JP4280981B2 - Cooling gas air path switching device for vacuum heat treatment furnace - Google Patents

Cooling gas air path switching device for vacuum heat treatment furnace Download PDF

Info

Publication number
JP4280981B2
JP4280981B2 JP2003183968A JP2003183968A JP4280981B2 JP 4280981 B2 JP4280981 B2 JP 4280981B2 JP 2003183968 A JP2003183968 A JP 2003183968A JP 2003183968 A JP2003183968 A JP 2003183968A JP 4280981 B2 JP4280981 B2 JP 4280981B2
Authority
JP
Japan
Prior art keywords
cooling
gas
cooling chamber
partition plate
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003183968A
Other languages
Japanese (ja)
Other versions
JP2005016861A (en
Inventor
和彦 勝俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003183968A priority Critical patent/JP4280981B2/en
Application filed by IHI Corp filed Critical IHI Corp
Priority to KR1020057024660A priority patent/KR100943463B1/en
Priority to PCT/JP2004/004643 priority patent/WO2005001360A1/en
Priority to US10/562,498 priority patent/US7625204B2/en
Priority to DE602004031061T priority patent/DE602004031061D1/en
Priority to CNB2004800182131A priority patent/CN100432610C/en
Priority to EP09008821A priority patent/EP2116802B1/en
Priority to CN2008100831847A priority patent/CN101294772B/en
Priority to DE602004027043T priority patent/DE602004027043D1/en
Priority to EP04724762A priority patent/EP1643199B1/en
Publication of JP2005016861A publication Critical patent/JP2005016861A/en
Application granted granted Critical
Publication of JP4280981B2 publication Critical patent/JP4280981B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、真空熱処理炉の冷却ガス風路切替え装置に関する。
【0002】
【従来の技術】
真空熱処理炉は、内部を減圧した後、不活性ガス等を再充填して被処理品を熱処理する熱処理炉である。真空熱処理炉は、加熱後に炉内及び処理品についた水分等がガス化した後に再度減圧し、不活性ガス等を再充填することで、水分を完全に除去できるため、水分による色付きのない熱処理(「光輝熱処理」と呼ぶ)ができる利点がある。
【0003】
また、ガス冷却式真空熱処理炉は、光輝熱処理ができ、かつ脱炭浸炭がない、変形が少ない、作業環境が良いなど、種々の利点を有する。しかし、初期のガス冷却式真空熱処理炉は、減圧冷却式であるため、冷却速度が不十分な欠点があった。そこで、冷却速度を高めるために、高速循環ガス冷却方式が実用化されている。
【0004】
図7は、非特許文献1に開示された高速循環ガス冷却炉の構成図である。この図において、50は断熱材、51はヒータ、52は有効作業域、53は炉体及び水冷ジャケット、54は熱交換器、55はターボファン、56はファン用モータ、57は冷却扉、58は炉床、59はガスディストリビュータ、60は冷却ガスの風路を切替えるダンパーである。
【0005】
また、特許文献1の「真空炉におけるガス循環冷却促進法」は、図8に示すように、気密性の真空容器61内に断熱壁67によって囲った加熱室66を設け、加熱室内に配置されたヒータ62により被熱物64を真空中で加熱すると共に、真空容器61内にクーラ62およびファン63が設けられ真空容器内に供給された無酸化性ガスをクーラ62により冷却し、無酸化性ガスをファン63の回転により加熱室66の相対する断熱壁67面に設けられた開口68,69より加熱室66内に循環させて被熱物64を強制ガス循環冷却する真空炉において、少なくとも一端が末広がり状に形成れた耐熱性の筒状フード65を加熱室66内に置かれた被熱物64の周囲を適宜間隔を離して囲うように、かつその両端が前記開口68,69に相対するように配置して無酸化性ガスを加熱室66内に循環させるようにしたものである。なお、この図において70は冷却ガスの風路を切替えるダンパーである。
【0006】
【非特許文献1】
山崎勝弘,金属材料の真空熱処理(2),熱処理30巻2号,平成2年4月
【特許文献1】
特開平5−230528号公報
【0007】
【発明が解決しようとする課題】
上述した非特許文献1及び特許文献1に記載の高速循環ガス冷却炉において、上向きと下向きの風路を切り替える機構として上下にダンパー装置が通常用いられている。しかし、上下のダンパー装置を風路切替え機構とした場合、以下の問題点があった。
(1)ダンパー装置は、その開閉位置により高速で通過する風圧による負荷変動が大きい。そのため、高圧ガスの場合にダンパー方式では風圧の影響でスムースに動かすことが困難である。
(2)ダンパー装置は、開閉角度と開口面積が比例しない。そのため、上下の複数の駆動装置を切り替える際に、開口面積のバランスを整えることが難しく、吸込口及び吐出口の開口面積に差が生じたり、その変動が大きくなり、冷却ガス量が変動し、安定したガス冷却が困難である。
(3)上下に複数のダンパー装置が存在し、複数の駆動装置が必要であり、構造が複雑となる。
(4)開口面積が上下にダンパー装置で限定され、炉体内面積に比べて小さい。
【0008】
本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、風圧の影響を受けにくくスムースに風路を切替えることができ、開口面積の変動や吸込口と吐出口の開口面積差が生じにくく、安定したガス冷却が可能であり、構造が簡潔であり単一の駆動装置で切替えが可能であり、大きな開口面積を確保できる真空熱処理炉の冷却ガス風路切替え装置を提供することにある。
【0009】
【課題を解決するための手段】
本発明によれば、被処理品を静置する冷却領域を囲む冷却室と、該冷却室内を通過するガスを冷却して循環させるガス冷却循環装置とを備え、加熱した被処理品を加圧した循環ガスで冷却する真空熱処理炉の冷却ガス風路切替え装置であって、冷却室とガス冷却循環装置との間を仕切る固定仕切板と、該固定仕切板の表面に沿って回転駆動される回転仕切板とを有し、固定仕切板はほぼ全面を貫通する開口を有し、回転仕切板は、ガス冷却循環装置の吸込口と吐出口に部分的に連通する吸引開口と吐出開口を有し、これにより冷却室内を通過するガスの方向を交互に切り替える、ことを特徴とする真空熱処理炉の冷却ガス風路切替え装置が提供される。
【0010】
上記本発明の構成によれば、冷却室とガス冷却循環装置との間を仕切る固定仕切板の表面に沿って回転仕切板を回転駆動するだけで、冷却室内を通過するガスの方向を交互に切り替えるので、流れ方向に対して回転仕切板が垂直に動く回転駆動であるため、高圧ガス(密度が高いガス体)であっても風圧の影響を受けにくくスムースに風路を切替えることができる。
また、回転仕切板が、ガス冷却循環装置の吸込口と吐出口に部分的に連通する吸引開口と吐出開口を有するので、開口面積の変動や吸込口と吐出口の開口面積差が生じにくく、安定したガス冷却が可能である。また、構造が簡潔であり単一の駆動装置で切替えが可能であり、大きな開口面積を確保できる。
【0011】
本発明の好ましい第1実施形態によれば、前記冷却室は、その内側を上下方向に通過するガス流路を有し、冷却室内をガスが下方に流れるときに、吸引開口が冷却室の下方のみと連通しかつ吐出開口が冷却室の上方のみと連通し、冷却室内をガスが上方に流れるときに、吸引開口が冷却室の上方のみと連通しかつ吐出開口が冷却室の下方のみと連通するように開口位置が設定されている。
【0012】
この構成により、冷却室とガス冷却循環装置との間を仕切る炉体内面積Aのうち、1/2づつをガス冷却循環装置の吸込口と吐出口とし、更に吸込口と吐出口のうち、1/2づつを下方、上方とすることで、吸引開口と吐出開口を炉体内面積Aの約1/4づつに設定することができる。従って、従来に比較して風路面積を大きくとれ、ガスの通過流速を低減でき、圧損を小さくできる。
また、固定仕切板とガス冷却循環装置の間は、内側全面がガス冷却循環装置の吸込口に連通し、外側全面だガス冷却循環装置の吐出口に連通しているので、吐出口/吸込み口の隙間を十分取ることで半面しか開口していなくても反対面への回り込みが可能となり、熱交換器全体を有効利用できる。
【0013】
本発明の好ましい第2実施形態によれば、前記冷却室内をガスが上下方向に流れるときに、吸引開口が冷却室の下方のみ又は上方のみと選択的に連通しかつ吐出開口が冷却室の上方のみ又は下方のみと選択的に連通し、前記冷却室内をガスが水平方向に流れるときに、吸引開口が冷却室のいずれかの片側のみに選択的に連通しかつ吐出開口が冷却室の反対の片側のみと選択的に連通するように開口位置が設定されている。
【0014】
この構成により、冷却室とガス冷却循環装置との間を仕切る固定仕切板の表面に沿って回転仕切板を回転駆動するだけで、冷却室内を通過するガスの方向を上下方向及び左右方向に自由に切り替えることができる。
【0015】
前記ガス冷却循環装置は、冷却室に隣接して設置され冷却室を通過したガスを吸引して加圧する冷却ファンと、該冷却ファンから吐出されるガスを間接冷却する熱交換器とからなる。
【0016】
この構成により、固定仕切板とガス冷却循環装置の間は、内側全面がガス冷却循環装置の吸込口に連通し、外側全面だガス冷却循環装置の吐出口に連通しているので、吐出口/吸込み口の隙間を十分取ることで半面しか開口していなくても反対面への回り込みが可能となり、熱交換器全体を有効利用できる。
【0017】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付し、重複した説明を省略する。
【0018】
図1は、本発明の第1実施形態の冷却ガス風路切替え装置を備えた真空熱処理炉の全体構成図である。この図において、この真空熱処理炉は、真空加熱炉10、ガス冷却炉20、及び移動装置30を備えた多室型熱処理炉である。
真空加熱炉10は、被処理品1を減圧下で加熱する機能を有する。ガス冷却炉20は、加熱した被処理品1を加圧した循環ガス2で冷却する機能を有する。移動装置30は、被処理品1を真空加熱炉10とガス冷却炉20との間で移動する機能を有する。
【0019】
真空加熱炉10は、内部が真空排気されるようになった真空容器11、被処理品1を内部に収容する加熱室12、加熱室に被処理品1を出し入れするための前扉13、加熱室内の被処理品1を移動させるための開口を閉じる後扉14、被処理品1を前後に水平移動可能に載せる載置台15、被処理品1を加熱するためのヒータ16、等からなる。この構成により、真空容器11の内部を真空に減圧し、ヒータ16により被処理品1を所定の温度まで加熱することができる。
【0020】
移動装置30は、被処理品1を真空加熱炉10とガス冷却炉20との間で水平に移動させる搬送棒32、後扉14を昇降させて開閉する後扉昇降装置33、前扉13を昇降させて開閉する前扉昇降装置34、及びガス冷却炉20の中間断熱扉21aを昇降させて開閉する中間扉昇降装置34を備える。この例において、搬送棒32はラックピニオン駆動、後扉昇降装置33は直動シリンダ、前扉昇降装置34と中間扉昇降装置34は巻上げ機であるが、本発明はこれに限定されず、その他の駆動機構であってもよい。この構成により、後扉14、前扉13及び中間断熱扉21aを開放した状態で、搬送棒32により、被処理品1を真空加熱炉10とガス冷却炉20との間で水平に移動させることができる。
【0021】
図2は図1の部分拡大図であり、図3は図2のA−A線における断面図である。図1〜図3に示すように、ガス冷却炉20は、真空容器21、冷却室22、ガス冷却循環装置24、冷却ガス風路切替え装置40及び整流器28を備える。
真空容器21は、真空加熱炉10の前扉13に対向して設けられた中間断熱扉21a、被処理品1を内部に収容する円筒形の容器胴部21b、ガス冷却循環装置24を収容する循環部21c、気密に開閉可能なクラッチリング21e、及びクランプ21dからなる。この構成により、クラッチリング21eを開放し循環部21cを容器胴部21bから図1で右方に後退させることにより、被処理品1を容器胴部21bの内部に直接収納することができる。また、クラッチリング21e、クランプ21dにより中間断熱扉21aと循環部21cを容器胴部21bに気密に連結し、加圧した冷却用ガス(アルゴン、ヘリウム、窒素等)を内部に供給することにより、加圧ガスを冷却に用いることができる。
【0022】
冷却室22は、真空加熱炉10に隣接して容器胴部21bの中央部に設けられる。冷却室22の真空加熱炉側は中間断熱扉21a、ガス冷却循環装置と両側面は気密性のある断熱壁22a、22bで仕切られている。またこの冷却室22は、上下端は開口しており、かつその内側に上下方向に断面一定のガス流路を形成している。この冷却室22の内側が冷却領域であり、被処理品1は、例えばジェットエンジンの動翼、静翼、ボルト等の小型金属部品であり、トレーやバスケット内に収容し、冷却室22の中央に通気性のある載置台23に載せて静置される。
載置台23は真空加熱炉10の載置台15と同一高さに設置され、内蔵するローラ上を自由に移動できるようになっている。また、容器胴部21bと断熱壁22bの間に、図3に示すように水平仕切板22cが設けられ、冷却室22の上下に位置するガスを気密に仕切っている。
【0023】
ガス冷却循環装置24は、冷却室22に隣接して設置され冷却室22を通過したガスを吸引して加圧する冷却ファン24aと、該冷却ファンから吐出されるガスを間接冷却する熱交換器25とからなる。冷却ファン24aは、真空容器21の循環部21cに取付けられた冷却ファンモータ24bにより回転駆動され、その中央部からガスを吸引し、外周部から吐出する。熱交換器25は、例えば内部を水冷された冷却フィンチューブである。 この構成により、外周部から吐出した循環ガスを熱交換器25で冷却し、冷却室22内を上下方向に通過するガスを冷却して循環することができる。
【0024】
整流器28は、冷却室22の上端及び下端を塞いで上下に設けられ、冷却室22を通過するガスの速度分布を均一化させる機能を有する。
【0025】
また、本発明の高速循環ガス冷却式真空熱処理炉は、冷却室22の上下に冷却室から流出入するガス流の方向を案内する補助分配機構29(例えば吹き込み板)を設け、冷却室の上下面積が大きい場合でも、複数箇所に向かうガス流の方向を最適化し、流れの均一化を高めるようになっている。
【0026】
図4は図2のB部拡大図である。この図に示すように、本発明の冷却ガス風路切替え装置40は、固定仕切板42、回転仕切板44及び回転駆動装置46からなる。
固定仕切板42は、冷却室22とガス冷却循環装置24との間を仕切り、その間を遮断している。回転仕切板44は、固定仕切板42の表面に沿ってこの例では冷却ファン24aと同軸に回転駆動装置46により回転駆動される。回転駆動装置46はこの例では、ラックとピニオンであり、回転仕切板44を1/2回転させて上下を逆にするようになっている。ラックの直動には空圧又は液圧シリンダ等を用いることができる。また、本発明はこの構成に限定されず、周知の他の駆動装置を用いることもできる。
【0027】
固定仕切板42の中央部には軸受43aを内蔵する軸受箱43が設けらる。この軸受箱43は、支持フレーム43bにより、真空容器21の循環部21cから支持されている。 回転仕切板44は、中心に回転軸45がキーを回転固定されており、この回転軸45は軸受43aにより冷却ファン24aと同軸に支持れている。圧縮バネ47が、回転軸45の軸端部(図で左端と支持板45a)と回転仕切板44の間に圧縮状態で挟持され、回転仕切板44を常に回転仕切板44に向けて付勢し、その間の隙間を低減するようになっている。このため、付加すれば機能が向上する。
前述の水平仕切板22cの端面と固定仕切板42の端面に、シール材48が張付けられており、回転仕切板44の間、及び回転仕切板44との間の隙間をシールするようになっている。このシール材48は、例えば摩擦の少ない鉛黄銅、グラファイト、等であり、リークを低減しかつ動きを滑らかにしている。
【0028】
図5は図2のC−C線における断面図である。この図において、(A)はC−C線における断面図、すなわち回転仕切板44の正面図であり、(B)は回転仕切板44を除去した断面図、すなわち固定仕切板42の正面図である。
【0029】
固定仕切板42は、ほぼ全面を貫通する開口42aを有する。すなわち、この例では、支持フレーム43bと同位置で半径方向に延びる細長い放射部42bと、最外周、中央部、及び中間部の細いリング状の円形部42cとからなる。なお、この図で中央の円形部42cには、上述した軸受箱43が取付られている。なお、開口42aの位置はこの例に限定されず、可能な範囲で広く設定するのがよい。
【0030】
回転仕切板44は、ガス冷却循環装置の吸込口と吐出口に部分的に連通する吸引開口44aと吐出開口44bを有する。
図5の第1実施形態において、冷却室22は、その内側を上下方向に通過するガス流路を有し、冷却室内22をガスが下方に流れるときに、吸引開口44aが冷却室の下方のみと連通しかつ吐出開口44bが冷却室の上方のみと連通し、冷却室44内をガスが上方に流れるときに、吸引開口44aが冷却室の上方のみと連通しかつ吐出開口44bが冷却室の下方のみと連通するように開口位置が設定されている。
なお、この例において、吸引開口44aはほぼ1/2の円形、吐出開口44bはほぼ1/2の扇形であり、互いに水平軸(前述の水平仕切板22c)に対して反対側に設けられている。
【0031】
この構成により、冷却室22とガス冷却循環装置24との間を仕切る炉体内面積Aのうち、1/2づつをガス冷却循環装置の吸込口と吐出口とし、更に吸込口と吐出口のうち、1/2づつを下方、上方とすることで、吸引開口44aと吐出開口44bを炉体内面積Aの約1/4づつに設定することができる。従って、風路面積を大きくとれ、ガスの通過流速を低減でき、圧損を小さくできる。
また、固定仕切板42とガス冷却循環装置24の間は、内側全面がガス冷却循環装置の吸込口に連通し、外側全面だガス冷却循環装置の吐出口に連通しているので、吐出口/吸込み口の隙間を十分取ることで半面しか開口していなくても反対面への回り込みが可能となり、熱交換器全体を有効利用できる。
【0032】
上述した本発明の構成によれば、冷却室とガス冷却循環装置との間を仕切る固定仕切板の表面に沿って回転仕切板を回転駆動するだけで、冷却室内を通過するガスの方向を交互に切り替えるので、流れ方向に対して回転仕切板が垂直に動く回転駆動であるため、高圧ガス(密度が高いガス体)であっても風圧の影響を受けにくくスムースに風路を切替えることができる。
また、回転仕切板が、ガス冷却循環装置の吸込口と吐出口に部分的に連通する吸引開口と吐出開口を有するので、開口面積の変動や吸込口と吐出口の開口面積差が生じにくく、安定したガス冷却が可能である。また、構造が簡潔であり単一の駆動装置で切替えが可能であり、大きな開口面積を確保できる。
なお、これまでは上下流のガス流れについて実施形態を示したが、回転仕切板を90°回転させて冷却室の整流器を側面(左右)に付けることで、左右流の切替え機構とすることもできる。
【0033】
図6は、本発明の第2実施形態を示す図5と同様の断面図である。この図において、(A)はC−C線における断面図、すなわち回転仕切板44の正面図であり、(B)は回転仕切板44を除去した断面図、すなわち固定仕切板42の正面図である。
この第2実施形態は、冷却室内をガスを上下方向に流すとき(上下流)と、冷却室内をガスを水平方向に流すとき(水平流)の両方に対応できるようになっている。
すなわち、この例において、吸引開口44aはほぼ1/4の円形、吐出開口44bはほぼ1/4の扇形であり、互いに水平軸(前述の水平仕切板22c)に対して反対側に設けられている。
【0034】
この第2実施形態では、冷却室22内をガスが上下方向に流れるときには、図5と同様に、吸引開口44aが冷却室22の下方のみ又は上方のみと選択的に連通し、かつ吐出開口44bが冷却室の上方のみ又は下方のみと選択的に連通するようになっている。また、図6(A)に示すように、冷却室22内をガスが水平方向に流れるときには、吸引開口44aが冷却室のいずれかの片側のみに選択的に連通し、かつ吐出開口44bが冷却室の反対の片側のみと選択的に連通するように開口位置が設定されている。
【0035】
この構成により、冷却室とガス冷却循環装置との間を仕切る固定仕切板の表面に沿って回転仕切板を回転駆動するだけで、冷却室内を通過するガスの方向を上下方向及び左右方向に自由に切り替えることができる。
【0036】
なお、本発明は上述した実施例に限定されず、本発明の要旨を逸脱しない限りで自由に変更することができることは勿論である。例えば、加熱室と冷却室が分離した装置に限らず、加熱と冷却を1室で行える単室炉でも使用は可能である。
【0037】
【発明の効果】
上述したように、本発明の真空熱処理炉の冷却ガス風路切替え装置は、風圧の影響を受けにくくスムースに風路を切替えることができ、開口面積の変動や吸込口と吐出口の開口面積差が生じにくく、安定したガス冷却が可能であり、構造が簡潔であり単一の駆動装置で切替えが可能であり、大きな開口面積を確保できる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の第1実施形態の冷却ガス風路切替え装置を備えた真空熱処理炉の全体構成図である。
【図2】図1の部分拡大図である。
【図3】図2のA−A線における断面図である。
【図4】図2のB部拡大図である。
【図5】図2のC−C線における断面図である。
【図6】本発明の第2実施形態を示す図5と同様の断面図である。
【図7】非特許文献1に開示された高速循環ガス冷却炉の構成図である。
【図8】特許文献1の「真空炉におけるガス循環冷却促進法」の構成図である。
【符号の説明】
1 被処理品、2 循環ガス、
10 真空加熱炉、11 真空容器、12 加熱室、
13 前扉、14 後扉、15 載置台、16 ヒータ、
20 ガス冷却炉、21 真空容器、
21a 中間断熱扉、21b 容器胴部、
21c 循環部、21e クラッチリング、21d クランプ
22 冷却室、22a,22b 断熱壁、22c 水平仕切板、
24 ガス冷却循環装置、24a 冷却ファン、
24b 冷却ファンモータ、25 熱交換器、
28 整流器、29 補助分配機構、30 移動装置、32 搬送棒、
33 後扉昇降装置、34 前扉昇降装置、
34 中間扉昇降装置、
40 冷却ガス風路切替え装置、
42 固定仕切板、42a 開口、
43 軸受箱、43a 軸受、43b 支持フレーム、
44 回転仕切板、44a 吸引開口、44b 吐出開口、
45 回転軸、46 回転駆動装置(ラックとピニオン)、
47 圧縮バネ、48 シール材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling gas air path switching device for a vacuum heat treatment furnace.
[0002]
[Prior art]
The vacuum heat treatment furnace is a heat treatment furnace that heats the product to be treated by refilling with an inert gas after decompressing the inside. The vacuum heat treatment furnace is a heat treatment that does not cause coloration due to moisture because the moisture in the furnace and the processed product after gasification is reduced in pressure after reheating and refilling with inert gas etc. can be completely removed. (Referred to as “bright heat treatment”).
[0003]
The gas-cooled vacuum heat treatment furnace has various advantages such as bright heat treatment, no decarburization and carburization, less deformation, and a good working environment. However, the initial gas-cooled vacuum heat treatment furnace has a disadvantage that the cooling rate is insufficient because it is a vacuum cooling type. Therefore, in order to increase the cooling rate, a high-speed circulating gas cooling system has been put into practical use.
[0004]
FIG. 7 is a configuration diagram of the high-speed circulating gas cooling furnace disclosed in Non-Patent Document 1. In this figure, 50 is a heat insulating material, 51 is a heater, 52 is an effective working area, 53 is a furnace body and a water cooling jacket, 54 is a heat exchanger, 55 is a turbo fan, 56 is a motor for a fan, 57 is a cooling door, 58 Is a hearth, 59 is a gas distributor, and 60 is a damper for switching the air path of the cooling gas.
[0005]
In addition, as shown in FIG. 8, the “gas circulation cooling promotion method in a vacuum furnace” of Patent Document 1 includes a heating chamber 66 surrounded by a heat insulating wall 67 in an airtight vacuum vessel 61 and is disposed in the heating chamber. The heated object 64 is heated in vacuum by the heater 62, and the cooler 62 and the fan 63 are provided in the vacuum vessel 61, and the non-oxidizing gas supplied into the vacuum vessel is cooled by the cooler 62. In a vacuum furnace in which gas is circulated into the heating chamber 66 through openings 68 and 69 provided on the opposing heat insulating wall 67 surface of the heating chamber 66 by the rotation of the fan 63 to forcibly circulate and cool the object to be heated 64. The heat-resistant cylindrical hood 65 formed in a divergent shape surrounds the object to be heated 64 placed in the heating chamber 66 at an appropriate interval, and both ends thereof are relative to the openings 68 and 69. Do And sea urchin disposed is obtained so as to circulate the non-oxidizing gas into the heating chamber 66. In this figure, reference numeral 70 denotes a damper for switching the air path of the cooling gas.
[0006]
[Non-Patent Document 1]
Katsuhiro Yamazaki, Vacuum heat treatment of metal materials (2), Heat treatment No.30, No.2, April 1990 [Patent Document 1]
Japanese Patent Laid-Open No. 5-230528
[Problems to be solved by the invention]
In the high-speed circulating gas cooling furnace described in Non-Patent Document 1 and Patent Document 1 described above, a damper device is normally used as a mechanism for switching an upward and downward air path. However, when the upper and lower damper devices are air path switching mechanisms, there are the following problems.
(1) The damper device has a large load fluctuation due to wind pressure passing at a high speed depending on its opening / closing position. Therefore, in the case of high-pressure gas, it is difficult to move smoothly due to the influence of wind pressure in the damper system.
(2) In the damper device, the opening / closing angle and the opening area are not proportional. Therefore, when switching between the upper and lower drive devices, it is difficult to balance the opening area, the difference between the opening area of the suction port and the discharge port, or the variation becomes large, the amount of cooling gas varies, Stable gas cooling is difficult.
(3) There are a plurality of damper devices at the top and bottom, a plurality of drive devices are required, and the structure becomes complicated.
(4) The opening area is limited by the damper device up and down and is smaller than the furnace body area.
[0008]
The present invention has been developed to solve the above-described problems. In other words, the object of the present invention is to be able to smoothly switch the air path without being affected by the wind pressure, to prevent fluctuations in the opening area and differences in the opening area between the suction port and the discharge port, and stable gas cooling is possible. An object of the present invention is to provide a cooling gas air path switching device for a vacuum heat treatment furnace that has a simple structure, can be switched by a single drive device, and can secure a large opening area.
[0009]
[Means for Solving the Problems]
According to the present invention, the apparatus includes a cooling chamber that surrounds a cooling region in which an object to be processed is placed, and a gas cooling circulation device that cools and circulates gas passing through the cooling chamber, and pressurizes the heated object to be processed. A cooling gas air path switching device for a vacuum heat treatment furnace that cools with a circulating gas, and is driven to rotate along a fixed partition plate that partitions between the cooling chamber and the gas cooling circulation device, and the surface of the fixed partition plate The fixed partition plate has an opening penetrating almost the entire surface, and the rotary partition plate has a suction opening and a discharge opening partially communicating with the suction port and the discharge port of the gas cooling circulation device. Thus, there is provided a cooling gas air path switching device for a vacuum heat treatment furnace, wherein the direction of the gas passing through the cooling chamber is alternately switched.
[0010]
According to the above-described configuration of the present invention, the direction of the gas passing through the cooling chamber is alternately changed only by rotationally driving the rotating partition plate along the surface of the fixed partition plate that partitions the cooling chamber and the gas cooling circulation device. Since the switching is performed by the rotation drive in which the rotating partition plate moves vertically with respect to the flow direction, the air path can be smoothly switched even if it is a high-pressure gas (a gas body having a high density) hardly affected by the wind pressure.
In addition, since the rotary partition plate has a suction opening and a discharge opening partially communicating with the suction port and the discharge port of the gas cooling and circulation device, fluctuations in the opening area and a difference in the opening area between the suction port and the discharge port are unlikely to occur. Stable gas cooling is possible. In addition, the structure is simple and can be switched by a single driving device, and a large opening area can be secured.
[0011]
According to a first preferred embodiment of the present invention, the cooling chamber has a gas flow path that passes through the inside in the vertical direction, and when the gas flows downward in the cooling chamber, the suction opening is below the cooling chamber. And the discharge opening communicates only above the cooling chamber, and when the gas flows upward in the cooling chamber, the suction opening communicates only above the cooling chamber and the discharge opening communicates only below the cooling chamber. The opening position is set so as to.
[0012]
With this configuration, out of the furnace body area A partitioning between the cooling chamber and the gas cooling circulation device, ½ is used as the suction port and the discharge port of the gas cooling circulation device, and among the suction port and the discharge port, 1 By setting / 2 each downward and upward, the suction opening and the discharge opening can be set to about ¼ of the furnace body area A. Therefore, the air passage area can be increased compared to the conventional case, the gas passage flow rate can be reduced, and the pressure loss can be reduced.
Also, between the fixed partition plate and the gas cooling circulation device, the entire inner surface communicates with the suction port of the gas cooling circulation device, and the entire outer surface communicates with the discharge port of the gas cooling circulation device. By taking a sufficient gap, it is possible to wrap around the opposite surface even if only one side is open, and the entire heat exchanger can be used effectively.
[0013]
According to a second preferred embodiment of the present invention, when the gas flows in the vertical direction in the cooling chamber, the suction opening selectively communicates only with the lower side or only the upper side of the cooling chamber, and the discharge opening has the upper side of the cooling chamber. When the gas flows horizontally in the cooling chamber, the suction opening selectively communicates with only one side of the cooling chamber and the discharge opening is opposite to the cooling chamber. The opening position is set so as to selectively communicate with only one side.
[0014]
With this configuration, the direction of the gas passing through the cooling chamber can be freely adjusted in the vertical and horizontal directions by simply rotating the rotating partition plate along the surface of the fixed partition plate that partitions the cooling chamber and the gas cooling circulation device. You can switch to
[0015]
The gas cooling / circulating device includes a cooling fan that is installed adjacent to the cooling chamber and sucks and pressurizes the gas that has passed through the cooling chamber, and a heat exchanger that indirectly cools the gas discharged from the cooling fan.
[0016]
With this configuration, between the fixed partition plate and the gas cooling circulation device, the entire inner surface communicates with the suction port of the gas cooling circulation device, and the entire outer surface communicates with the discharge port of the gas cooling circulation device. By taking a sufficient clearance between the suction ports, even if only one side is open, it is possible to wrap around the opposite side, and the entire heat exchanger can be used effectively.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
[0018]
FIG. 1 is an overall configuration diagram of a vacuum heat treatment furnace including a cooling gas air path switching device according to a first embodiment of the present invention. In this figure, this vacuum heat treatment furnace is a multi-chamber heat treatment furnace provided with a vacuum heating furnace 10, a gas cooling furnace 20, and a moving device 30.
The vacuum heating furnace 10 has a function of heating the workpiece 1 under reduced pressure. The gas cooling furnace 20 has a function of cooling the heated workpiece 1 with the pressurized circulating gas 2. The moving device 30 has a function of moving the workpiece 1 between the vacuum heating furnace 10 and the gas cooling furnace 20.
[0019]
The vacuum heating furnace 10 includes a vacuum vessel 11 in which the inside is evacuated, a heating chamber 12 that houses the article 1 to be processed, a front door 13 for taking the article 1 into and out of the heating chamber, heating It comprises a rear door 14 that closes an opening for moving the object to be processed 1 in the room, a mounting table 15 on which the object 1 to be processed can be horizontally moved back and forth, a heater 16 for heating the object 1 to be processed, and the like. With this configuration, the inside of the vacuum vessel 11 can be decompressed to a vacuum, and the workpiece 1 can be heated to a predetermined temperature by the heater 16.
[0020]
The moving device 30 includes a conveying rod 32 that horizontally moves the article 1 to be processed between the vacuum heating furnace 10 and the gas cooling furnace 20, a rear door elevating device 33 that elevates and lowers the rear door 14, and a front door 13. A front door lifting / lowering device 34 that opens and closes and opens / closes and an intermediate door lifting / lowering device 34 that lifts and lowers and opens / closes the intermediate heat insulating door 21a of the gas cooling furnace 20 are provided. In this example, the transport bar 32 is a rack and pinion drive, the rear door lifting device 33 is a linear cylinder, and the front door lifting device 34 and the intermediate door lifting device 34 are hoisting machines. However, the present invention is not limited to this, The drive mechanism may be used. With this configuration, the article 1 to be processed is moved horizontally between the vacuum heating furnace 10 and the gas cooling furnace 20 by the transfer rod 32 with the rear door 14, the front door 13 and the intermediate heat insulating door 21a opened. Can do.
[0021]
2 is a partially enlarged view of FIG. 1, and FIG. 3 is a cross-sectional view taken along line AA of FIG. As shown in FIGS. 1 to 3, the gas cooling furnace 20 includes a vacuum vessel 21, a cooling chamber 22, a gas cooling circulation device 24, a cooling gas air path switching device 40, and a rectifier 28.
The vacuum vessel 21 accommodates an intermediate heat insulating door 21 a provided to face the front door 13 of the vacuum heating furnace 10, a cylindrical vessel body 21 b that accommodates the article 1 to be processed, and a gas cooling and circulation device 24. It consists of a circulation part 21c, a clutch ring 21e that can be opened and closed in an airtight manner, and a clamp 21d. With this configuration, the workpiece 1 can be stored directly in the container body 21b by opening the clutch ring 21e and retracting the circulation part 21c to the right in FIG. 1 from the container body 21b. Further, the intermediate heat insulating door 21a and the circulating portion 21c are hermetically connected to the container body portion 21b by the clutch ring 21e and the clamp 21d, and a pressurized cooling gas (argon, helium, nitrogen, etc.) is supplied to the inside. Pressurized gas can be used for cooling.
[0022]
The cooling chamber 22 is provided adjacent to the vacuum heating furnace 10 in the central portion of the container body portion 21b. The vacuum heating furnace side of the cooling chamber 22 is partitioned by an intermediate heat insulating door 21a, and the gas cooling circulation device and both side surfaces are partitioned by airtight heat insulating walls 22a and 22b. The cooling chamber 22 is open at the upper and lower ends, and forms a gas flow path having a constant cross section in the vertical direction inside thereof. The inside of the cooling chamber 22 is a cooling region, and the article to be processed 1 is a small metal part such as a moving blade, a stationary blade, or a bolt of a jet engine, and is accommodated in a tray or a basket. And rests on a mounting table 23 having air permeability.
The mounting table 23 is installed at the same height as the mounting table 15 of the vacuum heating furnace 10 and can freely move on the built-in roller. Further, as shown in FIG. 3, a horizontal partition plate 22 c is provided between the container body 21 b and the heat insulating wall 22 b to partition the gas located above and below the cooling chamber 22 in an airtight manner.
[0023]
The gas cooling circulation device 24 is installed adjacent to the cooling chamber 22 and sucks and pressurizes the gas that has passed through the cooling chamber 22, and a heat exchanger 25 that indirectly cools the gas discharged from the cooling fan. It consists of. The cooling fan 24a is rotationally driven by a cooling fan motor 24b attached to the circulation part 21c of the vacuum vessel 21, and sucks gas from the central part and discharges it from the outer peripheral part. The heat exchanger 25 is, for example, a cooling fin tube that is water-cooled inside. With this configuration, the circulating gas discharged from the outer peripheral portion can be cooled by the heat exchanger 25, and the gas passing through the cooling chamber 22 in the vertical direction can be cooled and circulated.
[0024]
The rectifier 28 is provided above and below the upper and lower ends of the cooling chamber 22, and has a function of making the velocity distribution of the gas passing through the cooling chamber 22 uniform.
[0025]
In addition, the high-speed circulating gas-cooled vacuum heat treatment furnace of the present invention is provided with auxiliary distribution mechanisms 29 (for example, blow-in plates) that guide the direction of gas flow flowing in and out of the cooling chamber above and below the cooling chamber 22. Even when the area is large, the direction of the gas flow toward a plurality of locations is optimized to improve the flow uniformity.
[0026]
FIG. 4 is an enlarged view of a portion B in FIG. As shown in this figure, the cooling gas air path switching device 40 of the present invention comprises a fixed partition plate 42, a rotary partition plate 44, and a rotary drive device 46.
The fixed partition plate 42 partitions between the cooling chamber 22 and the gas cooling circulation device 24 and blocks the space therebetween. In this example, the rotary partition plate 44 is rotationally driven along the surface of the fixed partition plate 42 by the rotary drive device 46 coaxially with the cooling fan 24a. In this example, the rotation driving device 46 is a rack and a pinion, and the rotation partition plate 44 is rotated 1/2 times so that the top and bottom are reversed. A pneumatic or hydraulic cylinder or the like can be used for linear movement of the rack. Further, the present invention is not limited to this configuration, and other known driving devices can also be used.
[0027]
A bearing box 43 containing a bearing 43 a is provided at the center of the fixed partition plate 42. The bearing box 43 is supported from the circulating portion 21c of the vacuum vessel 21 by a support frame 43b. The rotary partition plate 44 has a rotary shaft 45 with a key rotating around the center, and the rotary shaft 45 is supported coaxially with the cooling fan 24a by a bearing 43a. A compression spring 47 is sandwiched in a compressed state between the shaft end portion (left end and support plate 45a in the figure) of the rotation shaft 45 and the rotation partition plate 44, and always urges the rotation partition plate 44 toward the rotation partition plate 44. In addition, the gap between them is reduced. For this reason, if it adds, a function will improve.
A sealing material 48 is attached to the end face of the horizontal partition plate 22c and the end face of the fixed partition plate 42 to seal the gap between the rotary partition plate 44 and the rotary partition plate 44. Yes. The seal material 48 is made of, for example, lead brass, graphite, or the like with less friction, reducing leakage and smoothing movement.
[0028]
FIG. 5 is a cross-sectional view taken along the line CC of FIG. In this figure, (A) is a sectional view taken along the line CC, that is, a front view of the rotating partition plate 44, and (B) is a sectional view from which the rotating partition plate 44 is removed, that is, a front view of the fixed partition plate 42. is there.
[0029]
The fixed partition plate 42 has an opening 42a penetrating substantially the entire surface. That is, in this example, it is composed of an elongated radiating portion 42b extending in the radial direction at the same position as the support frame 43b, and a thin ring-shaped circular portion 42c at the outermost periphery, the central portion, and the intermediate portion. In addition, the bearing box 43 mentioned above is attached to the center circular part 42c in this figure. Note that the position of the opening 42a is not limited to this example, and is preferably set as wide as possible.
[0030]
The rotary partition plate 44 has a suction opening 44a and a discharge opening 44b partially communicating with the suction port and the discharge port of the gas cooling circulation device.
In the first embodiment of FIG. 5, the cooling chamber 22 has a gas flow path that passes through the inside in the vertical direction, and when the gas flows downward in the cooling chamber 22, the suction opening 44 a is only below the cooling chamber. When the gas flows upward in the cooling chamber 44, the suction opening 44a communicates only above the cooling chamber, and the discharge opening 44b communicates with the cooling chamber. The opening position is set so as to communicate only with the lower part.
In this example, the suction opening 44a has a substantially ½ circular shape, and the discharge opening 44b has a substantially ½ fan shape, which are provided on opposite sides of the horizontal axis (the aforementioned horizontal partition plate 22c). Yes.
[0031]
With this configuration, out of the furnace body area A partitioning between the cooling chamber 22 and the gas cooling circulation device 24, 1/2 is used as the suction port and the discharge port of the gas cooling circulation device, and further, out of the suction port and the discharge port. , 1/2 each downward and upward, the suction opening 44a and the discharge opening 44b can be set to about 1/4 of the furnace body area A. Therefore, the air passage area can be increased, the gas flow velocity can be reduced, and the pressure loss can be reduced.
Further, between the fixed partition plate 42 and the gas cooling circulation device 24, the entire inner surface communicates with the suction port of the gas cooling circulation device, and the entire outer surface communicates with the discharge port of the gas cooling circulation device. By taking a sufficient clearance between the suction ports, even if only one side is open, it is possible to wrap around the opposite side, and the entire heat exchanger can be used effectively.
[0032]
According to the above-described configuration of the present invention, the direction of the gas passing through the cooling chamber is alternated only by rotationally driving the rotating partition plate along the surface of the fixed partition plate that partitions the cooling chamber and the gas cooling circulation device. Therefore, even if it is a high-pressure gas (a high-density gas body), the air path can be smoothly switched without being affected by the wind pressure. .
In addition, since the rotary partition plate has a suction opening and a discharge opening partially communicating with the suction port and the discharge port of the gas cooling and circulation device, fluctuations in the opening area and a difference in the opening area between the suction port and the discharge port are unlikely to occur. Stable gas cooling is possible. In addition, the structure is simple and can be switched by a single driving device, and a large opening area can be secured.
In addition, although embodiment was shown about the gas flow of an upstream / downstream so far, it can also be set as the switching mechanism of a right-and-left flow by rotating a rotation partition plate 90 degrees and attaching the rectifier of a cooling chamber to a side surface (left and right). it can.
[0033]
FIG. 6 is a cross-sectional view similar to FIG. 5 showing the second embodiment of the present invention. In this figure, (A) is a sectional view taken along the line CC, that is, a front view of the rotating partition plate 44, and (B) is a sectional view from which the rotating partition plate 44 is removed, that is, a front view of the fixed partition plate 42. is there.
This second embodiment can handle both when the gas flows in the cooling chamber in the vertical direction (upstream and downstream) and when the gas flows in the cooling chamber in the horizontal direction (horizontal flow).
That is, in this example, the suction opening 44a has a substantially ¼ circular shape, and the discharge opening 44b has a substantially ¼ fan shape, which are provided on opposite sides of the horizontal axis (the aforementioned horizontal partition plate 22c). Yes.
[0034]
In the second embodiment, when the gas flows in the vertical direction in the cooling chamber 22, the suction opening 44a selectively communicates only with the lower side or only the upper side of the cooling chamber 22 and the discharge opening 44b, as in FIG. Are selectively communicated only with the upper or lower side of the cooling chamber. As shown in FIG. 6A, when the gas flows in the cooling chamber 22 in the horizontal direction, the suction opening 44a is selectively communicated with only one side of the cooling chamber, and the discharge opening 44b is cooled. The opening position is set so as to selectively communicate with only one side opposite to the chamber.
[0035]
With this configuration, the direction of the gas passing through the cooling chamber can be freely adjusted in the vertical and horizontal directions by simply rotating the rotating partition plate along the surface of the fixed partition plate that partitions the cooling chamber and the gas cooling circulation device. You can switch to
[0036]
In addition, this invention is not limited to the Example mentioned above, Of course, it can change freely, unless it deviates from the summary of this invention. For example, the present invention is not limited to an apparatus in which a heating chamber and a cooling chamber are separated, and can be used in a single chamber furnace that can perform heating and cooling in one chamber.
[0037]
【The invention's effect】
As described above, the cooling gas airflow switching device of the vacuum heat treatment furnace of the present invention can be smoothly switched without being affected by the wind pressure, and the opening area varies or the opening area difference between the suction port and the discharge port. Therefore, stable gas cooling is possible, the structure is simple, switching is possible with a single driving device, and a large opening area can be secured.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a vacuum heat treatment furnace provided with a cooling gas air path switching device according to a first embodiment of the present invention.
FIG. 2 is a partially enlarged view of FIG.
3 is a cross-sectional view taken along line AA in FIG.
4 is an enlarged view of a portion B in FIG. 2. FIG.
5 is a cross-sectional view taken along the line CC in FIG.
FIG. 6 is a cross-sectional view similar to FIG. 5 showing a second embodiment of the present invention.
7 is a configuration diagram of a high-speed circulating gas cooling furnace disclosed in Non-Patent Document 1. FIG.
FIG. 8 is a configuration diagram of “a gas circulation cooling promotion method in a vacuum furnace” disclosed in Patent Document 1;
[Explanation of symbols]
1 Product to be treated, 2 Circulating gas,
10 vacuum heating furnace, 11 vacuum vessel, 12 heating chamber,
13 front door, 14 rear door, 15 mounting table, 16 heater,
20 gas-cooled furnace, 21 vacuum vessel,
21a Intermediate heat insulation door, 21b Container body,
21c Circulation part, 21e Clutch ring, 21d Clamp 22 Cooling chamber, 22a, 22b Thermal insulation wall, 22c Horizontal partition plate,
24 gas cooling circulation device, 24a cooling fan,
24b cooling fan motor, 25 heat exchanger,
28 rectifiers, 29 auxiliary distribution mechanisms, 30 moving devices, 32 transport bars,
33 Rear door lifting device, 34 Front door lifting device,
34 Intermediate door lifting device,
40 Cooling gas air path switching device,
42 fixed partition plate, 42a opening,
43 bearing box, 43a bearing, 43b support frame,
44 rotating partition plate, 44a suction opening, 44b discharge opening,
45 rotation shaft, 46 rotation drive device (rack and pinion),
47 Compression spring, 48 Sealing material

Claims (4)

被処理品を静置する冷却領域を囲む冷却室と、該冷却室内を通過するガスを冷却して循環させるガス冷却循環装置とを備え、加熱した被処理品を加圧した循環ガスで冷却する真空熱処理炉の冷却ガス風路切替え装置であって、
冷却室とガス冷却循環装置との間を仕切る固定仕切板と、該固定仕切板の表面に沿って回転駆動される回転仕切板とを有し、
固定仕切板はほぼ全面を貫通する開口を有し、回転仕切板は、ガス冷却循環装置の吸込口と吐出口に部分的に連通する吸引開口と吐出開口を有し、これにより冷却室内を通過するガスの方向を交互に切り替える、ことを特徴とする真空熱処理炉の冷却ガス風路切替え装置。
A cooling chamber that surrounds a cooling region in which the article to be treated is placed is provided, and a gas cooling circulation device that cools and circulates the gas passing through the cooling chamber, and cools the heated article to be treated with a pressurized circulation gas. A cooling gas air path switching device for a vacuum heat treatment furnace,
A fixed partition plate that partitions between the cooling chamber and the gas cooling circulation device, and a rotary partition plate that is driven to rotate along the surface of the fixed partition plate;
The fixed partition plate has an opening penetrating almost the entire surface, and the rotary partition plate has a suction opening and a discharge opening partially communicating with the suction port and the discharge port of the gas cooling circulation device, thereby passing through the cooling chamber. A cooling gas air path switching device for a vacuum heat treatment furnace, wherein the direction of the gas to be switched is switched alternately.
前記冷却室は、その内側を上下方向に通過するガス流路を有し、
冷却室内をガスが下方に流れるときに、吸引開口が冷却室の下方のみと連通しかつ吐出開口が冷却室の上方のみと連通し、
冷却室内をガスが上方に流れるときに、吸引開口が冷却室の上方のみと連通しかつ吐出開口が冷却室の下方のみと連通するように開口位置が設定されている、ことを特徴とする請求項1に記載の真空熱処理炉の冷却ガス風路切替え装置。
The cooling chamber has a gas flow path passing through the inside in the vertical direction,
When the gas flows downward in the cooling chamber, the suction opening communicates only with the lower portion of the cooling chamber and the discharge opening communicates only with the upper portion of the cooling chamber,
The opening position is set such that when the gas flows upward in the cooling chamber, the suction opening communicates only with the upper portion of the cooling chamber and the discharge opening communicates only with the lower portion of the cooling chamber. Item 2. A cooling gas air path switching device for a vacuum heat treatment furnace according to Item 1.
前記冷却室内をガスが上下方向に流れるときに、吸引開口が冷却室の下方のみ又は上方のみと選択的に連通しかつ吐出開口が冷却室の上方のみ又は下方のみと選択的に連通し、
前記冷却室内をガスが水平方向に流れるときに、吸引開口が冷却室のいずれかの片側のみに選択的に連通しかつ吐出開口が冷却室の反対の片側のみと選択的に連通するように開口位置が設定されている、ことを特徴とする請求項1に記載の真空熱処理炉の冷却ガス風路切替え装置。
When the gas flows in the vertical direction in the cooling chamber, the suction opening selectively communicates only with the lower side or the upper side of the cooling chamber and the discharge opening selectively communicates only with the upper side or only the lower side of the cooling chamber,
When the gas flows in the cooling chamber in the horizontal direction, the suction opening is selectively communicated with only one side of the cooling chamber, and the discharge opening is selectively communicated with only one side opposite to the cooling chamber. 2. The cooling gas air path switching device for a vacuum heat treatment furnace according to claim 1, wherein the position is set.
前記ガス冷却循環装置は、冷却室に隣接して設置され冷却室を通過したガスを吸引して加圧する冷却ファンと、該冷却ファンから吐出されるガスを間接冷却する熱交換器とからなる、ことを特徴とする請求項1に記載の真空熱処理炉の冷却ガス風路切替え装置。The gas cooling / circulating device comprises a cooling fan that is installed adjacent to the cooling chamber and sucks and pressurizes the gas that has passed through the cooling chamber, and a heat exchanger that indirectly cools the gas discharged from the cooling fan. The apparatus for switching a cooling gas air path of a vacuum heat treatment furnace according to claim 1.
JP2003183968A 2003-06-27 2003-06-27 Cooling gas air path switching device for vacuum heat treatment furnace Expired - Lifetime JP4280981B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2003183968A JP4280981B2 (en) 2003-06-27 2003-06-27 Cooling gas air path switching device for vacuum heat treatment furnace
DE602004027043T DE602004027043D1 (en) 2003-06-27 2004-03-31 VACUUM HEAT TREATMENT OVEN OF GAS COOLING TYPE AND REFRIGERATOR SENSOR
US10/562,498 US7625204B2 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treating furnace and cooling gas direction switching device therefor
DE602004031061T DE602004031061D1 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treatment furnace and device for changing the direction of cooling gas
CNB2004800182131A CN100432610C (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treating furnace and cooling gas direction switching device
EP09008821A EP2116802B1 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treating furnace and cooling gas direction switching device
KR1020057024660A KR100943463B1 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treating furnace and cooling gas direction switching device
PCT/JP2004/004643 WO2005001360A1 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treating furnace and cooling gas direction switching device
EP04724762A EP1643199B1 (en) 2003-06-27 2004-03-31 Gas cooling type vacuum heat treating furnace and cooling gas direction switching device
CN2008100831847A CN101294772B (en) 2003-06-27 2004-03-31 Cooled gas duct changing device for vacuum heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183968A JP4280981B2 (en) 2003-06-27 2003-06-27 Cooling gas air path switching device for vacuum heat treatment furnace

Publications (2)

Publication Number Publication Date
JP2005016861A JP2005016861A (en) 2005-01-20
JP4280981B2 true JP4280981B2 (en) 2009-06-17

Family

ID=34183879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183968A Expired - Lifetime JP4280981B2 (en) 2003-06-27 2003-06-27 Cooling gas air path switching device for vacuum heat treatment furnace

Country Status (2)

Country Link
JP (1) JP4280981B2 (en)
CN (2) CN100432610C (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101195080B1 (en) 2006-04-06 2012-10-29 가부시키가이샤 아이에이치아이 Seal structure for cooling treatment apparatus or multichamber heat treatment apparatus, and for the seal structure, method of pressure regulation and method of operating
JP4458079B2 (en) 2006-09-27 2010-04-28 株式会社Ihi Vacuum carburizing equipment
JP4458107B2 (en) * 2007-03-09 2010-04-28 株式会社Ihi Vacuum carburizing method and vacuum carburizing apparatus
DE102007023699B4 (en) 2007-05-22 2020-03-26 Cremer Thermoprozeßanlagen-GmbH Hot isostatic press and method for rapid cooling of a hot isostatic press
CN100591778C (en) * 2007-09-07 2010-02-24 上海中加电炉有限公司 Heated air circulation bake oven
JP2010035362A (en) * 2008-07-30 2010-02-12 Mitsui Miike Mach Co Ltd Electric motor for cooling fan of vacuum furnace
DE102008058330A1 (en) * 2008-11-23 2010-05-27 Dieffenbacher Gmbh + Co. Kg Method for tempering a hot isostatic press and a hot isostatic press
JP2011231969A (en) * 2010-04-27 2011-11-17 Ihi Corp Heat treatment furnace
JP5779087B2 (en) * 2011-12-28 2015-09-16 株式会社Ihi Vacuum heat treatment equipment
CN103162538B (en) * 2013-03-22 2014-09-10 浙江固驰电子有限公司 Rectifier bridge module sintering device
JP6596703B2 (en) * 2015-03-04 2019-10-30 株式会社Ihi Multi-chamber heat treatment equipment
WO2016189919A1 (en) * 2015-05-26 2016-12-01 株式会社Ihi Heat treatment apparatus
DE102015011504A1 (en) * 2015-09-09 2017-03-09 Ipsen International Gmbh Apparatus for treating metallic workpieces with cooling gas
WO2017043138A1 (en) * 2015-09-11 2017-03-16 光洋サーモシステム株式会社 Heat treatment apparatus
KR101909794B1 (en) * 2016-12-29 2018-10-18 정원기 Quenching apparatus
JP6938402B2 (en) * 2018-02-22 2021-09-22 光洋サーモシステム株式会社 Heat treatment equipment
JP7073016B2 (en) * 2020-01-10 2022-05-23 中外炉工業株式会社 Clean heat treatment equipment
CN113446842B (en) * 2021-05-08 2023-08-29 滁州华海中谊工业炉有限公司 High-pressure high-flow-rate air-cooled vacuum furnace
CN113701501A (en) * 2021-09-02 2021-11-26 宁波恒普真空科技股份有限公司 Sintering furnace cooling system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672744B2 (en) * 1986-08-15 1994-09-14 石川島播磨重工業株式会社 Sintering furnace
DE3736502C1 (en) * 1987-10-28 1988-06-09 Degussa Vacuum furnace for the heat treatment of metallic workpieces
JP2510035Y2 (en) * 1991-02-22 1996-09-11 石川島播磨重工業株式会社 Heat treatment furnace
JP3116334B2 (en) * 1991-06-22 2000-12-11 大同特殊鋼株式会社 Heat treatment equipment
JPH05230528A (en) * 1992-02-24 1993-09-07 Daido Steel Co Ltd Method for accelerating gas circulation cooling in vacuum furnace
JPH11153386A (en) * 1997-11-25 1999-06-08 Ishikawajima Harima Heavy Ind Co Ltd Multichamber multi-cooling vacuum furnace
JP5107489B2 (en) * 2001-05-14 2012-12-26 中外炉工業株式会社 Gas-cooled single-chamber heat treatment furnace
TW544470B (en) * 2001-02-22 2003-08-01 Chugai Ro Kogyo Kaisha Ltd A gas-cooled single-chamber type heat-treating furnace and a gas cooling process in the furnace

Also Published As

Publication number Publication date
CN101294772B (en) 2012-07-18
JP2005016861A (en) 2005-01-20
CN1813163A (en) 2006-08-02
CN101294772A (en) 2008-10-29
CN100432610C (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP4280981B2 (en) Cooling gas air path switching device for vacuum heat treatment furnace
US7625204B2 (en) Gas cooling type vacuum heat treating furnace and cooling gas direction switching device therefor
JP4645592B2 (en) Two-chamber heat treatment furnace
JP4428268B2 (en) Heat treatment furnace
US8652370B2 (en) Hot isostatic pressing method and apparatus
EP2222428B1 (en) Hot isostatic pressing arrangement
EP1801529B1 (en) Change-over apparatus for cooling gas passages in vacuum heat treatment furnace
JPH0549724B2 (en)
JP4378090B2 (en) Hot air circulation furnace
JP4441903B2 (en) High-speed circulating gas-cooled vacuum heat treatment furnace
JP2007084870A (en) Carburizing treatment apparatus and method
CN107002159A (en) Annealing device
JP7338818B2 (en) heat treatment furnace
JP2005240104A (en) Cooling method
JPH0210092Y2 (en)
JPS63149314A (en) Heat treatment furnace
JPH0318455A (en) Melting and casting apparatus
JPH08193217A (en) Gas and oil cooling type vacuum furnace
JP5028777B2 (en) Heat treatment equipment
JP2009264691A (en) Heat treatment device, in line type heat treatment device and manufacturing method of treated object
JPS5839888B2 (en) Synchronization
JP2000055566A (en) Cooling device for multi-chamber type heat treatment furnace
JP2000130949A (en) Heat treatment furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090304

R151 Written notification of patent or utility model registration

Ref document number: 4280981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250