C: 0.13%, Si: 0.24%, Mn: 2.20%, Cr: 1.00%, Mo: 0.18%, V: 0.07 %, S: 0.018%, the balance being non-tempered steel consisting of Fe and inevitable impurities.

試料E3は、化学組成が質量%において、C:0.2〜0.3%、Si:0.4〜0.6%、Mn:1.4〜2.0%、Cr:0.4〜0.6%、Mo:0〜0.1%、V:0.05〜0.25%、S:0〜0.5%を含有し、残部がFe及び不可避的不純物となるよう開発された開発鋼、より具体的には、質量%において、C:24%、Si:0.5%、Mn:1.8%、Cr:0.5%、Mo:0.03%、V:0.12%、S:0.016%を含有し、残部がFe及び不可避的不純物よりなる開発鋼である。   Sample E3 has a chemical composition of mass%, C: 0.2 to 0.3%, Si: 0.4 to 0.6%, Mn: 1.4 to 2.0%, Cr: 0.4 to 0.6%, Mo: 0 to 0.1%, V: 0.05 to 0.25%, S: 0 to 0.5%, the balance was developed to be Fe and inevitable impurities The developed steel, more specifically, in mass%, C: 24%, Si: 0.5%, Mn: 1.8%, Cr: 0.5%, Mo: 0.03%, V: 0.00. It is a developed steel containing 12%, S: 0.016%, the balance being Fe and inevitable impurities.

試料E4は、化学成分が質量%において、C:0.2〜0.3%、Si:0.4〜0.6%、Mn:1.4〜2.0%、Cr:0.4〜0.6%、Mo:0.3〜0.4%、V:0.05〜0.25%、S:0〜0.5%を含有し、残部がFe及び不可避的不純物となるよう開発された開発鋼、より具体的には、質量%において、C:0.24%、Si:0.5%、Mn:1.4%、Cr:0.5%、Mo:0.37%、V:0.12%、S:0.016%を含有し、残部がFe及び不可避的不純物よりなる開発鋼である。
そして、実施例1と同様に、浸炭焼入れ処理を終えて得られた歯車(鋼部材)の歯底815部分の表面からの距離に対するビッカース硬さ(Hv)を測定した。
Sample E4 has a chemical composition of mass%, C: 0.2 to 0.3%, Si: 0.4 to 0.6%, Mn: 1.4 to 2.0%, Cr: 0.4 to Developed to contain 0.6%, Mo: 0.3-0.4%, V: 0.05-0.25%, S: 0-0.5%, the balance being Fe and inevitable impurities Developed steel, more specifically, in mass%, C: 0.24%, Si: 0.5%, Mn: 1.4%, Cr: 0.5%, Mo: 0.37%, It is a developed steel containing V: 0.12%, S: 0.016%, the balance being Fe and inevitable impurities.
And like Example 1, the Vickers hardness (Hv) with respect to the distance from the surface of the tooth root 815 part of the gear (steel member) obtained after finishing the carburizing and quenching process was measured.

その測定結果図14に示す。同図は横軸に表面からの距離(mm)を、縦軸にビッカース硬さ(Hv)をとったものである。そして、試料E2よりなる歯車の結果を符号E2、試料E3よりなる歯車の結果を符号E3として示した。また、参考のために、実施例1における実施例E1と比較例C1も合わせて記載した。 The measurement results are shown in FIG. In the figure, the horizontal axis represents the distance (mm) from the surface, and the vertical axis represents the Vickers hardness (Hv). The result of the gear made of the sample E2 is shown as E2, and the result of the gear made of the sample E3 is shown as E3. For reference, Example E1 and Comparative Example C1 in Example 1 are also shown.

同図から知られるように、本実施例方法を適用することによって、材質を上記の試料E2、E3、E4に変更しても、従来と同等以上の優れた熱処理を施すことができることがわかる。 As can be seen from the figure, by applying the method of this embodiment , even if the material is changed to the above-mentioned samples E2, E3, E4, it is possible to perform an excellent heat treatment equivalent to or better than the conventional one.

(実施例5)
本例では、図15に示すごとく、実施例1において示した減圧徐冷工程a2として採用可能な減圧徐冷パターンについての例を説明する。
図15は、横軸に時間をとり、第1縦軸に冷却ファンの回転数(a)を、第2縦軸に被処理材の温度(b)を、第3縦軸に冷却ガスの圧力(c)をとったものである。
(Example 5)
In this example, as shown in FIG. 15, an example of a reduced pressure slow cooling pattern that can be adopted as the reduced pressure slow cooling step a <b> 2 shown in Example 1 will be described.
FIG. 15 shows time on the horizontal axis, the rotational speed (a) of the cooling fan on the first vertical axis, the temperature (b) of the material to be treated on the second vertical axis, and the pressure of the cooling gas on the third vertical axis. (C) is taken.

同図より知られるごとく、本例では、最初の第1冷却ステップP31の間は、冷却ファンの回転数を低めに設定すると共に、冷却ガス圧を大気圧よりも十分に低い減圧状態として減圧徐冷を行った。   As can be seen from the figure, in this example, during the first first cooling step P31, the rotation speed of the cooling fan is set to be low, and the cooling gas pressure is set to a reduced pressure state sufficiently lower than the atmospheric pressure to gradually reduce the pressure. Cooled.

次に、第2冷却ステップP32の間は、冷却ファンの回転数を定格よりは十分低いものの上記第1冷却ステップP31の場合よりも若干高くし、さらに、冷却ガス圧も大気圧よりも低いものの上記第1冷却ステップP31の場合よりも若干高い状態に設定し、第1冷却ステップP31よりは若干冷却能力が高い減圧徐冷を行った。本例では、この第2冷却ステップP32の間において、被処理材の温度がいわゆるA1変態点を迎えるようにした。   Next, during the second cooling step P32, although the rotational speed of the cooling fan is sufficiently lower than the rating, it is slightly higher than in the first cooling step P31, and the cooling gas pressure is also lower than the atmospheric pressure. The first cooling step P31 was set to a slightly higher state than that in the first cooling step P31, and reduced pressure gradual cooling having a slightly higher cooling capacity than the first cooling step P31 was performed. In this example, the temperature of the material to be processed reaches the so-called A1 transformation point during the second cooling step P32.

次に、第3冷却ステップP33の間は、冷却ファンの回転数および冷却ガス圧を十分に高めた急冷条件とした。   Next, during the third cooling step P33, rapid cooling conditions were set in which the number of rotations of the cooling fan and the cooling gas pressure were sufficiently increased.

以上のように、最初の被処理材が最も高温状態にある第1冷却ステップP31では、冷却ガスの圧力および循環速度(冷却ファンの回転数)を低くする減圧徐冷を行うことによって、冷却歪みの発生を確実に抑えることができる。次に、ある程度被処理材の冷却が進んだ第2冷却ステップP32では、冷却歪みの発生の可能性が低下しているので、若干冷却能力を高めるものの、鋼のA1変態点を超える際の組織変態に伴う歪み発生を抑制すべく、減圧徐冷条件は維持する。これにより、A1変態点を超える際の歪み発生を極力抑えることができる。その後、第3冷却ステップP33では、冷却ガスの圧力および循環速度を高めることによって冷却能力を最大とすることができる。   As described above, in the first cooling step P31 in which the first material to be treated is in the highest temperature state, the cooling distortion is reduced by performing reduced pressure gradual cooling that lowers the pressure of the cooling gas and the circulation speed (the number of rotations of the cooling fan). Can be reliably suppressed. Next, in the second cooling step P32 in which the material to be treated has been cooled to some extent, the possibility of occurrence of cooling distortion is reduced, so the cooling capacity is slightly increased, but the structure when exceeding the A1 transformation point of steel. The reduced pressure and slow cooling conditions are maintained in order to suppress the occurrence of distortion associated with transformation. Thereby, generation | occurrence | production of the distortion at the time of exceeding A1 transformation point can be suppressed as much as possible. Thereafter, in the third cooling step P33, the cooling capacity can be maximized by increasing the pressure and the circulation speed of the cooling gas.

実施例1における、(a)本実施例方法のヒートパターンを示す説明図、(b)比較方法のヒートパターンを示す説明図。In Example 1, (a) Explanatory drawing which shows the heat pattern of this example method, (b) Explanatory drawing which shows the heat pattern of a comparison method. 実施例1における、(a)本実施例方法を実施する熱処理設備、(b)比較方法を実施する浸炭焼入れ設備を示す説明図。In Example 1, (a) The heat processing equipment which implements this Example method, (b) Explanatory drawing which shows the carburizing and quenching equipment which implements the comparison method. 実施例1にける、(a)鋼部材の平面図、(b)鋼部材の断面図((a)のA−A線矢視断面図)。(A) The top view of a steel member in Example 1, (b) Sectional drawing of a steel member (AA arrow directional cross-sectional view of (a)). 実施例1における、浸炭焼入れ後の硬度分布を示す説明図。Explanatory drawing which shows the hardness distribution after carburizing and quenching in Example 1. FIG. 実施例1における、歪み発生状況を示す説明図。FIG. 3 is an explanatory diagram illustrating a distortion occurrence state in the first embodiment. 実施例1における、残留応力発生状況を示す説明図。FIG. 3 is an explanatory diagram illustrating a residual stress generation state in the first embodiment. 実施例2における、試験1の鋼部材の冷却パターンを示す説明図。Explanatory drawing which shows the cooling pattern of the steel member of Test 1 in Example 2. FIG. 実施例2における、試験2の鋼部材の冷却パターンを示す説明図。Explanatory drawing which shows the cooling pattern of the steel member of Test 2 in Example 2. FIG. 実施例2における、試験3の鋼部材の冷却パターンを示す説明図。Explanatory drawing which shows the cooling pattern of the steel member of Test 3 in Example 2. FIG. 実施例2における、試験4の鋼部材の冷却パターンを示す説明図。Explanatory drawing which shows the cooling pattern of the steel member of Test 4 in Example 2. FIG. 実施例2における、歪み発生状況を示す説明図。FIG. 9 is an explanatory diagram illustrating a distortion occurrence state in the second embodiment. 実施例3における、(a)鋼部材の平面図、(b)鋼部材の断面図((a)のA−A線矢視断面図)。(A) The top view of a steel member in Example 3, (b) Sectional drawing of a steel member (AA arrow directional cross-sectional view of (a)). 実施例3における、歪み発生状況を示す説明図。FIG. 9 is an explanatory diagram illustrating a distortion occurrence state in the third embodiment. 実施例4における、浸炭焼入れ後の硬度分布を示す説明図。Explanatory drawing which shows the hardness distribution after carburizing and quenching in Example 4. FIG. 実施例5における、減圧徐冷パターンの具体例を示す説明図。Explanatory drawing which shows the specific example of the pressure reduction slow cooling pattern in Example 5. FIG.

符号の説明Explanation of symbols

5 熱処理設備、
7 鋼部材(デフリングギア)、
8 鋼部材(リングギア)
5 Heat treatment equipment,
7 Steel member (diff ring gear),
8 Steel member (ring gear)

Claims (7)

鋼部材に高周波焼入れ処理を施す前に行う冷却方法であって、上記鋼部材をオーステナイト化温度以上に昇温する熱処理を行った後に、少なくともA1変態点以下の温度まで上記鋼部材を徐冷する冷却方法において、
上記鋼部材の冷却開始から所定の期間は、雰囲気ガスを大気圧よりも低く減圧した状態で徐冷する減圧冷却を行い、
該減圧冷却中には、上記鋼部材の温度がA1変態点以下となった後に上記雰囲気ガスの撹拌速度を高めた条件で冷却を行うことを特徴とする鋼部材の冷却方法。
It is a cooling method performed before subjecting a steel member to induction hardening treatment, and after performing a heat treatment to raise the temperature of the steel member to an austenitizing temperature or higher, the steel member is gradually cooled to a temperature of at least the A1 transformation point or lower. In the cooling method,
For a predetermined period from the start of cooling of the steel member, vacuum cooling is performed in which the atmospheric gas is gradually cooled in a state where the pressure is lower than atmospheric pressure,
A cooling method for a steel member, characterized in that, during the cooling under reduced pressure, the steel member is cooled under a condition in which the stirring speed of the atmospheric gas is increased after the temperature of the steel member becomes equal to or lower than the A1 transformation point.
鋼部材に高周波焼入れ処理を施す前に行う冷却方法であって、上記鋼部材をオーステナイト化温度以上に昇温する熱処理を行った後に、少なくともA1変態点以下の温度まで上記鋼部材を徐冷する冷却方法において、
上記鋼部材の冷却開始から所定の期間は、雰囲気ガスを大気圧よりも低く減圧した状態で徐冷する減圧冷却を行い、
該減圧冷却中には、上記鋼部材の温度がA1変態点以下となった後に上記雰囲気ガスの圧力を高めた条件で冷却を行うことを特徴とする鋼部材の冷却方法。
It is a cooling method performed before subjecting a steel member to induction hardening treatment, and after performing a heat treatment to raise the temperature of the steel member to an austenitizing temperature or higher, the steel member is gradually cooled to a temperature of at least the A1 transformation point or lower. In the cooling method,
For a predetermined period from the start of cooling of the steel member, vacuum cooling is performed in which the atmospheric gas is gradually cooled in a state where the pressure is lower than atmospheric pressure,
A method for cooling a steel member, characterized in that, during the cooling under reduced pressure, the steel member is cooled under a condition in which the pressure of the atmospheric gas is increased after the temperature of the steel member becomes equal to or lower than the A1 transformation point.
請求項2において、上記減圧冷却は、上記雰囲気ガスを大気圧よりも低く減圧した状態で、該雰囲気ガスを撹拌しながら行うことを特徴とする鋼部材の冷却方法。   3. The method for cooling a steel member according to claim 2, wherein the reduced pressure cooling is performed while stirring the atmospheric gas in a state where the atmospheric gas is reduced to a pressure lower than atmospheric pressure. 請求項3において、上記減圧冷却中には、上記鋼部材の温度がA1変態点以下となった後に上記雰囲気ガスの撹拌速度を高めた条件で冷却を行うことを特徴とする鋼部材の冷却方法。   4. The method for cooling a steel member according to claim 3, wherein during the reduced pressure cooling, the steel member is cooled under a condition in which the stirring speed of the atmosphere gas is increased after the temperature of the steel member becomes equal to or lower than the A1 transformation point. . 請求項1〜4のいずれか1項において、上記減圧冷却は、少なくとも、鋼部材の組織変態がすべて完了するまで行うことを特徴とする鋼部材の冷却方法。   The method for cooling a steel member according to any one of claims 1 to 4, wherein the reduced-pressure cooling is performed at least until all the structural transformations of the steel member are completed. 請求項1〜5のいずれか1項において、上記減圧冷却における上記雰囲気ガスの減圧状態は、0.1bar〜0.65barの範囲とすることを特徴とする鋼部材の冷却方法。   The method for cooling a steel member according to any one of claims 1 to 5, wherein a reduced pressure state of the atmospheric gas in the reduced pressure cooling is in a range of 0.1 bar to 0.65 bar. 請求項6において、上記減圧冷却における上記雰囲気ガスの減圧状態は、0.1bar〜0.3barの範囲とすることを特徴とする鋼部材の冷却方法。 The method for cooling a steel member according to claim 6, wherein the reduced pressure state of the atmospheric gas in the reduced pressure cooling is in a range of 0.1 bar to 0.3 bar.
JP2006257025A 2005-04-28 2006-09-22 Steel member cooling method Active JP5358875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006257025A JP5358875B2 (en) 2005-04-28 2006-09-22 Steel member cooling method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005131201 2005-04-28
JP2005131201 2005-04-28
JP2005278105 2005-09-26
JP2005278105 2005-09-26
JP2006257025A JP5358875B2 (en) 2005-04-28 2006-09-22 Steel member cooling method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006525969A Division JPWO2006118242A1 (en) 2005-04-28 2006-04-28 Steel member and heat treatment method thereof

Publications (2)

Publication Number Publication Date
JP2008045200A JP2008045200A (en) 2008-02-28
JP5358875B2 true JP5358875B2 (en) 2013-12-04

Family

ID=39179221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006257025A Active JP5358875B2 (en) 2005-04-28 2006-09-22 Steel member cooling method

Country Status (1)

Country Link
JP (1) JP5358875B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305820B2 (en) * 2008-10-08 2013-10-02 アイシン・エィ・ダブリュ株式会社 Manufacturing method of carburized parts and steel parts
JP6175361B2 (en) * 2013-12-11 2017-08-02 住友重機械工業株式会社 Eccentric body shaft gear manufacturing method for eccentric oscillating speed reducer
CN109628726A (en) * 2017-10-09 2019-04-16 徐州东鹏工具制造有限公司 A kind of heat treatment process of gear

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165370A (en) * 1984-02-07 1985-08-28 Ishikawajima Harima Heavy Ind Co Ltd Nitriding treatment of stainless steel
JPH02267216A (en) * 1989-04-08 1990-11-01 Ulvac Corp Vacuum heat treatment furnace
JPH05306409A (en) * 1992-04-30 1993-11-19 Daido Steel Co Ltd Hardening of metal material
JP3442447B2 (en) * 1993-01-20 2003-09-02 トヨタ自動車株式会社 Carburizing or carbonitriding and quenching
JP3895000B2 (en) * 1996-06-06 2007-03-22 Dowaホールディングス株式会社 Carburizing, quenching and tempering method and apparatus
JP3159372B2 (en) * 1996-09-05 2001-04-23 日立金属株式会社 Mold and quenching method
JP2000129341A (en) * 1998-10-20 2000-05-09 Toyota Motor Corp Low strain quenching method
JP3572350B2 (en) * 1999-06-09 2004-09-29 福井鋲螺株式会社 Driving rivet and manufacturing method thereof
JP3897274B2 (en) * 1999-12-28 2007-03-22 日立金属株式会社 Hardening method for steel
JP2001303127A (en) * 2000-04-24 2001-10-31 Kawasaki Steel Corp Box and method for slow cooling steel material
JP2001303126A (en) * 2000-04-24 2001-10-31 Kawasaki Steel Corp Box and method for slow cooling steel material
JP4441903B2 (en) * 2003-07-11 2010-03-31 株式会社Ihi High-speed circulating gas-cooled vacuum heat treatment furnace

Also Published As

Publication number Publication date
JP2008045200A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
JPWO2006118242A1 (en) Steel member and heat treatment method thereof
JP5432451B2 (en) Steel member, heat treatment method thereof, and production method thereof
RU2518840C2 (en) Case-hardened steel element and method of its production
JP5611828B2 (en) Rotating elements or rotating rings formed from bearing steel
JP4627776B2 (en) High concentration carburizing / low strain quenching member and method of manufacturing the same
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
JP4760664B2 (en) Sheave member for belt type continuously variable transmission and method for manufacturing the same
JP5535922B2 (en) Heat treatment process for steel
WO2009054530A1 (en) Carbonitrided induction-hardened steel part with excellent rolling contact fatigue strength at high temperature and process for producing the same
JP6174140B2 (en) Gear and manufacturing method thereof
JP2006200003A (en) Heat-treated article and heat treatment method
US8956467B2 (en) Composite steel part and manufacturing method for the same
JP5358875B2 (en) Steel member cooling method
JP4708158B2 (en) Surface hardened steel and surface hardening method of steel
JPH08109435A (en) Steel for low strain type carburized and quenched gear
KR100737602B1 (en) A constant velocity join cage of a vehicle and the method thereof
KR100727196B1 (en) A constant velocity joint cage for vehicle and method for producing it
JPH11269631A (en) Surface treating method for parts made of steel
JP2015531029A (en) Method for heat treating steel components and steel components
JP2003055711A (en) Surface treatment method for steel member, and hardened component thereof
JP2018141217A (en) Component and method for producing the same
JPH0339459A (en) Surface hardened parts and their production
JPS63303036A (en) High-strength steel wire
JP2005113217A (en) Heat treatment system
JPH03138349A (en) Method for improving fatigue characteristic in machine parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5358875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150