JP4441903B2 - High-speed circulating gas-cooled vacuum heat treatment furnace - Google Patents

High-speed circulating gas-cooled vacuum heat treatment furnace Download PDF

Info

Publication number
JP4441903B2
JP4441903B2 JP2003273411A JP2003273411A JP4441903B2 JP 4441903 B2 JP4441903 B2 JP 4441903B2 JP 2003273411 A JP2003273411 A JP 2003273411A JP 2003273411 A JP2003273411 A JP 2003273411A JP 4441903 B2 JP4441903 B2 JP 4441903B2
Authority
JP
Japan
Prior art keywords
gas
cooling
cooling chamber
furnace
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003273411A
Other languages
Japanese (ja)
Other versions
JP2005029872A (en
Inventor
和彦 勝俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003273411A priority Critical patent/JP4441903B2/en
Application filed by IHI Corp filed Critical IHI Corp
Priority to EP04724762A priority patent/EP1643199B1/en
Priority to EP09008821A priority patent/EP2116802B1/en
Priority to KR1020057024660A priority patent/KR100943463B1/en
Priority to US10/562,498 priority patent/US7625204B2/en
Priority to DE602004027043T priority patent/DE602004027043D1/en
Priority to PCT/JP2004/004643 priority patent/WO2005001360A1/en
Priority to DE602004031061T priority patent/DE602004031061D1/en
Priority to CN2008100831847A priority patent/CN101294772B/en
Publication of JP2005029872A publication Critical patent/JP2005029872A/en
Application granted granted Critical
Publication of JP4441903B2 publication Critical patent/JP4441903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)

Description

本発明は、高速循環ガス冷却式真空熱処理炉に関する。   The present invention relates to a high-speed circulating gas cooled vacuum heat treatment furnace.

真空熱処理炉は、内部を減圧した後、不活性ガス等を再充填して被処理品を熱処理する熱処理炉である。真空熱処理炉は、加熱後に炉内及び処理品についた水分等がガス化した後に再度減圧し、不活性ガス等を再充填することで、水分を完全に除去できるため、水分による色付きのない熱処理(「光輝熱処理」と呼ぶ)ができる利点がある。   The vacuum heat treatment furnace is a heat treatment furnace that heats the product to be treated by refilling with an inert gas after decompressing the inside. The vacuum heat treatment furnace is a heat treatment that does not cause coloration due to moisture because the moisture in the furnace and the processed product after gasification is reduced in pressure after reheating and refilling with inert gas etc. can be completely removed. (Referred to as “bright heat treatment”).

また、ガス冷却式真空熱処理炉は、光輝熱処理ができ、かつ脱炭浸炭がない、変形が少ない、作業環境が良いなど、種々の利点を有する。しかし、初期のガス冷却式真空熱処理炉は、減圧冷却式であるため、冷却速度が不十分な欠点があった。そこで、冷却速度を高めるために、高速循環ガス冷却方式が実用化されている。   The gas-cooled vacuum heat treatment furnace has various advantages such as bright heat treatment, no decarburization and carburization, less deformation, and a good working environment. However, the initial gas-cooled vacuum heat treatment furnace has a disadvantage that the cooling rate is insufficient because it is a vacuum cooling type. Therefore, in order to increase the cooling rate, a high-speed circulating gas cooling system has been put into practical use.

図4は、非特許文献1に開示された高速循環ガス冷却炉の構成図である。この図において、50は断熱材、51はヒータ、52は有効作業域、53は炉体及び水冷ジャケット、54は熱交換器、55はターボファン、56はファン用モータ、57は冷却扉、58は炉床、59はガスディストリビュータである。   FIG. 4 is a configuration diagram of the high-speed circulating gas cooling furnace disclosed in Non-Patent Document 1. In this figure, 50 is a heat insulating material, 51 is a heater, 52 is an effective working area, 53 is a furnace body and a water cooling jacket, 54 is a heat exchanger, 55 is a turbo fan, 56 is a motor for a fan, 57 is a cooling door, 58 Is a hearth and 59 is a gas distributor.

また、特許文献1の「真空炉におけるガス循環冷却促進法」は、図5に示すように、気密性の真空容器61内に断熱壁67によって囲った加熱室66を設け、加熱室内に配置されたヒータ62により被熱物64を真空中で加熱すると共に、真空容器61内にクーラ62およびファン63が設けられ真空容器内に供給された無酸化性ガスをクーラ62により冷却し、無酸化性ガスをファン63の回転により加熱室66の相対する断熱壁67面に設けられた開口68,69より加熱室66内に循環させて被熱物64を強制ガス循環冷却する真空炉において、少なくとも一端が末広がり状に形成れた耐熱性の筒状フード65を加熱室66内に置かれた被熱物64の周囲を適宜間隔を離して囲うように、かつその両端が前記開口68,69に相対するように配置して無酸化性ガスを加熱室66内に循環させるようにしたものである。   In addition, as shown in FIG. 5, the “gas circulation cooling promotion method in a vacuum furnace” of Patent Document 1 includes a heating chamber 66 surrounded by a heat insulating wall 67 in an airtight vacuum vessel 61 and is disposed in the heating chamber. The heated object 64 is heated in vacuum by the heater 62, and the cooler 62 and the fan 63 are provided in the vacuum vessel 61, and the non-oxidizing gas supplied into the vacuum vessel is cooled by the cooler 62. In a vacuum furnace in which gas is circulated into the heating chamber 66 through openings 68 and 69 provided on the opposing heat insulating wall 67 surface of the heating chamber 66 by the rotation of the fan 63 to forcibly circulate and cool the object to be heated 64. The heat-resistant cylindrical hood 65 formed in a divergent shape surrounds the object to be heated 64 placed in the heating chamber 66 at an appropriate interval, and both ends thereof are relative to the openings 68 and 69. Do And sea urchin disposed is obtained so as to circulate the non-oxidizing gas into the heating chamber 66.

山崎勝弘,金属材料の真空熱処理(2),熱処理30巻2号,平成2年4月Katsuhiro Yamazaki, Vacuum heat treatment of metal materials (2), Heat treatment No.30, No.2, April 1990 特開平5−230528号公報Japanese Patent Laid-Open No. 5-230528

非特許文献1及び特許文献1に記載の高速循環ガス冷却炉は、加熱と冷却を同一の場所で行うため、以下の問題点があった。
(1)加熱終了時に加熱用のヒータや炉体が高温になっており、冷却時にヒータや炉体も同時に冷却するため、熱処理材を高速冷却できない。
(2)熱処理材を囲んで加熱用のヒータや炉体があるため、冷却時に冷却ガスを均一に供給できない。
(3)上下方向に交互にガス冷却する場合でも、上向きと下向きの両方の冷却ガスを均一な速度と向きに整流する手段はなく、熱処理材全体の歪みを低減することが困難であった。
The high-speed circulating gas cooling furnaces described in Non-Patent Document 1 and Patent Document 1 have the following problems because heating and cooling are performed in the same place.
(1) The heating heater and the furnace body are at a high temperature at the end of heating, and the heater and the furnace body are also cooled at the same time, so that the heat treatment material cannot be cooled at high speed.
(2) Since there is a heater and a furnace body surrounding the heat treatment material, the cooling gas cannot be supplied uniformly during cooling.
(3) Even in the case of gas cooling alternately in the vertical direction, there is no means for rectifying both the upward and downward cooling gases to a uniform speed and direction, and it has been difficult to reduce distortion of the entire heat treatment material.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、冷却時に熱処理材を高速冷却することができ、熱処理材全体に冷却ガスを均一に供給でき、かつ上向きと下向きの両方において冷却ガスを均一な速度と向きに整流して熱処理材全体の歪みを低減することができる高速循環ガス冷却式真空熱処理炉を提供することにある。   The present invention has been developed to solve the above-described problems. In other words, the object of the present invention is that the heat treatment material can be cooled at a high speed during cooling, the cooling gas can be uniformly supplied to the entire heat treatment material, and the cooling gas is rectified at a uniform speed and direction both upward and downward. An object of the present invention is to provide a high-speed circulating gas-cooled vacuum heat treatment furnace that can reduce distortion of the entire heat treatment material.

本発明によれば、加熱した被処理品を加圧した循環ガスで冷却するガス冷却炉を備えた高速循環ガス冷却式真空熱処理炉であって、前記ガス冷却炉は、被処理品を静置する冷却領域を囲みその内側に上下方向に断面一定のガス流路を形成する冷却室と、該冷却室内を上下方向に通過するガスを冷却して循環させるガス冷却循環装置と、冷却室内を上下方向に通過するガスの方向を交互に切り替えるガス方向切替え装置と、冷却室の上端及び下端を塞ぎ通過するガスの速度分布を均一化させる上下の整流器と、を備え、前記ガス方向切替え装置は、中空のカウリングと、該カウリングを昇降させる昇降シリンダとを備え、前記カウリングは、下降位置において冷却室の下方と連通する下方吸引口と、上昇位置において冷却室の上方と連通する上方吸引口とを有する、ことを特徴とする高速循環ガス冷却式真空熱処理炉が提供される。
また、本発明によれば、加熱した被処理品を加圧した循環ガスで冷却するガス冷却炉を備えた高速循環ガス冷却式真空熱処理炉であって、前記ガス冷却炉は、被処理品を静置する冷却領域を囲みその内側に上下方向に断面一定のガス流路を形成する冷却室と、該冷却室内を上下方向に通過するガスを冷却して循環させるガス冷却循環装置と、冷却室内を上下方向に通過するガスの方向を交互に切り替えるガス方向切替え装置と、冷却室の上端及び下端を塞ぎ通過するガスの速度分布を均一化させる上下の整流器と、を備え、前記ガス冷却循環装置は、冷却室に隣接して設置され冷却室を通過したガスを吸引して加圧する冷却ファンと、該冷却ファンに吸引されるガスを間接冷却する熱交換器とからなり、前記ガス方向切替え装置は、前記熱交換器を間隔を隔てて囲む中空のカウリングと、該カウリングを昇降させる昇降シリンダとを備え、前記カウリングは、下降位置において冷却室の下方と連通する下方吸引口と、上昇位置において冷却室の上方と連通する上方吸引口とを有する、ことを特徴とする高速循環ガス冷却式真空熱処理炉が提供される。
According to the present invention, there is provided a high-speed circulating gas cooling vacuum heat treatment furnace having a gas cooling furnace for cooling a heated article to be treated with a pressurized circulation gas, wherein the gas cooling furnace is configured to leave the article to be treated statically. A cooling chamber that surrounds the cooling region to be formed and forms a gas flow path having a constant cross section in the vertical direction, a gas cooling circulation device that cools and circulates the gas passing through the cooling chamber in the vertical direction, and the cooling chamber in the vertical direction A gas direction switching device that alternately switches the direction of the gas passing in the direction, and an upper and lower rectifier that closes the upper and lower ends of the cooling chamber and equalizes the velocity distribution of the gas passing through , the gas direction switching device, A hollow cowling and an elevating cylinder for raising and lowering the cowling. The cowling has a lower suction port that communicates with a lower portion of the cooling chamber at a lowered position, and an upper portion that communicates with an upper portion of the cooling chamber at an elevated position. And a suction port, a high speed circulation gas cooling type vacuum heat treating furnace is provided, characterized in that.
Further, according to the present invention, there is provided a high-speed circulating gas cooling vacuum heat treatment furnace provided with a gas cooling furnace that cools a heated article to be treated with a pressurized circulation gas, the gas cooling furnace comprising: A cooling chamber that surrounds a stationary cooling region and forms a gas passage having a constant cross section in the vertical direction inside the cooling region, a gas cooling circulation device that cools and circulates the gas passing through the cooling chamber in the vertical direction, and the cooling chamber A gas direction switching device that alternately switches the direction of gas passing in the vertical direction, and an upper and lower rectifier that blocks the upper and lower ends of the cooling chamber and equalizes the velocity distribution of the gas passing therethrough, the gas cooling circulation device Comprises a cooling fan that is installed adjacent to the cooling chamber and sucks and pressurizes the gas that has passed through the cooling chamber, and a heat exchanger that indirectly cools the gas sucked into the cooling fan. The heat exchange A hollow cowling that surrounds the container at intervals, and an elevating cylinder that raises and lowers the cowling. The cowling includes a lower suction port that communicates with a lower portion of the cooling chamber in the lowered position, and an upper portion of the cooling chamber in the raised position. A high-speed circulating gas-cooled vacuum heat treatment furnace having an upper suction port communicating therewith is provided.

本発明の好ましい実施形態によれば、前記上下の整流器は、互いに積層された均等分配部と整流部とからなり、或いは均等分配部と整流部の両機能を備え、均等分配部は、上昇ガス流の圧力損失係数0.1以上の流路抵抗をつけることにより流速の均等分配化を図るために前記上昇ガス流に直交する方向に均等に配置された複数の圧損発生手段を有し、整流部は、均等分配部を通過した上昇ガス流の流れ方向を整流する複数の整流グリッドからなる。   According to a preferred embodiment of the present invention, the upper and lower rectifiers are composed of an equal distribution unit and a rectification unit stacked on each other, or have both functions of an equal distribution unit and a rectification unit. A plurality of pressure loss generating means arranged uniformly in a direction orthogonal to the rising gas flow in order to achieve a uniform distribution of the flow velocity by providing a flow path resistance having a flow pressure loss coefficient of 0.1 or more. The section includes a plurality of rectifying grids that rectify the flow direction of the rising gas flow that has passed through the uniform distribution section.

更に、冷却室の上下に冷却室から流出入するガス流の方向を案内する補助分配機構を設けることが好ましい。   Furthermore, it is preferable to provide an auxiliary distribution mechanism that guides the direction of gas flow flowing in and out of the cooling chamber above and below the cooling chamber.

上記本発明の構成によれば、上下の整流器により、冷却室の上端及び下端を塞ぎ通過するガスの速度分布を均一化させるので、冷却領域を通過するガス流の速度変化を最少限度に抑えることができ、被処理品に対して乱れの少ない冷却ガスを吹き付けることができる。また、被処理品を通った後の出口部も均等に冷却ガスを排出することで、被処理品の中央部にも均等に冷却ガスを通すような強制力が発揮され、熱処理材全体の歪みを低減することができる。   According to the configuration of the present invention, the upper and lower rectifiers block the upper and lower ends of the cooling chamber and uniformize the velocity distribution of the gas passing therethrough, so that the change in the velocity of the gas flow passing through the cooling region can be minimized. The cooling gas with little disturbance can be sprayed on the workpiece. In addition, the outlet after passing through the product to be processed also discharges the cooling gas evenly, thereby exerting a forcible force that allows the cooling gas to pass evenly through the center of the product to be processed. Can be reduced.

また複数の圧損発生手段により流速分布を均等化し、複数の整流グリッドによりガス流の流れ方向を均等化できる。
さらに補助分配機構(例えば吹き込み板)を設けることにより、冷却室の上下面積が大きい場合でも、複数箇所に向かうガス流の方向を最適化し、流れの均一化を高めることができる。
Further, the flow velocity distribution can be equalized by the plurality of pressure loss generating means, and the flow direction of the gas flow can be equalized by the plurality of rectifying grids.
Further, by providing an auxiliary distribution mechanism (for example, a blowing plate), even when the upper and lower areas of the cooling chamber are large, the direction of the gas flow toward a plurality of locations can be optimized and the flow can be made more uniform.

またガス方向切替え装置により下方吸引口と上方吸引口を交互に冷却ファンの吸引側に連通させることにより、冷却室内を上下方向に通過するガスの方向を交互に切り替えることができる。この切替えにより、整列化された被処理品の位置による冷却速度の差を低減し、熱処理材全体の歪みを低減することができる。   Further, the direction of the gas passing through the cooling chamber in the vertical direction can be alternately switched by alternately communicating the lower suction port and the upper suction port with the suction side of the cooling fan by the gas direction switching device. By this switching, it is possible to reduce the difference in the cooling rate depending on the position of the aligned workpieces and to reduce the distortion of the entire heat treatment material.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明による高速循環ガス冷却式真空熱処理炉の全体構成図である。この図に示すように、本発明の真空熱処理炉は、真空加熱炉10、ガス冷却炉20、及び移動装置30を備える多室型熱処理炉である。
真空加熱炉10は、被処理品1を減圧した後、不活性ガス等を再充填して加熱する機能を有する。ガス冷却炉20は、加熱した被処理品1を加圧した循環ガス2で冷却する機能を有する。移動装置30は、被処理品1を真空加熱炉10とガス冷却炉20との間で移動する機能を有する。
なお、本発明は多室型熱処理炉に限定されず、真空加熱とガス冷却を単室で行う単室炉であってもよい。
FIG. 1 is an overall configuration diagram of a high-speed circulating gas-cooled vacuum heat treatment furnace according to the present invention. As shown in this figure, the vacuum heat treatment furnace of the present invention is a multi-chamber heat treatment furnace including a vacuum heating furnace 10, a gas cooling furnace 20, and a moving device 30.
The vacuum heating furnace 10 has a function of heating the product 1 after depressurizing and then refilling with an inert gas or the like. The gas cooling furnace 20 has a function of cooling the heated workpiece 1 with the pressurized circulating gas 2. The moving device 30 has a function of moving the workpiece 1 between the vacuum heating furnace 10 and the gas cooling furnace 20.
The present invention is not limited to a multi-chamber heat treatment furnace, and may be a single-chamber furnace that performs vacuum heating and gas cooling in a single chamber.

真空加熱炉10は、内部が真空排気されるようになった真空容器11、被処理品1を内部に収容する加熱室12、加熱室に被処理品1を出し入れするための前扉13、加熱室内の被処理品1を移動させるための開口を閉じる後扉14、被処理品1を前後に水平移動可能に載せる載置台15、被処理品1を加熱するためのヒータ16、等からなる。この構成により、真空容器11の内部を真空に減圧し、ヒータ16により被処理品1を所定の温度まで加熱することができる。   The vacuum heating furnace 10 includes a vacuum vessel 11 in which the inside is evacuated, a heating chamber 12 that houses the article 1 to be processed, a front door 13 for taking the article 1 into and out of the heating chamber, heating It comprises a rear door 14 that closes an opening for moving the object to be processed 1 in the room, a mounting table 15 on which the object 1 to be processed can be horizontally moved back and forth, a heater 16 for heating the object 1 to be processed, and the like. With this configuration, the inside of the vacuum vessel 11 can be decompressed to a vacuum, and the workpiece 1 can be heated to a predetermined temperature by the heater 16.

移動装置30は、被処理品1を真空加熱炉10とガス冷却炉20との間で水平に移動させる搬送棒32、後扉14を昇降させて開閉する後扉昇降装置33、前扉13を昇降させて開閉する前扉昇降装置34、及びガス冷却炉20の中間断熱扉21aを昇降させて開閉する中間扉昇降装置34を備える。この例において、搬送棒32はラックピニオン駆動、後扉昇降装置33は直動シリンダ、前扉昇降装置34と中間扉昇降装置34は巻上げ機であるが、本発明はこれに限定されず、その他の駆動機構であってもよい。この構成により、後扉14、前扉13及び中間断熱扉21aを開放した状態で、搬送棒32により、被処理品1を真空加熱炉10とガス冷却炉20との間で水平に移動させることができる。   The moving device 30 includes a conveying rod 32 that horizontally moves the article 1 to be processed between the vacuum heating furnace 10 and the gas cooling furnace 20, a rear door elevating device 33 that elevates and lowers the rear door 14, and a front door 13. A front door lifting / lowering device 34 that opens and closes and opens / closes and an intermediate door lifting / lowering device 34 that lifts and lowers and opens / closes the intermediate heat insulating door 21a of the gas cooling furnace 20 are provided. In this example, the transport bar 32 is a rack and pinion drive, the rear door lifting device 33 is a linear cylinder, and the front door lifting device 34 and the intermediate door lifting device 34 are hoisting machines. However, the present invention is not limited to this, The drive mechanism may be used. With this configuration, the article 1 to be processed is moved horizontally between the vacuum heating furnace 10 and the gas cooling furnace 20 by the transfer rod 32 with the rear door 14, the front door 13 and the intermediate heat insulating door 21a opened. Can do.

図2は図1の部分拡大図であり、図3は図2のA−A線における断面図である。図1〜図3に示すように、ガス冷却炉20は、真空容器21、冷却室22、ガス冷却循環装置24、ガス方向切替え装置26及び整流器28を備える。
真空容器21は、真空加熱炉10の前扉13に対向して設けられた中間断熱扉21a、被処理品1を内部に収容する円筒形の容器胴部21b、ガス冷却循環装置24を収容する循環部21c、及び気密に開閉可能なクラッチリング21d,21eからなる。この構成により、クラッチリング21eを開放し循環部21cを容器胴部21bから図1で右方に後退させることにより、被処理品1を容器胴部21bの内部に直接収納することができる。また、クラッチリング21d,21eにより中間断熱扉21aと循環部21cを容器胴部21bに気密に連結し、加圧した冷却用ガス(アルゴン、ヘリウム、窒素、水素等)を内部に供給することにより、加圧ガスを冷却に用いることができる。
2 is a partially enlarged view of FIG. 1, and FIG. 3 is a cross-sectional view taken along line AA of FIG. As shown in FIGS. 1 to 3, the gas cooling furnace 20 includes a vacuum vessel 21, a cooling chamber 22, a gas cooling circulation device 24, a gas direction switching device 26, and a rectifier 28.
The vacuum vessel 21 accommodates an intermediate heat insulating door 21 a provided to face the front door 13 of the vacuum heating furnace 10, a cylindrical vessel body 21 b that accommodates the article 1 to be processed, and a gas cooling and circulation device 24. It consists of a circulating portion 21c and clutch rings 21d and 21e that can be opened and closed in an airtight manner. With this configuration, the workpiece 1 can be stored directly in the container body 21b by opening the clutch ring 21e and retracting the circulation part 21c to the right in FIG. 1 from the container body 21b. Further, the intermediate heat insulating door 21a and the circulating portion 21c are hermetically connected to the container body 21b by the clutch rings 21d and 21e, and pressurized cooling gas (argon, helium, nitrogen, hydrogen, etc.) is supplied to the inside. , Pressurized gas can be used for cooling.

冷却室22は、真空加熱炉10に隣接して容器胴部21bの中央部に設けられる。冷却室22の真空加熱炉側は中間断熱扉21a、ガス冷却循環装置と両側面は気密性のある断熱壁22a、22bで仕切られている。またこの冷却室22は、上下端は開口しており、かつその内側に上下方向に断面一定のガス流路を形成している。この冷却室22の内側が冷却領域であり、被処理品1は、例えばギヤ・シャフトジェットエンジンの動翼、静翼、ボルト等の小型金属部品であり、トレーやバスケット内に収容し、冷却室22の中央に通気性のある載置台23に載せて静置される。
載置台23は真空加熱炉10の載置台15と同一高さに設置され、内蔵するローラ上を自由に移動できるようになっている。また、容器胴部21bと断熱壁22bの間に、図3に示すように水平仕切板22cが設けられ、冷却室22の上下に位置するガスを気密に仕切っている。
The cooling chamber 22 is provided adjacent to the vacuum heating furnace 10 in the central portion of the container body portion 21b. The vacuum heating furnace side of the cooling chamber 22 is partitioned by an intermediate heat insulating door 21a, and the gas cooling circulation device and both side surfaces are partitioned by airtight heat insulating walls 22a and 22b. The cooling chamber 22 is open at the upper and lower ends, and forms a gas flow path having a constant cross section in the vertical direction inside thereof. The inside of the cooling chamber 22 is a cooling region, and the object to be processed 1 is a small metal part such as a moving blade, a stationary blade, or a bolt of a gear / shaft jet engine, and is accommodated in a tray or a basket. In the center of 22, the air is placed on a mounting table 23 having air permeability.
The mounting table 23 is installed at the same height as the mounting table 15 of the vacuum heating furnace 10 and can freely move on the built-in roller. Further, as shown in FIG. 3, a horizontal partition plate 22 c is provided between the container body 21 b and the heat insulating wall 22 b to partition the gas located above and below the cooling chamber 22 in an airtight manner.

ガス冷却循環装置24は、冷却室22に隣接して設置され冷却室22を通過したガスを吸引して加圧する冷却ファン24aと、冷却ファン24aに吸引されるガスを間接冷却する熱交換器25とからなる。冷却ファン24aは、真空容器21の循環部21cに取付けられた冷却ファンモータ24bにより回転駆動され、その中央部からガスを吸引し、外周部から吐出する。熱交換器25は、例えば内部を水冷された冷却フィンチューブである。
この構成により、熱交換器25で冷却された循環ガスを中央部から吸引し、外周部から吐出した冷却室22内を上下方向に通過するガスを冷却して循環することができる。
The gas cooling / circulation device 24 is installed adjacent to the cooling chamber 22 and sucks and pressurizes the gas that has passed through the cooling chamber 22, and a heat exchanger 25 that indirectly cools the gas sucked into the cooling fan 24a. It consists of. The cooling fan 24a is rotationally driven by a cooling fan motor 24b attached to the circulation part 21c of the vacuum vessel 21, and sucks gas from the central part and discharges it from the outer peripheral part. The heat exchanger 25 is, for example, a cooling fin tube that is water-cooled inside.
With this configuration, the circulating gas cooled by the heat exchanger 25 can be sucked from the central portion, and the gas passing through the cooling chamber 22 discharged from the outer peripheral portion in the vertical direction can be cooled and circulated.

ガス方向切替え装置26は、この例では、熱交換器25を間隔を隔てて囲む中空のカウリング26aと、カウリング26aを昇降させる昇降シリンダ27とからなる。カウリング26aは、下降位置において冷却室22の下方と連通する下方吸引口26bと、上昇位置において冷却室22の上方と連通する上方吸引口26cとを有する。   In this example, the gas direction switching device 26 includes a hollow cowling 26a that surrounds the heat exchanger 25 at an interval, and an elevating cylinder 27 that moves the cowling 26a up and down. The cowling 26a has a lower suction port 26b that communicates with the lower portion of the cooling chamber 22 at the lowered position, and an upper suction port 26c that communicates with the upper portion of the cooling chamber 22 at the elevated position.

この構成により、ガス方向切替え装置26により下方吸引口26bと上方吸引口26cを交互に冷却ファン24aの吸引側に連通させることにより、冷却室22内を上下方向に通過するガスの方向を交互に切り替え、整列化された被処理品の位置による冷却速度の差を低減し、熱処理材全体の歪みを低減するようになっている。   With this configuration, the gas direction switching device 26 alternately connects the lower suction port 26b and the upper suction port 26c to the suction side of the cooling fan 24a, thereby alternately changing the direction of the gas passing through the cooling chamber 22 in the vertical direction. The difference in the cooling rate depending on the position of the workpieces to be switched and aligned is reduced, and the distortion of the entire heat treatment material is reduced.

整流器28は、冷却室22の上端及び下端を塞いで上下に設けられ、冷却室22を通過するガスの速度分布を均一化させる機能を有する。
上下の整流器28は、互いに積層された均等分配部28aと整流部28bとからなる。なお整流器28は、均等分配部と整流部の両機能を備えてもよい。
均等分配部28aは、ガス流の圧力損失係数0.1以上の流路抵抗をつけることにより流速の均等分配化を図るためにガス流2に直交する方向(この例で水平方向)に均等に配置された複数の圧損発生手段を有する。圧損発生手段は、例えば貫通孔であり、流路抵抗をつけることにより流速の均等分配化を図るようになっている。流路抵抗(圧損)は、ガス流2の全圧損に占める割合が高いほど均等分配化の効果が高く、好ましくは上下の圧損発生手段の流路抵抗(圧損)を上昇ガス流2の圧力損失係数0.1以上に設定する。
なお、圧力損失係数ζと損失ヘッドh、流速V、重力加速度gとの間には、式(1)の関係がある。
h=ζ・V2/(2・g)・・・(1)
The rectifier 28 is provided above and below the upper and lower ends of the cooling chamber 22, and has a function of making the velocity distribution of the gas passing through the cooling chamber 22 uniform.
The upper and lower rectifiers 28 are composed of an equal distribution unit 28a and a rectification unit 28b stacked on each other. Note that the rectifier 28 may have both functions of an equal distribution unit and a rectification unit.
The uniform distribution section 28a is evenly distributed in the direction perpendicular to the gas flow 2 (in this example, in the horizontal direction) in order to achieve uniform distribution of the flow velocity by providing a flow resistance having a pressure loss coefficient of 0.1 or more of the gas flow. It has a plurality of pressure loss generating means arranged. The pressure loss generating means is, for example, a through hole, and the flow velocity is evenly distributed by adding flow resistance. The higher the ratio of the gas flow 2 to the total pressure loss, the higher the effect of uniform distribution, and the higher the flow resistance (pressure loss) of the upper and lower pressure loss generating means, the higher the pressure resistance of the gas flow 2 Set the coefficient to 0.1 or more.
Note that there is a relationship of the formula (1) among the pressure loss coefficient ζ, the loss head h, the flow velocity V, and the gravitational acceleration g.
h = ζ · V 2 / (2 · g) (1)

整流部28bは、例えば格子状に配列した複数の整流グリッドからなり、均等分配部28bを通過したガス流2の流れ方向を整流し、流れ方向を均等化する。
この構成により、複数の圧損発生手段により流速分布を均等化し、複数の整流グリッドによりガス流の流れ方向を均等化するようになっている。
The rectification unit 28b is composed of, for example, a plurality of rectification grids arranged in a lattice pattern, and rectifies the flow direction of the gas flow 2 that has passed through the uniform distribution unit 28b to equalize the flow direction.
With this configuration, the flow velocity distribution is equalized by a plurality of pressure loss generating means, and the flow direction of the gas flow is equalized by a plurality of rectifying grids.

また、本発明の高速循環ガス冷却式真空熱処理炉は、冷却室22の上下に冷却室から流出入するガス流の方向を案内する補助分配機構29(例えば吹き込み板)を設け、冷却室の上下面積が大きい場合でも、複数箇所に向かうガス流の方向を最適化し、流れの均一化を高めるようになっている。   In addition, the high-speed circulating gas-cooled vacuum heat treatment furnace of the present invention is provided with auxiliary distribution mechanisms 29 (for example, blow-in plates) that guide the direction of gas flow flowing in and out of the cooling chamber above and below the cooling chamber 22. Even when the area is large, the direction of the gas flow toward a plurality of locations is optimized to improve the flow uniformity.

上記本発明の構成によれば、上下の整流器28により、冷却室22の上端及び下端を塞ぎ通過するガスの速度分布を均一化させるので、冷却領域を通過するガス流の速度変化を最少限度に抑えることができ、被処理品に対して乱れの少ない冷却ガスを吹き付けることができる。また、被処理品1を通った後の出口部も均等に冷却ガスを排出することで、被処理品の中央部にも均等に冷却ガスを通すような強制力が発揮され、熱処理材全体の歪みを低減することができる。   According to the above configuration of the present invention, the upper and lower rectifiers 28 block the upper and lower ends of the cooling chamber 22 and uniformize the velocity distribution of the gas passing therethrough, so that the change in the velocity of the gas flow passing through the cooling region is minimized. It is possible to suppress the cooling gas with less turbulence to the workpiece. Further, the outlet after passing through the article to be processed 1 also discharges the cooling gas evenly, thereby exerting a forcing force that allows the cooling gas to pass evenly through the central part of the article to be processed. Distortion can be reduced.

上述したように、本発明の高速循環ガス冷却式真空熱処理炉は、冷却時に熱処理材を高速冷却することができ、熱処理材全体に冷却ガスを均一に供給でき、かつ上向きと下向きの両方において冷却ガスを均一な速度と向きに整流して熱処理材全体の歪みを低減することができる、等の優れた効果を有する。   As described above, the high-speed circulating gas-cooled vacuum heat treatment furnace of the present invention can rapidly cool the heat-treated material during cooling, can uniformly supply the cooling gas to the entire heat-treated material, and can be cooled both upward and downward. It has excellent effects such as that the gas can be rectified at a uniform speed and direction to reduce distortion of the entire heat treatment material.

なお、本発明は上述した実施例に限定されず、本発明の要旨を逸脱しない限りで自由に変更することができることは勿論である。   In addition, this invention is not limited to the Example mentioned above, Of course, unless it deviates from the summary of this invention, it can change freely.

本発明による高速循環ガス冷却式真空熱処理炉の全体構成図である。1 is an overall configuration diagram of a high-speed circulating gas cooled vacuum heat treatment furnace according to the present invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. 図2のA−A線における断面図である。It is sectional drawing in the AA of FIG. 非特許文献1に開示された高速循環ガス冷却炉の構成図である。1 is a configuration diagram of a fast circulating gas cooling furnace disclosed in Non-Patent Document 1. FIG. 特許文献1の「真空炉におけるガス循環冷却促進法」の構成図である。1 is a configuration diagram of “a gas circulation cooling promotion method in a vacuum furnace” of Patent Document 1. FIG.

符号の説明Explanation of symbols

1 被処理品、2 循環ガス、
10 真空加熱炉、11 真空容器、12 加熱室、
13 前扉、14 後扉、15 載置台、16 ヒータ、
20 ガス冷却炉、21 真空容器、
21a 中間断熱扉、21b 容器胴部、
21c 循環部、21d,21e クラッチリング、
22 冷却室、22a,22b 断熱壁、22c 水平仕切板、
24 ガス冷却循環装置、24a 冷却ファン、
24b 冷却ファンモータ、25 熱交換器、
26 ガス方向切替え装置、26a カウリング、
26b 下方吸引口、26c 上方吸引口、27 昇降シリンダ、
28 整流器、28a 均等分配部、28b 整流部、
29 補助分配機構、30 移動装置、32 搬送棒、
33 後扉昇降装置、34 前扉昇降装置、
34 中間扉昇降装置

1 Product to be treated, 2 Circulating gas,
10 vacuum heating furnace, 11 vacuum vessel, 12 heating chamber,
13 front door, 14 rear door, 15 mounting table, 16 heater,
20 gas-cooled furnace, 21 vacuum vessel,
21a Intermediate heat insulation door, 21b Container body,
21c circulation part, 21d, 21e clutch ring,
22 cooling chamber, 22a, 22b heat insulation wall, 22c horizontal partition plate,
24 gas cooling circulation device, 24a cooling fan,
24b cooling fan motor, 25 heat exchanger,
26 gas direction switching device, 26a cowling,
26b Lower suction port, 26c Upper suction port, 27 Lift cylinder
28 rectifier, 28a equal distribution part, 28b rectification part,
29 Auxiliary distribution mechanism, 30 moving device, 32 transport rod,
33 Rear door lifting device, 34 Front door lifting device,
34 Intermediate door lifting device

Claims (4)

加熱した被処理品を加圧した循環ガスで冷却するガス冷却炉を備えた高速循環ガス冷却式真空熱処理炉であって、
前記ガス冷却炉は、被処理品を静置する冷却領域を囲みその内側に上下方向に断面一定のガス流路を形成する冷却室と、該冷却室内を上下方向に通過するガスを冷却して循環させるガス冷却循環装置と、冷却室内を上下方向に通過するガスの方向を交互に切り替えるガス方向切替え装置と、冷却室の上端及び下端を塞ぎ通過するガスの速度分布を均一化させる上下の整流器と、を備え
前記ガス方向切替え装置は、中空のカウリングと、該カウリングを昇降させる昇降シリンダとを備え、前記カウリングは、下降位置において冷却室の下方と連通する下方吸引口と、上昇位置において冷却室の上方と連通する上方吸引口とを有する、ことを特徴とする高速循環ガス冷却式真空熱処理炉。
A high-speed circulating gas cooling vacuum heat treatment furnace equipped with a gas cooling furnace that cools a heated workpiece with a pressurized circulating gas,
The gas cooling furnace cools a gas passing through the cooling chamber in a vertical direction, and a cooling chamber that surrounds a cooling region in which the article to be processed is placed and forms a gas flow path having a constant cross section in the vertical direction. Circulating gas cooling circulation device, gas direction switching device that alternately switches the direction of gas passing in the vertical direction in the cooling chamber, and upper and lower rectifiers that equalize the velocity distribution of the gas passing through the upper and lower ends of the cooling chamber and, with a,
The gas direction switching device includes a hollow cowling and an elevating cylinder that raises and lowers the cowling. The cowling includes a lower suction port that communicates with a lower portion of the cooling chamber at a lowered position, and an upper portion of the cooling chamber at an elevated position. A high-speed circulation gas-cooled vacuum heat treatment furnace having an upper suction port communicating therewith .
加熱した被処理品を加圧した循環ガスで冷却するガス冷却炉を備えた高速循環ガス冷却式真空熱処理炉であって、
前記ガス冷却炉は、被処理品を静置する冷却領域を囲みその内側に上下方向に断面一定のガス流路を形成する冷却室と、該冷却室内を上下方向に通過するガスを冷却して循環させるガス冷却循環装置と、冷却室内を上下方向に通過するガスの方向を交互に切り替えるガス方向切替え装置と、冷却室の上端及び下端を塞ぎ通過するガスの速度分布を均一化させる上下の整流器と、を備え
前記ガス冷却循環装置は、冷却室に隣接して設置され冷却室を通過したガスを吸引して加圧する冷却ファンと、該冷却ファンに吸引されるガスを間接冷却する熱交換器とからなり、
前記ガス方向切替え装置は、前記熱交換器を間隔を隔てて囲む中空のカウリングと、該カウリングを昇降させる昇降シリンダとを備え、前記カウリングは、下降位置において冷却室の下方と連通する下方吸引口と、上昇位置において冷却室の上方と連通する上方吸引口とを有する、ことを特徴とする高速循環ガス冷却式真空熱処理炉。
A high-speed circulating gas cooling vacuum heat treatment furnace equipped with a gas cooling furnace that cools a heated workpiece with a pressurized circulating gas,
The gas cooling furnace cools a gas passing through the cooling chamber in a vertical direction, and a cooling chamber that surrounds a cooling region in which the article to be processed is placed and forms a gas flow path having a constant cross section in the vertical direction. Circulating gas cooling circulation device, gas direction switching device that alternately switches the direction of gas passing in the vertical direction in the cooling chamber, and upper and lower rectifiers that equalize the velocity distribution of the gas passing through the upper and lower ends of the cooling chamber and, with a,
The gas cooling / circulating device comprises a cooling fan that is installed adjacent to the cooling chamber and sucks and pressurizes the gas that has passed through the cooling chamber, and a heat exchanger that indirectly cools the gas sucked into the cooling fan,
The gas direction switching device includes a hollow cowling that surrounds the heat exchanger at an interval, and a lift cylinder that lifts and lowers the cowling, and the cowling communicates with a lower portion of a cooling chamber at a lowered position. And a high-speed circulation gas-cooled vacuum heat treatment furnace having an upper suction port communicating with the upper part of the cooling chamber at the ascending position .
前記上下の整流器は、互いに積層された均等分配部と整流部とからなり、或いは均等分配部と整流部の両機能を備え、
均等分配部は、上昇ガス流の圧力損失係数0.1以上の流路抵抗をつけることにより流速の均等分配化を図るために前記上昇ガス流に直交する方向に均等に配置された複数の圧損発生手段を有し、
整流部は、均等分配部を通過した上昇ガス流の流れ方向を整流する複数の整流グリッドからなる、ことを特徴とする請求項1または2に記載の高速循環ガス冷却式真空熱処理炉。
The upper and lower rectifiers are composed of an equal distribution unit and a rectification unit stacked on each other, or have both functions of an equal distribution unit and a rectification unit,
The uniform distribution section has a plurality of pressure losses arranged uniformly in a direction perpendicular to the ascending gas flow in order to achieve a uniform distribution of flow velocity by providing a flow resistance having a pressure loss coefficient of 0.1 or more of the ascending gas flow. Generating means,
3. The high-speed circulating gas-cooled vacuum heat treatment furnace according to claim 1, wherein the rectification unit includes a plurality of rectification grids that rectify the flow direction of the rising gas flow that has passed through the uniform distribution unit.
更に、冷却室の上下にガス方向切替え装置から流出入するガス流の方向を案内する補助分配機構を設ける、ことを特徴とする請求項1または2に記載の高速循環ガス冷却式真空熱処理炉。 Furthermore, high-speed circulation gas cooling type vacuum heat treating furnace according to claim 1 or 2 above and below the cooling chamber an auxiliary distribution mechanisms for guiding the direction of gas flow into and out of the flow from the gas direction switching device, it is characterized.
JP2003273411A 2003-06-27 2003-07-11 High-speed circulating gas-cooled vacuum heat treatment furnace Expired - Fee Related JP4441903B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2003273411A JP4441903B2 (en) 2003-07-11 2003-07-11 High-speed circulating gas-cooled vacuum heat treatment furnace
EP09008821A EP2116802B1 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treating furnace and cooling gas direction switching device
KR1020057024660A KR100943463B1 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treating furnace and cooling gas direction switching device
US10/562,498 US7625204B2 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treating furnace and cooling gas direction switching device therefor
EP04724762A EP1643199B1 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treating furnace and cooling gas direction switching device
DE602004027043T DE602004027043D1 (en) 2003-06-27 2004-03-31 VACUUM HEAT TREATMENT OVEN OF GAS COOLING TYPE AND REFRIGERATOR SENSOR
PCT/JP2004/004643 WO2005001360A1 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treating furnace and cooling gas direction switching device
DE602004031061T DE602004031061D1 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treatment furnace and device for changing the direction of cooling gas
CN2008100831847A CN101294772B (en) 2003-06-27 2004-03-31 Cooled gas duct changing device for vacuum heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003273411A JP4441903B2 (en) 2003-07-11 2003-07-11 High-speed circulating gas-cooled vacuum heat treatment furnace

Publications (2)

Publication Number Publication Date
JP2005029872A JP2005029872A (en) 2005-02-03
JP4441903B2 true JP4441903B2 (en) 2010-03-31

Family

ID=34210658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003273411A Expired - Fee Related JP4441903B2 (en) 2003-06-27 2003-07-11 High-speed circulating gas-cooled vacuum heat treatment furnace

Country Status (1)

Country Link
JP (1) JP4441903B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037905A1 (en) 2010-09-24 2012-03-29 Ipsen International Gmbh Method and device for conducting the flow in industrial furnaces for the thermal treatment of metal materials/workpieces

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358875B2 (en) * 2005-04-28 2013-12-04 アイシン・エィ・ダブリュ株式会社 Steel member cooling method
CN101233247B (en) 2005-09-26 2011-07-06 爱信艾达株式会社 Steel members, method for heat treatment of the same, and process for production thereof
JP5028777B2 (en) * 2005-09-29 2012-09-19 株式会社Ihi Heat treatment equipment
EP2006582B1 (en) 2006-04-06 2013-05-22 IHI Corporation Seal structure for cooling treatment apparatus or multichamber heat treatment apparatus, and for the seal structure, method of pressure regulation and method of operating
DE102009052900A1 (en) 2009-11-13 2011-05-19 Ipsen International Gmbh Method and device for conducting flow in industrial furnaces for the heat treatment of metallic materials / workpieces
JP2015013764A (en) * 2013-07-03 2015-01-22 住友電気工業株式会社 Production method of glass preform
JP6596703B2 (en) 2015-03-04 2019-10-30 株式会社Ihi Multi-chamber heat treatment equipment
DE112016002361T5 (en) 2015-05-26 2018-02-22 Ihi Corporation HEAT TREATMENT DEVICE
CN105890369A (en) * 2016-05-31 2016-08-24 盐城丰东特种炉业有限公司 Heat exchange device on heating furnace
CN107941019B (en) * 2017-12-21 2023-10-03 昇力恒(宁夏)真空科技股份公司 High-temperature atmosphere multistage circulation cooling type ultrahigh-temperature sintering furnace
CN110158021A (en) * 2019-06-19 2019-08-23 江苏丰东热技术有限公司 A kind of carburizing equipment and method for carburizing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037905A1 (en) 2010-09-24 2012-03-29 Ipsen International Gmbh Method and device for conducting the flow in industrial furnaces for the thermal treatment of metal materials/workpieces

Also Published As

Publication number Publication date
JP2005029872A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
KR100943463B1 (en) Gas cooling type vacuum heat treating furnace and cooling gas direction switching device
JP4441903B2 (en) High-speed circulating gas-cooled vacuum heat treatment furnace
JP2006266616A (en) Heat treatment furnace
JP4280981B2 (en) Cooling gas air path switching device for vacuum heat treatment furnace
JP4645592B2 (en) Two-chamber heat treatment furnace
JPH0549724B2 (en)
JP5167640B2 (en) Heat treatment equipment
CN218860803U (en) Vacuum double-chamber heat treatment furnace
EP1801529B1 (en) Change-over apparatus for cooling gas passages in vacuum heat treatment furnace
US7520746B1 (en) Annealing furnace cooling and purging system and method
JP4378432B2 (en) Hot air circulation furnace
JP2009287085A (en) Apparatus and method for heat-treatment
CN107002159A (en) Annealing device
JP2010016285A (en) Heat treatment apparatus
JP5201127B2 (en) Heat treatment equipment
CN214218801U (en) Controlled atmosphere spheroidizing annealing annular furnace
JP4466038B2 (en) Heat treatment equipment
KR100948918B1 (en) Device for amending shape of strip in bright annealing furnace
JP5582792B2 (en) Heating device
CN116397090B (en) Iron core heat treatment device and process
JP4779303B2 (en) Gas cooling furnace
JPS63149314A (en) Heat treatment furnace
KR20240149609A (en) Gas Quenching Electric Furnace
JPS5827324B2 (en) heat treatment equipment
JP2015218367A (en) Vacuum hardening treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091231

R151 Written notification of patent or utility model registration

Ref document number: 4441903

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees