JP2020066007A - Method for preventing delayed cracking of slab - Google Patents

Method for preventing delayed cracking of slab Download PDF

Info

Publication number
JP2020066007A
JP2020066007A JP2018198095A JP2018198095A JP2020066007A JP 2020066007 A JP2020066007 A JP 2020066007A JP 2018198095 A JP2018198095 A JP 2018198095A JP 2018198095 A JP2018198095 A JP 2018198095A JP 2020066007 A JP2020066007 A JP 2020066007A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
rolling
steel
preventing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018198095A
Other languages
Japanese (ja)
Other versions
JP7124631B2 (en
Inventor
山本 研一
Kenichi Yamamoto
研一 山本
玲洋 松澤
Tamahiro Matsuzawa
玲洋 松澤
和洋 尾形
Kazuhiro Ogata
和洋 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018198095A priority Critical patent/JP7124631B2/en
Publication of JP2020066007A publication Critical patent/JP2020066007A/en
Application granted granted Critical
Publication of JP7124631B2 publication Critical patent/JP7124631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a method for preventing delayed cracking of slab which can prevent delayed cracking occurring in a heating furnace for hot-rolling when manufacturing a high-tensile steel of about 780 MPa or more by continuous casting.SOLUTION: After continuous cast slab is cut at a continuous casting machine end, the slab is heated to reduce in thickness under such a condition that a surface temperature does not become 350°C or lower, and subjected to rolling reduction so that a reduction ratio y satisfies the following expression (1): y≥0.7143x+0.8571(1), where x represents Ccalculated from a steel component and y represents a reduction ratio.SELECTED DRAWING: Figure 1

Description

本発明は、780MPa以上のハイテン鋼を連続鋳造した後熱間圧延して製造するに際し、熱間圧延の加熱炉内で発生する鋳片の置き割れを防止することのできる、鋳片の置き割れ防止方法に関するものである。   INDUSTRIAL APPLICABILITY The present invention is capable of preventing dislocation cracking of a slab generated in a heating furnace for hot rolling when continuously casting a high-tensile steel of 780 MPa or more and then hot rolling it. It relates to prevention methods.

自動車用の構造部材、もしくは一般的な構造用部材等に用いられるハイテン鋼においては、高強度高加工性が求められる。こうした高強度のハイテン鋼は、鋳片段階で脆性を示すことが多いため、鋳片の内部、あるいは鋳片表面において鋳片欠陥が存在すると、表面割れ、鋳片割れ、鋳片折損等を起し、歩留、生産性を低下させ、製造コストが大きくなることに繋がっている。特に、780MPa以上のハイテン鋼を連続鋳造して製造する際においては、後工程である熱間圧延のため加熱炉に装入したときに加熱炉内で鋳片が折損したり、折損にまでは至らなくても鋳片内部に割れを生じる、いわゆる置き割れが発生する場合がある。こうしたハイテン鋼の鋳片の置き割れの原因として、鋳片中に脆化元素が多く含むという成分的な脆性だけではなく、連続鋳造スラブ内部のセンターポロシティが主たる原因となって、鋳片の置き割れに至っている。   High strength and high workability are required for high-tensile steel used for structural members for automobiles or general structural members. Since such high-strength high-tensile steel often shows brittleness at the slab stage, if slab defects exist inside the slab or on the surface of the slab, surface cracks, slab cracks, slab breakage, etc. occur. This leads to a decrease in yield and productivity and an increase in manufacturing cost. In particular, when producing a high-tensile steel of 780 MPa or more by continuous casting, the slab is broken in the heating furnace when it is charged into the heating furnace due to hot rolling which is a post process, or even breakage occurs. Even if it does not reach, so-called misplaced cracks may occur inside the slab. As a cause of such cracking of the slab of high-tensile steel, not only the compositional brittleness in which the slab contains many brittle elements, but also the center porosity inside the continuous casting slab is the main cause It has been cracked.

高強度ハイテン鋼の鋳片そのものが脆化する原因は、高強度ハイテン鋼に必要な[C],[Si],[Mn]等の基本元素や、必要な強度等の特性を出すために添加される合金元素の影響によるもので、このような元素がなくては必要な特性を具備する高強度ハイテン鋼を製造することが不可能である。従って、高強度ハイテン鋼の成分を変更することなく、鋳片折損等を起こす起点となる鋳片欠陥を除去、低減することが必要である。   The cause of embrittlement of the slab itself of the high-strength high-tensile steel is to add the basic elements such as [C], [Si], and [Mn] necessary for the high-strength high-tensile steel, and the properties such as required strength. Due to the influence of the alloying elements, it is impossible to produce high strength high tensile steel having the required properties without such elements. Therefore, it is necessary to remove and reduce the slab defect which is the starting point of slab breakage without changing the composition of the high strength high tensile steel.

現在の操業において、比較的強度が低い590MPaクラスのハイテン鋼までは、鋳片の置き割れに至るような問題がない。しかしながら、780MPa以上のハイテン鋼は、必要な強度等の特性上、脆化元素を多く添加する成分系となっており、連鋳機を出てからのち、マシンスカーファー、グラインダー手入れや冷却する置場等の熱履歴を経て、その後の圧延工程前の加熱炉に持ち込まれた段階で初めて発現する鋳片の置き割れが大きな課題として顕在化している。   In the current operation, up to 590 MPa class high-tensile steel, which has a relatively low strength, there is no problem such as slab cracking. However, high-tensile steel of 780 MPa or more is a component system in which many embrittlement elements are added due to the characteristics such as required strength, and after leaving the continuous casting machine, machine scarf, grinder maintenance and cooling storage After a heat history such as the above, the cracking of the slab, which first appears at the stage when it is brought into the heating furnace before the rolling process thereafter, has become a major issue.

鋳片の置き割れの原因となるセンターポロシティを低減する技術として、以下のような技術が提案されている。   The following techniques have been proposed as a technique for reducing the center porosity that causes cracks in the cast slab.

特許文献1に記載の発明は、連続鋳造機後端に圧延機を設置、未凝固部を含む鋳片を圧下することで、偏析、ポロシティのない鋳片を得る方法である。連鋳機内で未凝固あるいは凝固後の鋳片を圧下してセンターポロシティを低減しようとするものであり、ポロシティを低減して鋳片折損を防止することができる。   The invention described in Patent Document 1 is a method of installing a rolling mill at the rear end of a continuous casting machine and rolling down a slab containing an unsolidified portion to obtain a slab without segregation and porosity. It is intended to reduce the center porosity by rolling down the unsolidified or solidified slab in the continuous casting machine, and it is possible to reduce the porosity and prevent the slab from breaking.

特許文献2には、軸受鋼の連鋳片の置き割れ防止方法が開示されている。ブルーム連続鋳造鋳片(405mm×520mm角鋳片)を鋳造した後に、連鋳片の表面温度が600℃以下になる前に均熱炉に装入して1150℃〜1250℃に加熱し、50%以上の減面率で熱間圧延することにより、ポロシティが消滅し、置き割れを生じることなく室温まで冷却できるとしている。   Patent Document 2 discloses a method for preventing misplacement cracks of continuous cast pieces of bearing steel. After casting a bloom continuous casting slab (405 mm x 520 mm square slab), the continuous casting slab is charged into a soaking furnace and heated to 1150 ° C to 1250 ° C before the surface temperature becomes 600 ° C or lower, It is said that by hot rolling at a reduction rate of not less than%, porosity disappears and it can be cooled to room temperature without causing cracks.

特開平5−285619号公報JP-A-5-285619 特開平9−170024号公報JP, 9-170024, A

特許文献1に記載の方法は、連続鋳造機内で未凝固率18%という大きな未凝固部位が残存しているまま、圧下率20〜35%の大圧下をするため、連鋳機鋳型内溶鋼の湯面変動が大きくなり、鋳型内初期凝固が不安定となり、連続鋳造が安定せず、ブレークアウトに繋がる大きな操業トラブルの懸念があり、またモールドパウダーの巻き込みが大きくなり表面品位が劣位となるため、こうした方法は実現できていない。   In the method described in Patent Document 1, a large reduction rate of 20 to 35% is performed while a large unsolidified portion with an unsolidification rate of 18% remains in the continuous casting machine. The fluctuation of the molten metal level becomes large, the initial solidification in the mold becomes unstable, continuous casting is not stable, there is a concern of major operation troubles that lead to breakout, and the entrainment of mold powder increases and the surface quality becomes poor. , Such a method has not been realized.

特許文献2に記載の発明は、軸受鋼の連続鋳造片の置き割れ防止方法に関するものであり、連鋳片の表面温度が600℃以下になる前に均熱炉に装入し、減面率50%以上の圧下をかけることにより、ポロシティが消滅し、置き割れを生じることなく室温まで冷却できるとしている。しかしこの発明は、二次加工で熱処理を行い強度を出す軸受鋼で実現可能な方案である。これに対し、熱間圧延ままで使用される高強度ハイテン鋼のスラブで減面率50%以上の圧下を行うことは、ハイテンに必要な強度を得るために熱間圧延での必要な圧下比に基づく圧延歪とハイテン鋼の組織制御、材質制御の観点から、不可能である。熱間圧延での組織制御の観点から熱間圧延前のスラブ厚みは大きければ大きいほど良く、できるだけ熱延における圧下比を担保する必要があるとされている。従って、特許文献2に記載の方法は、高強度ハイテン鋼の鋳片には適用できていない。   The invention described in Patent Document 2 relates to a method for preventing disposition cracking of a continuous cast piece of bearing steel, which is charged into a soaking furnace before the surface temperature of the continuous cast piece reaches 600 ° C. or lower, and the surface reduction rate By applying a reduction of 50% or more, porosity disappears, and it can be cooled to room temperature without causing cracks. However, the present invention is a plan that can be realized with a bearing steel that undergoes heat treatment in secondary processing to provide strength. On the other hand, performing reduction with a surface reduction ratio of 50% or more with a slab of high-strength high-tensile steel that is used as hot-rolled means that the reduction ratio required in hot-rolling to obtain the strength required for high-tensile rolling is high. It is impossible from the viewpoints of rolling strain, high-tensile steel structure control, and material control based on From the viewpoint of microstructure control in hot rolling, it is said that the thicker the slab thickness before hot rolling is, the better, and it is necessary to secure the reduction ratio in hot rolling as much as possible. Therefore, the method described in Patent Document 2 cannot be applied to a slab of high-strength high-tensile steel.

本発明は、780MPa程度以上のハイテン鋼を連続鋳造して製造するに際し、熱間圧延の加熱炉内で発生する置き割れを防止することのできる、鋳片の置き割れ防止方法を提供することを目的とする。   The present invention provides a method for preventing slab cracking that can prevent cracks that occur in a hot-rolling furnace during continuous casting of high-tensile steel of about 780 MPa or more. To aim.

即ち、本発明の要旨とするところは以下のとおりである。
(1)質量%で、C:0.03〜0.30%、Si:0.03〜3.0%、Mn:0.2〜3.0%、P:0.005〜0.05%、T.O:0.0005〜0.0050%、S:0.0001〜0.01%、N:0.0005〜0.01%、Al:0.01〜1%を含有し、残部がFeおよび不可避的不純物成分からなり、下記(3)式で規定するCEQが0.30以上である連続鋳造鋳片を、
連続鋳造機機端で鋳片切断したのちに、表面温度が350℃以下とならない条件で、当該鋳片を加熱して厚み圧下を行い、圧下比を下記(2)式で規定するyとし、下記(3)式で規定する鋼のCEQをxとしたとき、下記(1)式を満足する範囲となるように圧下し、その後に当該鋳片を加熱、熱延することを特徴とする鋳片の置き割れ防止方法。
y≧0.7143x+0.8571 (1)
y=(連続鋳造まま鋳片厚み(mm))/(圧下後鋳片厚み(mm)) (2)
x=CEQ=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14(%) (3)
ただし、(3)式において、元素記号は当該元素の含有量(質量%)を意味する。
(2)前記連続鋳造鋳片はさらに、質量%で、Ca:0.005%以下、Ti:0.003〜0.3%、Ce、La、Nd、Prの1種または2種以上の合計:0.001〜0.01%の1種または2種以上を含有していることを特徴とする上記(1)に記載の鋳片の置き割れ防止方法。
(3)さらに、質量%で、Nb:0.001〜0.10%、V:0.001〜0.30%の1種または2種を含有していることを特徴とする上記(1)又は(2)に記載の鋳片の置き割れ防止方法。
(4)さらに、質量%で、Cu:0.1〜2%、Ni:0.05〜1%、Cr:0.01〜1.0%、Mo:0.01〜0.4%、B:0.0003〜0.0050%、の1種または2種以上を含有していることを特徴とする上記(1)〜(3)のいずれか1つに記載の鋳片の置き割れ防止方法。
(5)さらに、質量%で、Zr:0.001〜0.01%を含有していることを特徴とする上記(1)〜(4)のいずれか1つに記載の鋳片の置き割れ防止方法。
That is, the gist of the present invention is as follows.
(1) Mass%, C: 0.03 to 0.30%, Si: 0.03 to 3.0%, Mn: 0.2 to 3.0%, P: 0.005 to 0.05% , T. O: 0.0005 to 0.0050%, S: 0.0001 to 0.01%, N: 0.0005 to 0.01%, Al: 0.01 to 1% are contained, and the balance is Fe and unavoidable. Continuous cast slab consisting of specific impurity components and having a C EQ of 0.30 or more defined by the following formula (3):
After cutting the slab at the machine end of the continuous casting machine, under the condition that the surface temperature does not become 350 ° C. or less, the slab is heated to perform thickness reduction, and the reduction ratio is y defined by the following formula (2), When the C EQ of the steel specified by the following formula (3) is x, the steel is reduced so as to satisfy the following formula (1), and then the cast slab is heated and hot rolled. A method for preventing slabs from being cracked.
y ≧ 0.7143x + 0.8571 (1)
y = (slab thickness (mm) as continuous casting) / (slab thickness after reduction (mm)) (2)
x = C EQ = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (%) (3)
However, in the formula (3), the element symbol means the content (mass%) of the element.
(2) The continuous cast slab is, in mass%, Ca: 0.005% or less, Ti: 0.003 to 0.3%, and a total of one or more of Ce, La, Nd, and Pr. : 0.001 to 0.01% of one kind or two or more kinds are contained, and the method for preventing slab cracking according to (1) above.
(3) Further, in mass%, Nb: 0.001 to 0.10%, V: 0.001 to 0.30% of 1 type or 2 types is contained, (1) above Alternatively, the method for preventing slab placement cracking according to (2).
(4) Further, in mass%, Cu: 0.1 to 2%, Ni: 0.05 to 1%, Cr: 0.01 to 1.0%, Mo: 0.01 to 0.4%, B : 0.0003 to 0.0050%, one or two or more of them are contained, and the method for preventing slab delamination according to any one of (1) to (3) above. .
(5) Further, Zr: 0.001 to 0.01% by mass% is contained, and the slab of the cast piece according to any one of the above (1) to (4) is cracked. Prevention method.

本発明は、780MPa程度以上のハイテン鋼を連続鋳造して製造するに際し、連続鋳造機機端で鋳片切断したのちに、表面温度が350℃以下とならない条件で鋳片を加熱して厚み圧下を行い、圧下比が前記(1)式を満足する範囲となるように圧下することにより、熱間圧延の加熱炉内で発生する置き割れを防止することができる。   The present invention, when continuously casting and producing high-tensile steel of about 780 MPa or more, after cutting the slab at the end of the continuous casting machine, heat the slab under the condition that the surface temperature does not fall below 350 ° C. By carrying out the above-mentioned process and performing the reduction so that the reduction ratio falls within the range satisfying the above formula (1), it is possible to prevent misplacement cracks occurring in the heating furnace for hot rolling.

連続鋳造後に表面温度が350℃以下とならない条件で鋳片を加熱して厚み圧下を行った際の、CEQと圧下比の関係において、鋳片の置き割れ発生の有無の限界を示す図である。In the relationship between C EQ and the reduction ratio when the slab is heated under the condition that the surface temperature does not become 350 ° C. or less after continuous casting, in the relationship between C EQ and the reduction ratio, it is a diagram showing the limit of presence or absence of slab cracking. is there. 連続鋳造後に表面温度が350℃以下とならない条件で鋳片を加熱して厚み圧下を行った際の、CEQとポロシティ径の関係において、鋳片の置き割れ発生の有無の境界を示す図である。In the relationship between C EQ and porosity diameter when the slab is heated under the condition that the surface temperature does not become 350 ° C. or less after continuous casting, in the relationship between C EQ and porosity diameter, a diagram showing a boundary of presence or absence of slab cracking. is there.

本発明の目的は、前述のとおり780MPa程度以上のハイテン鋼を連続鋳造して製造した連続鋳造鋳片を加熱圧延する熱間圧延に際して、加熱炉内で発生する置き割れを防止することにある。まず、対象とする連続鋳造鋳片の成分組成と成分を限定した理由について説明する。以下、特に断らない限り、%は質量%を意味する。   An object of the present invention is to prevent misplacement cracks that occur in a heating furnace during hot rolling of a continuously cast slab produced by continuously casting a high-tensile steel of about 780 MPa or more as described above. First, the reasons for limiting the component composition and the components of the target continuously cast slab will be described. Hereinafter, unless otherwise specified,% means mass%.

(C:0.03〜0.30%)
Cは、鋼の焼き入れ性と強度を制御する最も基本的な元素であり、鋼板の強度を確保するために必須の元素であり、高強度鋼板を得るためには少なくとも0.03%が必要である。しかし、このCが過剰に含まれ0.30%を超えると、加工性ならびに溶接性が劣化する。そのために、本発明においては、Cの濃度を0.30%以下とする。
(C: 0.03 to 0.30%)
C is the most basic element that controls the hardenability and strength of steel, and is an essential element for ensuring the strength of steel sheets, and at least 0.03% is required to obtain high-strength steel sheets. Is. However, if this C is excessively contained and exceeds 0.30%, workability and weldability deteriorate. Therefore, in the present invention, the concentration of C is set to 0.30% or less.

(Si:0.03〜3.0%)
Siは主要な脱酸元素の一つであり、オーステナイトの核生成サイト数を増加させ、オーステナイトの粒成長を抑制する粒径を微細化させる機能を担う。ベイナイト組織の生成に対しても有効であるため、伸びを大きく損なうことなく強度を向上できる。そのために、Siを0.03%以上添加する必要がある。本発明においては、Siの下限を0.03%とした。これに対して、Siの濃度が高すぎると、靭性が極端に悪くなるため、本発明においては、Siの上限を3.0%とした。
(Si: 0.03 to 3.0%)
Si is one of the main deoxidizing elements, and has the functions of increasing the number of austenite nucleation sites and reducing the grain size that suppresses austenite grain growth. Since it is also effective for the formation of bainite structure, the strength can be improved without greatly impairing the elongation. Therefore, it is necessary to add Si by 0.03% or more. In the present invention, the lower limit of Si is 0.03%. On the other hand, if the Si concentration is too high, the toughness is extremely deteriorated. Therefore, in the present invention, the upper limit of Si is 3.0%.

(Mn:0.2〜3.0%)
Mnは、C、Siとともに鋼板の高強度化に有効な元素である。このような効果を得るためには、このMnを0.2%以上は含有させる必要がある。しかしながら、Mnを、3.0%を超えて含有させるとMnの偏析や固溶強化の増大により延性が低下する。また、溶接性や母材靭性も劣化するのでこのMnの上限を3.0%とする。
(Mn: 0.2-3.0%)
Mn, together with C and Si, is an element effective in increasing the strength of the steel sheet. In order to obtain such an effect, it is necessary to contain 0.2% or more of Mn. However, if Mn is contained in excess of 3.0%, segregation of Mn and increase in solid solution strengthening reduce ductility. Further, since the weldability and the toughness of the base material also deteriorate, the upper limit of Mn is set to 3.0%.

(P:0.005〜0.05%)
PはFe原子よりも小さな置換型固溶強化元素として作用する点において有効である。しかし、このP濃度が0.05%を超えると、オーステナイトの粒界に偏析し、粒界強度を低下させることにより、ねじり疲労強度を低下させ、加工性の劣化を引き起こす原因にもなりえるため、上限を0.05%とする。また固溶強化の必要がなければPを添加する必要はないものの不可避的不純物として含み、Pの濃度を0.005%未満とするにはコストが高くなるので、工業的に実現可能な観点から0.005%を下限とする。
(P: 0.005-0.05%)
P is effective in that it acts as a substitutional solid solution strengthening element smaller than Fe atoms. However, if the P concentration exceeds 0.05%, segregation occurs at the austenite grain boundaries, which lowers the grain boundary strength, which can lead to lower torsional fatigue strength and deterioration of workability. , The upper limit is 0.05%. Further, if solid solution strengthening is not necessary, it is not necessary to add P, but it is contained as an unavoidable impurity, and if the concentration of P is less than 0.005%, the cost becomes high. The lower limit is 0.005%.

(T.O:0.0005〜0.0050%)
T.O(全酸素量)は、不純物として酸化物を形成する。T.Oが高すぎる場合、主としてAl23系介在物が増大し、系の酸素ポテンシャルを極小にすることができなくなり、靭延性が極端に悪くなり、表面疵が増加するため曲げ加工性が却って悪くなる。このため、本発明においては、T.Oの上限を0.0050%とした。また清浄化のためT.Oの濃度を0.0005%未満とするにはコストが高くなるので、工業的に実現可能な観点から0.0005%を下限とする。
(TO: 0.0005 to 0.0050%)
T. O (total oxygen content) forms an oxide as an impurity. T. When O is too high, mainly Al 2 O 3 -based inclusions increase, the oxygen potential of the system cannot be minimized, the toughness and ductility become extremely poor, and surface defects increase, so bending workability is rather contradictory. become worse. Therefore, in the present invention, the T. The upper limit of O was 0.0050%. Also, for cleaning, T.I. If the O concentration is less than 0.0005%, the cost increases, so 0.0005% is the lower limit from the viewpoint of industrial realization.

(S:0.0001%〜0.01%)
Sは、不純物として偏析して、MnS系の粗大な延伸介在物を形成して加工性を劣化させるため、上限を0.01%とする。一方で、二次精錬での脱硫負荷をかけすぎると脱硫コストが高くなり、コストに見合った材質が得られない。そのため、下限を0.0001%とする。
(S: 0.0001% to 0.01%)
S segregates as an impurity to form a coarse MnS-based stretched inclusion to deteriorate the workability, so the upper limit is made 0.01%. On the other hand, if the desulfurization load in the secondary refining is applied too much, the desulfurization cost will be high and a material commensurate with the cost cannot be obtained. Therefore, the lower limit is made 0.0001%.

(N:0.0005〜0.01%)
Nは、溶鋼処理中に空気中の窒素が取り込まれることから、鋼中に不可避的に混入する元素である。Nは、Al、Ti等と窒化物を形成して母材組織の細粒化を促進する。しかしながら、このNは0.01%を超えて含有すると、AlやTi等と粗大な析出物を生成し、加工性を劣化させる。このため、本発明においては、Nの濃度の上限を0.01%とする。一方、Nの濃度を0.0005%未満とするにはコストが高くなるので、工業的に実現可能な観点から0.0005%を下限とする。
(N: 0.0005-0.01%)
N is an element that is inevitably mixed in the steel because nitrogen in the air is taken in during the molten steel treatment. N forms a nitride with Al, Ti, etc., and promotes grain refinement of the base material structure. However, if this N content exceeds 0.01%, coarse precipitates are formed with Al, Ti, etc., deteriorating the workability. Therefore, in the present invention, the upper limit of the N concentration is 0.01%. On the other hand, if the concentration of N is less than 0.0005%, the cost becomes high, so 0.0005% is the lower limit from the viewpoint of industrial realization.

(Al:0.01%〜1%)
Alは一般的には、その酸化物がクラスター化して粗大になり易く、加工性を劣化させるため極力抑制することが望ましい。しかしながら、安価な有効な脱酸元素であるため、下限は0.01%とした。一方、ハイテンの鋼種によっては、Siを使わずAlで強度を出す場合もあるため、上限を1%とした。
(Al: 0.01% to 1%)
In general, it is desirable that Al is suppressed as much as possible because its oxide is likely to be clustered and coarsen and workability is deteriorated. However, since it is an inexpensive and effective deoxidizing element, the lower limit was made 0.01%. On the other hand, depending on the type of high-tensile steel, Al may be used instead of Si to provide strength, so the upper limit was made 1%.

以下、本発明においての、選択元素について化学成分を限定した理由について説明をする。これらの元素は選択元素であることから、添加の有無は任意であり、1種だけ加えても良く、2種以上加えてもよい。   Hereinafter, the reason for limiting the chemical composition of the selective element in the present invention will be described. Since these elements are selective elements, the presence or absence of addition is arbitrary, and only one kind may be added or two or more kinds may be added.

(Ca:0.005%以下)
Caは、ハイテンの加工性を損なうSを固定する為に有効な元素である。一方で、Caを添加せず、極低Sまで脱Sすることで、Ca添加を省くこともできる。従って、下限は設けない。しかし、Caを多量に含有させても効果は飽和し、かえって鋼の清浄性を損ない、延性を劣化させる。そのため、0.005%を上限とする。好ましくは0.002〜0.004%である。
(Ca: 0.005% or less)
Ca is an element effective for fixing S, which impairs the workability of high tensile strength steel. On the other hand, Ca addition can be omitted by adding S to extremely low S without adding Ca. Therefore, no lower limit is set. However, even if a large amount of Ca is contained, the effect is saturated, rather the cleanliness of the steel is impaired and the ductility is deteriorated. Therefore, the upper limit is 0.005%. It is preferably 0.002 to 0.004%.

(Ti:0.003〜0.30%)
Tiは主要な脱酸元素の一つであるとともに、炭化物、窒化物、炭窒化物を形成し、結晶粒の微細化・高強度化機能を担う。コストやスケール生成の観点から、0.3%を超えて含有すると、粗大な炭化物、窒化物、炭窒化物を形成してしまい、かえって材質の劣化を招き、含有量に見合う効果が期待できない。このため、本発明においては、Tiの濃度の上限を0.3%とする。ハイテン鋼の鋼種によっては、Tiを添加せず、他の安価な高強度化元素、例えば、C,Si,Mnを使用する場合もあるが、Ti添加したときの微細化・高強度化効果を得るためには、0.003%は必要であるので、これを下限とする。
(Ti: 0.003 to 0.30%)
Ti is one of the main deoxidizing elements, forms carbides, nitrides, and carbonitrides, and has the function of refining and strengthening the crystal grains. From the viewpoint of cost and scale formation, when the content exceeds 0.3%, coarse carbides, nitrides, and carbonitrides are formed, which rather deteriorates the material, and the effect commensurate with the content cannot be expected. Therefore, in the present invention, the upper limit of the Ti concentration is set to 0.3%. Depending on the steel type of the high-tensile steel, other inexpensive inexpensive strengthening elements such as C, Si, and Mn may be used without adding Ti, but the effect of refining and strengthening when Ti is added In order to obtain it, 0.003% is necessary, so this is the lower limit.

Ce,La,Nd,Prについて
Ce,La,Nd,Prは、硫化物の形態制御により、粒界を強化し、加工性を向上するために、必要に応じて含有することができる。
(Ce、La、Nd、Prの1種または2種以上の合計:0.001〜0.01%)
Ce、La、Nd、Prは脱酸とSを固定する効果がある。そのためには、Ce、La、Nd、Prの1種または2種以上の合計濃度を0.001%以上0.01%以下にする必要があるため、それぞれ下限と上限を設定した。
About Ce, La, Nd, and Pr Ce, La, Nd, and Pr can be contained as needed in order to strengthen the grain boundary and improve the workability by controlling the morphology of the sulfide.
(A total of one or more of Ce, La, Nd, and Pr: 0.001 to 0.01%)
Ce, La, Nd, and Pr have the effect of deoxidizing and fixing S. For that purpose, the total concentration of one or more of Ce, La, Nd, and Pr needs to be 0.001% or more and 0.01% or less, so the lower limit and the upper limit are set respectively.

Nb、Vについて
Nb、Vは、CもしくはNと炭化物、窒化物、炭窒化物を形成して母材組織の細粒化を促進し、靭性向上に寄与する。
About Nb and V Nb and V form carbides, nitrides, and carbonitrides with C or N to promote grain refinement of the base metal structure and contribute to improvement of toughness.

(Nb:0.001〜0.10%)
上述した複合炭化物、複合窒化物等を得るためこのNb濃度を0.001%以上とするのが好ましい。しかし、このNb濃度が0.10%を超えて多量に含有してもかかる母材組織の細粒化の効果が飽和し、製造コストが高くなる。このため、Nb濃度は0.10%を上限とする。
(Nb: 0.001 to 0.10%)
In order to obtain the above-mentioned composite carbide, composite nitride, etc., it is preferable to set the Nb concentration to 0.001% or more. However, even if the Nb concentration exceeds 0.10% and is contained in a large amount, the effect of refining the base material structure is saturated and the manufacturing cost becomes high. Therefore, the upper limit of the Nb concentration is 0.10%.

(V:0.001〜0.30%)
上述した複合炭化物、複合窒化物等を得るためにはこのV濃度を0.001%以上とするのが好ましい。しかし、このV濃度が0.30%を超えて多量に含有しても効果が飽和し、製造コストが高くなる。このため、V濃度は0.30%を上限とする。
(V: 0.001 to 0.30%)
In order to obtain the above-mentioned composite carbide, composite nitride, etc., it is preferable that the V concentration is 0.001% or more. However, even if this V concentration exceeds 0.30% and is contained in a large amount, the effect is saturated and the manufacturing cost becomes high. Therefore, the upper limit of the V concentration is 0.30%.

Cu、Ni、Cr、Mo、Bについて
Cu、Ni、Cr、Mo、Bは、強度を向上し、鋼の焼き入れ性を向上する。
About Cu, Ni, Cr, Mo and B Cu, Ni, Cr, Mo and B improve the strength and the hardenability of steel.

(Cu:0.1〜2%)
Cuは、フェライトの析出強化やさらに鋼板の強度を確保するために、必要に応じて含有することができ、この効果を得るためには0.1%以上添加することが好ましい。しかし、このCuの多量の含有はかえって強度−延性のバランスを劣化させる。そのため、2%を上限とする。
(Cu: 0.1-2%)
Cu can be contained if necessary in order to secure the precipitation strengthening of ferrite and the strength of the steel sheet, and in order to obtain this effect, it is preferable to add 0.1% or more. However, the inclusion of a large amount of Cu rather deteriorates the strength-ductility balance. Therefore, the upper limit is 2%.

(Ni:0.05〜1%)
Niは、フェライトの固溶強化さらに鋼板の強度を確保するために、必要に応じて含有することができ、この効果を得るためには0.05%以上添加することが好ましい。しかし、このNiの多量の含有はかえって強度−延性のバランスを劣化させる。そのため、1%を上限とする。
(Ni: 0.05-1%)
Ni can be contained if necessary in order to secure solid solution strengthening of ferrite and the strength of the steel sheet, and in order to obtain this effect, 0.05% or more is preferably added. However, the inclusion of a large amount of Ni rather deteriorates the strength-ductility balance. Therefore, the upper limit is 1%.

(Cr:0.01〜1.0%)
Crは、さらに鋼板の強度を確保する効果を得るためには0.01%以上添加することが好ましい。しかし、このCrの多量の含有はかえって強度−延性のバランスを劣化させる。そのため、1.0%を上限とする。
(Cr: 0.01-1.0%)
Cr is preferably added in an amount of 0.01% or more in order to obtain the effect of further securing the strength of the steel sheet. However, the inclusion of a large amount of Cr rather deteriorates the strength-ductility balance. Therefore, the upper limit is 1.0%.

(Mo:0.01〜0.4%)
Moは、さらに鋼板の強度を確保する効果を得るためには0.01%以上添加することが好ましい。しかし、このMoの多量の含有はかえって強度−延性のバランスを劣化させる。そのため、0.4%を上限とする。
(Mo: 0.01-0.4%)
Mo is preferably added in an amount of 0.01% or more in order to obtain the effect of further securing the strength of the steel sheet. However, the inclusion of a large amount of Mo rather deteriorates the strength-ductility balance. Therefore, the upper limit is 0.4%.

(B:0.0003〜0.0050%)
Bは、さらに粒界を強化し、加工性を向上するために、必要に応じて含有することができ、これらの効果を得るためには0.0003%以上添加することが好ましい。しかし、このBは0.0050%を超えて多量に含有させてもその効果は飽和し、かえって鋼の清浄性を損ない、延性を劣化させる。そのため、0.0050%を上限とする。
(B: 0.0003 to 0.0050%)
B can be contained as necessary in order to further strengthen the grain boundaries and improve the workability, and in order to obtain these effects, it is preferable to add 0.0003% or more. However, even if B is contained in a large amount in excess of 0.0050%, the effect is saturated, rather deteriorating the cleanliness of the steel and deteriorating the ductility. Therefore, the upper limit is 0.0050%.

Zrについて
Zrは、硫化物の形態制御により、粒界を強化し、加工性を向上するために、必要に応じて含有することができる。
(Zr:0.001〜0.01%)
Zrは、上述した硫化物を球状化して母材の靭性を改善する効果を得るためには0.001%以上添加することが好ましい。しかし、このZrの多量の含有はかえって鋼の清浄性を損ない、延性を劣化させる。そのため、0.01%を上限とする。
About Zr Zr can be contained as necessary in order to strengthen the grain boundaries and improve the workability by controlling the morphology of the sulfide.
(Zr: 0.001-0.01%)
Zr is preferably added in an amount of 0.001% or more in order to obtain the effect of improving the toughness of the base material by spheroidizing the above-mentioned sulfide. However, the inclusion of a large amount of Zr deteriorates the cleanliness of the steel and deteriorates the ductility. Therefore, the upper limit is 0.01%.

前述のとおり、本発明が解決しようとする鋳片の置き割れは、当該鋳片を熱間圧延して製造する鋼板が780MPa程度以上の強度を有するハイテン鋼において発生することが特徴である。そこで、置き割れが発生する鋳片の成分組成について評価したところ、上記本発明の各成分の含有量範囲を満たすとともに、さらに下記(3)式で規定するCEQが0.30以上の成分組成において、鋳片の置き割れが発生し易いことが判明した。そこで本発明では、(3)式のCEQが0.30以上となる連続鋳造鋳片を対象とすることとした。CEQが0.35以上であると本発明の効果がより顕著に表れる。
x=CEQ=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14(%) (3)
ただし、(3)式において、元素記号は当該元素の含有量(質量%)を意味する。また、Ni、Cr、Mo、Vは選択添加元素であるため、これら元素を添加しない場合には、(3)式の当該元素の値を0とする。
As described above, the cracking of the cast piece to be solved by the present invention is characterized in that the steel sheet produced by hot rolling the cast piece occurs in the high-tensile steel having a strength of about 780 MPa or more. Then, the composition of the cast product in which cracks are generated was evaluated, and it was found that the composition range of each of the components of the present invention was satisfied, and the C EQ defined by the following formula (3) was 0.30 or more. In, it was found that the slab is likely to be cracked. Therefore, in the present invention, the continuous cast slab having a C EQ of the formula (3) of 0.30 or more is targeted. When C EQ is 0.35 or more, the effect of the present invention is more remarkable.
x = C EQ = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (%) (3)
However, in the formula (3), the element symbol means the content (mass%) of the element. Further, since Ni, Cr, Mo, and V are selective addition elements, the value of the element in the equation (3) is set to 0 when these elements are not added.

本発明が対象とする鋳片の置き割れの原因として、鋳片中に脆化元素が多く含まれるという成分的な原因とともに、連続鋳造スラブの内部でのセンターポロシティが主たる原因となっていることをもとに、置き割れ防止方法についての検討を行った。まず、連続鋳造後の鋳片表面温度が常温まで低下する前の段階で、鋳片を加熱し、圧延することにより、センターポロシティを小さくし、これによって、その後に常温まで冷却して、その後の熱間圧延のための加熱炉に装入しても、置き割れが発生しないか、検討を行った。熱間圧延前に行う圧延を、通常に行う熱間圧延と区別するため、以下「連鋳後圧延」ともいう。   As a cause of laying cracks of the cast piece targeted by the present invention, along with a component cause that many embrittlement elements are contained in the cast piece, center porosity inside the continuous casting slab is the main cause. Based on the above, a study was made on a method for preventing misplacement cracks. First, at the stage before the surface temperature of the slab after continuous casting is lowered to room temperature, the slab is heated and rolled to reduce the center porosity, thereby cooling it to room temperature, and then It was examined whether or not there would be cracks in the placement even when charged into a heating furnace for hot rolling. In order to distinguish the rolling carried out before the hot rolling from the hot rolling carried out normally, it is hereinafter also referred to as "post-casting rolling".

まず、計算機シミュレーションにより、鋳片のポロシティを基点として鋳片内部に割れが伝搬する状況を明らかにした。連続鋳造後の鋳片を様々な温度まで冷却し、その後に加熱炉に装入した場合のポロシティに働く引っ張り応力を有限要素法で求めた。その結果、連続鋳造後に鋳片が冷却するに際しての鋳片の表面温度が350℃未満となるときに、その後の加熱時にポロシティに大きな引っ張り応力が働くことが分かった。また、実験で、表面温度を変化させたときの鋳片割れ有りなしの結果ともよく一致することが分かった。即ち、鋳片表面温度が350℃未満まで冷却した後に加熱して連鋳後圧延を行おうとしても、当該加熱中に鋳片の置き割れが発生してしまうことがわかった。それに対して、鋳片表面温度が350℃未満まで低下する前に加熱して連鋳後圧延を行った場合には、連鋳後圧延の前の加熱においても鋳片の置き割れは発生せず、さらに鋳片成分によって定まる所定の圧下比で連鋳後圧延を行うことにより、連鋳後圧延の後に鋳片を常温まで冷却し、その後、熱間圧延のために加熱炉に装入しても、鋳片の置き割れを防止できることが判明した。   First, by computer simulation, it was clarified that the crack propagates inside the slab from the porosity of the slab as a base point. Tensile stress acting on porosity when the slab after continuous casting was cooled to various temperatures and then charged into a heating furnace was obtained by the finite element method. As a result, it was found that when the surface temperature of the slab when the slab was cooled after continuous casting was less than 350 ° C., a large tensile stress acted on the porosity during the subsequent heating. In addition, it was found in the experiment that the results were in good agreement with the results with and without slab cracking when the surface temperature was changed. That is, it was found that even if the slab surface temperature was cooled to less than 350 ° C. and then heated to perform continuous casting and rolling, slab slab cracking occurred during the heating. On the other hand, when the slab surface temperature is heated to less than 350 ° C. before being subjected to continuous casting and rolling, the slab will not be cracked even after heating after the continuous casting and rolling. By further rolling after continuous casting at a predetermined reduction ratio determined by the composition of the slab, the slab is cooled to room temperature after rolling after continuous casting, and then charged into a heating furnace for hot rolling. Also, it was found that the slab could be prevented from cracking.

次に、実際の連続鋳造鋳片を用いて、加熱圧延試験を実施した。鋳片成分のCEQが0.30〜0.85にある種々の成分の鋳片を準備し、連続鋳造後に350℃未満まで温度が低下する前に加熱炉に装入して鋳片を1000〜1150℃に加熱し、種々の圧下比で連鋳後圧延を行った。その後に鋳片を常温まで冷却し、熱間圧延のための加熱炉に装入し、置き割れの発生有無を評価した。CEQを横軸、圧下比を縦軸として、結果を図1に示す。図1において、「×」は置き割れが発生し、「●」は置き割れが発生しなかったことを意味する。図1から明らかなように、CEQの値によって、置き割れが防止できる限界圧下比(連鋳後圧延)が異なることがわかった。(3)式のようにx=CEQとし、前記(2)式のように圧下比yを定めたところ、図1から、下記(1)式が満足するように圧下比を定めることにより、鋳片の置き割れを防止できることが分かった。連続鋳造後に350℃未満まで温度を低下した後に加熱して連鋳後圧延を行った場合には、鋳片の置き割れが防止できないことも判明した。
y≧0.7143x+0.8571 (1)
Next, the hot rolling test was implemented using the actual continuous casting slab. A slab of various components having a C EQ of the slab component of 0.30 to 0.85 is prepared, and the slab is charged into a heating furnace before the temperature decreases to less than 350 ° C. after continuous casting, and the slab is 1000 It was heated to ˜1150 ° C. and was continuously cast and rolled at various reduction ratios. After that, the slab was cooled to room temperature, charged into a heating furnace for hot rolling, and the presence or absence of occurrence of cracks was evaluated. The results are shown in FIG. 1, where C EQ is the horizontal axis and the reduction ratio is the vertical axis. In FIG. 1, "x" means that no crack occurred, and "●" means that no crack occurred. As is clear from FIG. 1, it was found that the limit reduction ratio (rolling after continuous casting) that can prevent the set crack was different depending on the value of C EQ . When x = CEQ is set as in the equation (3) and the reduction ratio y is determined as in the above equation (2), the reduction ratio is determined so that the following equation (1) is satisfied from FIG. It was found that the slab could be prevented from cracking. It has also been found that when the temperature is lowered to less than 350 ° C. after continuous casting and heating is performed and continuous casting is followed by rolling, slab cracking cannot be prevented.
y ≧ 0.7143x + 0.8571 (1)

連鋳後圧延における圧下比が大きすぎると、圧下力が非常に大きくなり設備コストが大きい。本発明が対象とする鋼はスラブ連続鋳造であるからなおさらである。また、連鋳後圧延の後に行う、熱間圧延での組織制御の観点から熱間圧延入側のスラブ厚みは大きければ大きいほど良い。連鋳後圧延で大きな圧下比で圧下を行った場合は、その後の熱間圧延でのスラブ厚みを確保することができなくなるので好ましくない。従って、本発明の連鋳後圧延における圧下比は、多くても1.6以下とすると好ましい。   If the reduction ratio in the rolling after continuous casting is too large, the reduction force becomes very large and the equipment cost is high. This is all the more true because the steel targeted by the present invention is slab continuous casting. From the viewpoint of microstructure control in hot rolling performed after continuous casting and rolling, the thicker the slab thickness on the hot rolling entry side, the better. If rolling is performed at a large rolling ratio after continuous casting, it is not preferable because the slab thickness cannot be secured in the subsequent hot rolling. Therefore, the reduction ratio in the rolling after continuous casting of the present invention is preferably 1.6 or less at most.

以上の実験研究で、本発明の領域を満たすCEQに応じた圧下比で厚み圧下することで、鋳片の置き割れを防止できることが明らかになった。すなわち、CEQ(=x)に応じて上記(1)式右辺で定まる以上の圧下比yで厚み圧下することで、鋳片の置き割れ防止を実現できることを見出した。本発明の領域を満たすことで、次工程の熱間圧延工程に運ばれるときに、あらゆる熱履歴をとっても、すなわち、連鋳後圧延で必要な圧下をした後に、冷却されて常温まで冷やされても、あるいは冷却されずに熱片のまま、次工程熱延の加熱炉に再装入されて熱間圧延されても、鋳片の置き割れは発生しない。 From the above experimental research, it has been clarified that the thickness reduction at the reduction ratio corresponding to C EQ satisfying the range of the present invention can prevent the slab from cracking. That is, it has been found that it is possible to prevent the slab from being cracked by reducing the thickness according to C EQ (= x) at a reduction ratio y that is determined by the right side of the equation (1). By satisfying the area of the present invention, when carried to the hot rolling step of the next step, even if it takes any heat history, that is, after performing the necessary reduction in rolling after continuous casting, it is cooled and cooled to room temperature. Also, even if the hot piece is not cooled but is re-charged into the heating furnace of the hot rolling of the next step and hot-rolled, the cracking of the cast piece does not occur.

上記の図1に示す連鋳後圧延を行った試験において、連鋳後圧延の後に鋳片を冷却し、各鋳片から、各3断面ずつカットサンプルを切断、採取し、研磨して鋳片の内部に存在するポロシティ径をFE−SEMで調査した。(3)式のCEQを横軸、測定したポロシティ径を縦軸として、結果を図2に示す。図2において、「×」は置き割れが発生し、「●」は置き割れが発生しなかったことを意味する。×と●の境界におけるポロシティ径を限界ポロシティ径とすると、CEQが高くなるほど、限界ポロシティ径が小さくなっていることがわかる。 In the test of rolling after continuous casting shown in FIG. 1 above, after the rolling after continuous casting, the slab is cooled, and each of the slabs is cut into 3 cut sections, sampled, and polished to obtain a slab. The FE-SEM was used to investigate the diameter of the porosity present inside the. The results are shown in FIG. 2 with the C EQ of equation (3) as the horizontal axis and the measured porosity diameter as the vertical axis. In FIG. 2, “x” means that cracking occurred, and “●” means that cracking did not occur. When the porosity diameter at the boundary between x and ● is defined as the limit porosity diameter, it can be seen that the higher the C EQ , the smaller the limit porosity diameter.

以上から、高強度ハイテンの強度・靭性の指標としてのCEQと、鋳片内部の限界ポロシティ径と、ポロシティに働く引張力とのバランスが重要であり、これらを関係付けることに着目したことにより、図2に示すようにCEQに対する限界ポロシティ径を実験結果から見極めることができた。この図に従って、高強度ハイテン鋼のCEQに応じて、ポロシティ径を小さくすることで、鋳片折損を発生させる原因となるポロシティを起点とした亀裂の発生を抑制できることを知見した。 From the above, it is important to balance C EQ as an index of strength and toughness of high-strength and high-tensile strength, the limit porosity diameter inside the slab, and the tensile force that acts on porosity, and paying attention to the relationship between these. As shown in FIG. 2, the critical porosity diameter with respect to C EQ could be determined from the experimental results. According to this figure, it was found that by reducing the porosity diameter according to the C EQ of the high-strength high-tensile steel, it is possible to suppress the occurrence of cracks originating from the porosity that causes breakage of the slab.

付言すると、高強度ハイテン鋼のスラブが加熱炉内で鋳片折損する現象は、鋳片内部に存在するポロシティに、加熱炉内で発生する引張応力が働くことによるものであるといえる。このとき、内部に存在するポロシティ径が大きければ大きいほど、ポロシティの周囲に働く引張力が大きくなる。この引張力に、ハイテン鋼鋳片の靭性が耐えることができるかどうかで、鋳片折損するかどうかが決まっている。ハイテン鋼鋳片の靭性は、鋼種成分のCEQによって決まるそれぞれの鋼種固有のものである。従って、そこから耐えられる引張力の上限が決まり、次にポロシティの最大径(限界ポロシティ径)が決まる。本発明においては、これらを全て実験的に明らかにすることができた。 In addition, it can be said that the phenomenon that the slab of high-strength high-tensile steel is broken in the heating furnace is caused by the tensile stress generated in the heating furnace acting on the porosity existing inside the casting. At this time, the larger the porosity diameter existing inside, the larger the tensile force acting around the porosity. Whether or not the slab breaks depends on whether the toughness of the high-tensile steel slab can withstand this tensile force. The toughness of the high-tensile steel slab is unique to each steel type determined by the C EQ of the steel type component. Therefore, the upper limit of the tensile force that can be withstood is determined, and then the maximum diameter of porosity (limit porosity diameter) is determined. In the present invention, all of these could be clarified experimentally.

ここで、鋳片表面温度が350℃を切らないようにして、加熱炉に装入する理由についてあらためて説明する。鋳片を冷却していくと、鋳片の表面から冷えていき、内部は熱い状態となる。表面は収縮しようとし、内部に圧縮力がかかる。この後加熱炉に装入すると今度は表面温度の方が高くなり、表面は膨張するため、内部に引張力がかかる。表面温度の冷却到達温度が低いほど、再加熱時に鋳片内部にかかる引張力が大きくなり、鋳片内部のポロシティの周囲に亀裂が生じ、これが鋳片置き割れの起点となる。シミュレーション結果及び一般鋼における実験結果として、表面温度が350℃を切らないように加熱炉に装入することで、鋳片内部のポロシティの周囲の亀裂の発生を抑制することを見出し、本発明の必要条件とした。ただし、本発明における高強度ハイテン鋼においては、この条件は必要十分な条件ではないため、本発明における連鋳後圧下が必要となる。連続鋳造鋳片として切断された後に、マシンスカーファーや、グラインダーで手入れする場合もある。その際、本発明では、表面温度が350℃以下とならない条件で、当該鋳片を再加熱することを必要条件とした。なお、連鋳後圧延の加熱前の鋳片表面温度の目標値をあまりに高くしすぎると、連続鋳造後の鋳片切断から連鋳後圧延の加熱炉装入までの時間余裕が少なくなりすぎるので好ましくない。連鋳後圧延の加熱前の鋳片表面温度の目標値は、350℃以上であって、700℃以下程度とすると好ましい。600℃未満とするとより好ましい。   Here, the reason why the slab surface temperature is kept below 350 ° C. and charged into the heating furnace will be explained again. When the slab is cooled, it is cooled from the surface of the slab and the inside becomes hot. The surface tries to shrink and a compressive force is applied to the inside. After this, when charged into a heating furnace, the surface temperature becomes higher this time and the surface expands, so that a tensile force is applied to the inside. As the cooling temperature of the surface temperature is lower, the tensile force applied to the inside of the slab during reheating increases, and cracks are generated around the porosity inside the slab, which becomes the starting point of slab laying cracks. As a simulation result and an experimental result in general steel, it was found that the generation of cracks around porosity inside the slab is suppressed by charging the heating furnace so that the surface temperature does not fall below 350 ° C. It was a necessary condition. However, in the high-strength high-tensile steel of the present invention, this condition is not a necessary and sufficient condition, and therefore reduction after continuous casting in the present invention is required. After cutting as a continuous cast slab, it may be cared with a machine scarf or grinder. At that time, in the present invention, the reheating of the cast slab was made a necessary condition under the condition that the surface temperature was not lower than 350 ° C. If the target value of the slab surface temperature before heating in the post-continuous casting rolling is set too high, the time margin from cutting the slab after continuous casting to charging the heating furnace in the post-continuous rolling is too small. Not preferable. The target value of the surface temperature of the slab before heating during continuous casting and rolling is preferably 350 ° C or higher and about 700 ° C or lower. It is more preferable that the temperature is less than 600 ° C.

本発明の実施の形態について説明する。
前述の成分組成を有する連続鋳造鋳片を製造するに際しては、転炉で吹錬して脱炭し、或いは更に真空脱ガス装置を用いて脱炭した溶鋼中に、C、Si、Mn等の合金を添加し撹拌して、脱酸と成分調整を行う。Sについては、必要なS上限まで二次精錬工程で脱硫を行う。Alやその他、必要な合金を添加して成分調整を行う。このようにして溶製された溶鋼を連続鋳造して鋳片を製造することができる。
An embodiment of the present invention will be described.
In producing a continuously cast slab having the above-described composition, the molten steel blown in a converter to decarburize, or further decarburized using a vacuum degasser is used to remove C, Si, Mn, etc. Add the alloy and stir to deoxidize and adjust the composition. Regarding S, desulfurization is performed in the secondary refining process up to the required upper limit of S. The components are adjusted by adding Al and other necessary alloys. The molten steel manufactured in this manner can be continuously cast to produce a slab.

連続鋳造については、250mm〜300mm厚みのスラブ連続鋳造で実施する。鋳造速度は0.70〜1.8m/minで連続鋳造する。その後、連続鋳造鋳片を所定長さに切断して、表面温度が350℃を切らないようにして、加熱炉に装入する。加熱炉では1000〜1250℃程度で30分から50分程度再加熱し、圧延機を用いて鋳片厚みを熱間圧延(連鋳後圧延)する。巾圧下をしてもよい。加熱炉での加熱温度を1000℃以上とするのは一旦オーステナイト相とするとともに温度が低すぎると連鋳後圧延時の負荷が大きくなり過ぎるためである。1250℃以下とするのはスケールの生成が多くなり歩留りが下がることを抑制するためである。加熱時間を30分以上とするのはスラブを均一に加熱するためである。50分以下とするのはスケールの生成量が多くなることを抑制するためである。   The continuous casting is performed by slab continuous casting having a thickness of 250 mm to 300 mm. Continuous casting is performed at a casting speed of 0.70 to 1.8 m / min. After that, the continuously cast slab is cut into a predetermined length and charged into a heating furnace so that the surface temperature does not fall below 350 ° C. In the heating furnace, reheating is performed at about 1000 to 1250 ° C. for about 30 to 50 minutes, and the thickness of the slab is hot-rolled (rolled after continuous casting) using a rolling mill. The width may be reduced. The heating temperature in the heating furnace is set to 1000 ° C. or higher because once the austenite phase is obtained and the temperature is too low, the load during rolling after continuous casting becomes too large. The reason why the temperature is 1250 ° C. or lower is to prevent the production of scale from increasing and the yield to decrease. The heating time is set to 30 minutes or more in order to uniformly heat the slab. It is set to 50 minutes or less in order to suppress an increase in the amount of scale generation.

以下、本発明の実施例を比較例とともに説明する。
表1の鋼1〜鋼14に示す化学成分の溶鋼を、転炉で吹錬して脱炭し、更に真空脱ガス装置RHを用いて脱炭した溶鋼中に、C、Si、Mn等の合金を添加し撹拌して、脱酸と成分調整を行った。Sについては、必要なS上限まで二次精錬工程で脱硫を行った。Alやその他、必要な合金を添加して成分調整を行った。
Hereinafter, examples of the present invention will be described together with comparative examples.
Molten steel having chemical components shown in Steel 1 to Steel 14 in Table 1 is blown in a converter to decarburize, and further decarburized using a vacuum degassing device RH to obtain C, Si, Mn, etc. The alloy was added and stirred to perform deoxidation and composition adjustment. Regarding S, desulfurization was performed in the secondary refining process up to the required upper limit of S. The components were adjusted by adding Al and other necessary alloys.

このようにして溶製された溶鋼を連続鋳造して鋳片を製造した。連続鋳造については、厚み250mm、もしくは300mm、幅1500mm〜2000mmのサイズの鋳型を用い、0.70〜1.8m/minの鋳造速度で実施した。その後、連続鋳造鋳片を所定長さに切断し、表面温度が所定の温度となるまで冷却し、加熱炉にて鋳片を加熱し、連鋳後圧延を実施した。鋼成分(鋼No.)、連鋳後圧延条件及び結果を表2、表3に示す。   The molten steel thus melted was continuously cast to produce a slab. The continuous casting was performed at a casting speed of 0.70 to 1.8 m / min using a mold having a thickness of 250 mm or 300 mm and a width of 1500 mm to 2000 mm. Then, the continuously cast slab was cut into a predetermined length, cooled until the surface temperature reached a predetermined temperature, the slab was heated in a heating furnace, and rolling was performed after continuous casting. Tables 2 and 3 show the steel components (steel No.), rolling conditions after continuous casting, and the results.

Figure 2020066007
Figure 2020066007

Figure 2020066007
Figure 2020066007

Figure 2020066007
Figure 2020066007

表2に示す試番1−28までは、鋼1〜鋼14を用い、表面温度が350℃以下とならないようにして、加熱炉に装入した。表3に示す試番29−42までは、表面温度が350℃以下となった後、加熱炉に装入した。加熱炉では1000〜1150℃で30分から50分再加熱した。   Steel Nos. 1 to 14 used in Test Nos. 1-28 shown in Table 2 were charged in a heating furnace so that the surface temperature did not fall below 350 ° C. Up to the trial number 29-42 shown in Table 3, after the surface temperature became 350 ° C. or lower, it was charged into the heating furnace. In the heating furnace, it was reheated at 1000 to 1150 ° C. for 30 to 50 minutes.

表2に記載の試番1−28は、熱間圧延装置を用いて鋳片厚みを熱間圧延(連鋳後圧延)を行った。本発明実施例(本発明1〜本発明14)では、連鋳後圧延の圧下比を、CEQに応じて求めた(1)式右辺で算出される必要圧下比よりも高い圧下比で熱間圧延した。表2に記載の比較例(比較例1〜比較例14)では、(1)式右辺で算出される必要圧下比よりも低い圧下比で熱間圧延した。 In the trial number 1-28 described in Table 2, the thickness of the slab was hot-rolled (rolling after continuous casting) using a hot rolling apparatus. In Examples of the present invention (Invention 1 to Invention 14), the reduction ratio of the rolling after continuous casting was performed at a reduction ratio higher than the required reduction ratio calculated by the right side of the formula (1) obtained according to C EQ. Rolled. In Comparative Examples (Comparative Examples 1 to 14) shown in Table 2, hot rolling was performed at a reduction ratio lower than the required reduction ratio calculated by the right side of the expression (1).

各鋳片の各3断面ずつカットサンプルを切断、採取し、研磨して鋳片の内部に存在するポロシティ径をFE−SEMで調査し、最大ポロシティ径とした。各鋳片の残りの部分はそのまま、一旦常温まで冷却し、次工程の熱延前の加熱炉に装入し、所定の加熱の後、取り出して鋳片置き割れの有無を詳細に確認した。5本確認して、1本以上置き割れが発生したときは鋳片置き割れ有りとした。   A cut sample was cut, collected from each of the three cross sections of each slab, polished, and the porosity diameter present inside the slab was investigated by FE-SEM to obtain the maximum porosity diameter. The rest of each slab was cooled to room temperature as it was, charged into a heating furnace before hot rolling in the next step, taken out after predetermined heating, and the presence or absence of cracks in the slab was confirmed in detail. Five pieces were confirmed, and if one or more pieces were cracked, it was determined that the cast piece was cracked.

表3に記載の試番29−42(比較例15〜比較例28)は、連鋳後圧延前の加熱炉内で置き割れを生じていたため、連鋳後圧延は実施しなかった。置き割れ発生の有無の判定は、試番1−28と同じ条件で行った。また、ポロシティ径の調査は、連鋳後圧延を実施しない状態で、試番1−28と同じ方法で実施した。 Test Nos. 29-42 (Comparative Examples 15 to 28) shown in Table 3 did not undergo rolling after continuous casting, because they had cracks in the heating furnace after continuous casting and before rolling. The presence / absence of the occurrence of cracks was determined under the same conditions as in Test No. 1-28. Further, the investigation of the porosity diameter was carried out by the same method as the trial number 1-28 in a state where rolling was not carried out after continuous casting.

本発明の連鋳後圧延において、350℃未満まで冷却せずに加熱炉に装入し、かつ計算された必要圧下比以上の実験圧下比を得られたものは、全ての条件で置き割れが発生しなかった。一方で、表2の比較例1〜比較例14では、計算された必要圧下比に満たない圧下を行った結果、全ての条件で置き割れが確認された。また表3の比較例15〜比較例28については、鋳片表面温度が350℃以下まで温度低下してから加熱炉に装入しているため、全ての条件で連鋳後圧延前の加熱炉内で置き割れが確認された。 In the rolling after continuous casting of the present invention, what was placed in a heating furnace without cooling to less than 350 ° C. and obtained an experimental reduction ratio equal to or higher than the calculated required reduction ratio had cracks under all conditions. Did not occur. On the other hand, in Comparative Examples 1 to 14 in Table 2, as a result of performing the rolling reduction less than the calculated required rolling reduction ratio, cracks were confirmed under all conditions. Further, in Comparative Examples 15 to 28 in Table 3, since the slab surface temperature was lowered to 350 ° C. or lower and charged into the heating furnace, the heating furnace after continuous casting and before rolling under all conditions. A crack was found inside.

Claims (5)

質量%で、
C:0.03〜0.30%、
Si:0.03〜3.0%、
Mn:0.2〜3.0%、
P:0.005〜0.05%、
T.O:0.0005〜0.0050%、
S:0.0001〜0.01%、
N:0.0005〜0.01%、
Al:0.01〜1%を含有し、
残部がFeおよび不可避的不純物成分からなり、下記(3)式で規定するCEQが0.30以上である連続鋳造鋳片を、
連続鋳造機機端で鋳片切断したのちに、表面温度が350℃以下とならない条件で、当該鋳片を加熱して厚み圧下を行い、圧下比を下記(2)式で規定するyとし、下記(3)式で規定する鋼のCEQをxとしたとき、下記(1)式を満足する範囲となるように圧下し、その後に当該鋳片を加熱、熱延することを特徴とする鋳片の置き割れ防止方法。
y≧0.7143x+0.8571 (1)
y=(連続鋳造まま鋳片厚み(mm))/(圧下後鋳片厚み(mm)) (2)
x=CEQ=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14(%) (3)
ただし、(3)式において、元素記号は当該元素の含有量(質量%)を意味する。
In mass%,
C: 0.03 to 0.30%,
Si: 0.03 to 3.0%,
Mn: 0.2-3.0%,
P: 0.005-0.05%,
T. O: 0.0005 to 0.0050%,
S: 0.0001 to 0.01%,
N: 0.0005-0.01%,
Al: contains 0.01 to 1%,
A continuously cast slab having the balance of Fe and unavoidable impurity components and having a C EQ of 0.30 or more defined by the following formula (3):
After cutting the slab at the machine end of the continuous casting machine, under the condition that the surface temperature does not become 350 ° C. or less, the slab is heated to perform thickness reduction, and the reduction ratio is y defined by the following formula (2), When the C EQ of the steel specified by the following formula (3) is x, the steel is reduced so as to satisfy the following formula (1), and then the cast slab is heated and hot rolled. A method for preventing slabs from being cracked.
y ≧ 0.7143x + 0.8571 (1)
y = (slab thickness (mm) as continuous casting) / (slab thickness after reduction (mm)) (2)
x = C EQ = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (%) (3)
However, in the formula (3), the element symbol means the content (mass%) of the element.
前記連続鋳造鋳片はさらに、質量%で、
Ca:0.005%以下
Ti:0.003〜0.3%
Ce、La、Nd、Prの1種または2種以上の合計:0.001〜0.01%
の1種または2種以上を含有していることを特徴とする請求項1に記載の鋳片の置き割れ防止方法。
The continuous cast slab, further in mass%,
Ca: 0.005% or less Ti: 0.003 to 0.3%
Ce, La, Nd, Pr 1 type or the sum total of 2 or more types: 0.001-0.01%
2. The method for preventing slab placement cracking according to claim 1, wherein the method comprises at least one of the above.
さらに、質量%で、
Nb:0.001〜0.10%、
V:0.001〜0.30%、
の1種または2種を含有していることを特徴とする請求項1又は請求項2に記載の鋳片の置き割れ防止方法。
Furthermore, in mass%,
Nb: 0.001 to 0.10%,
V: 0.001 to 0.30%,
1 or 2 of the above is contained, The method for preventing the slab from cracking according to claim 1 or 2, wherein
さらに、質量%で、
Cu:0.1〜2%、
Ni:0.05〜1%、
Cr:0.01〜1.0%、
Mo:0.01〜0.4%、
B:0.0003〜0.0050%、
の1種または2種以上を含有していることを特徴とする請求項1〜3のいずれか1項に記載の鋳片の置き割れ防止方法。
Furthermore, in mass%,
Cu: 0.1-2%,
Ni: 0.05-1%,
Cr: 0.01 to 1.0%,
Mo: 0.01 to 0.4%,
B: 0.0003 to 0.0050%,
1 or 2 or more are contained, The method for preventing the slab from cracking according to any one of claims 1-3.
さらに、質量%で、
Zr:0.001〜0.01%、
を含有していることを特徴とする請求項1〜4のいずれか1項に記載の鋳片の置き割れ防止方法。
Furthermore, in mass%,
Zr: 0.001-0.01%,
The method for preventing slab placement cracking according to any one of claims 1 to 4, further comprising:
JP2018198095A 2018-10-22 2018-10-22 Method for preventing cast slab placement cracks Active JP7124631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018198095A JP7124631B2 (en) 2018-10-22 2018-10-22 Method for preventing cast slab placement cracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018198095A JP7124631B2 (en) 2018-10-22 2018-10-22 Method for preventing cast slab placement cracks

Publications (2)

Publication Number Publication Date
JP2020066007A true JP2020066007A (en) 2020-04-30
JP7124631B2 JP7124631B2 (en) 2022-08-24

Family

ID=70389164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018198095A Active JP7124631B2 (en) 2018-10-22 2018-10-22 Method for preventing cast slab placement cracks

Country Status (1)

Country Link
JP (1) JP7124631B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577013A (en) * 1991-09-24 1993-03-30 Nippon Steel Corp Manufacture of continuously cast slab excellent in ultrasonic flaw detection property
JPH06328214A (en) * 1993-05-24 1994-11-29 Nippon Steel Corp Method for preventing season cracking of ferritic stainless steel
JPH09164464A (en) * 1995-12-15 1997-06-24 Nkk Corp Method for preventing season cracking of continuously cast slab of ball bearing steel
JP2004237291A (en) * 2003-02-03 2004-08-26 Jfe Steel Kk Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP2006009057A (en) * 2004-06-23 2006-01-12 Nisshin Steel Co Ltd Method for producing high strength cold-rolled steel sheet excellent in bending and fatigue resistant characteristics
JP2007083274A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd Method for preventing delayed failure in continuous cast slab of high tension steel
JP2012197506A (en) * 2011-03-10 2012-10-18 Nippon Steel Corp High strength steel sheet excellent in stretch flange formability and bendability and ingot method of molten steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577013A (en) * 1991-09-24 1993-03-30 Nippon Steel Corp Manufacture of continuously cast slab excellent in ultrasonic flaw detection property
JPH06328214A (en) * 1993-05-24 1994-11-29 Nippon Steel Corp Method for preventing season cracking of ferritic stainless steel
JPH09164464A (en) * 1995-12-15 1997-06-24 Nkk Corp Method for preventing season cracking of continuously cast slab of ball bearing steel
JP2004237291A (en) * 2003-02-03 2004-08-26 Jfe Steel Kk Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP2006009057A (en) * 2004-06-23 2006-01-12 Nisshin Steel Co Ltd Method for producing high strength cold-rolled steel sheet excellent in bending and fatigue resistant characteristics
JP2007083274A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd Method for preventing delayed failure in continuous cast slab of high tension steel
JP2012197506A (en) * 2011-03-10 2012-10-18 Nippon Steel Corp High strength steel sheet excellent in stretch flange formability and bendability and ingot method of molten steel

Also Published As

Publication number Publication date
JP7124631B2 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
JP6703606B2 (en) Ultra high strength steel sheet excellent in chemical conversion treatment property and bending workability and method for producing the same
JP2009263685A (en) High strength steel sheet having reduced deterioration in characteristic after cutting, and method for producing the same
KR20180074281A (en) Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof
JP2009242841A (en) High-tensile steel excellent in bending workability and low-temperature toughness, and method for manufacturing the same
JP2015183273A (en) Steel sheet and production method thereof
JP2010222680A (en) Method for manufacturing high strength high toughness steel excellent in workability
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JP4016786B2 (en) Seamless steel pipe and manufacturing method thereof
KR20150101734A (en) Steel for pressure vessel and method of manufacturing the steel
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
CN111051555B (en) Steel sheet and method for producing same
JP4959402B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP2017115238A (en) High strength cold rolled steel sheet excellent in bending workability and production method therefor
CN108699650B (en) Rolled wire
JP7124631B2 (en) Method for preventing cast slab placement cracks
JP2001020033A (en) Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone
JP6724720B2 (en) High-strength steel sheet manufacturing method
JP2022514019A (en) Extra-thick structural steel with excellent brittle crack initiation resistance and its manufacturing method
JP2001020031A (en) Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone
JP7356025B2 (en) Hot width reduction rolling method for continuously cast slabs
JP7348947B2 (en) Structural steel material with excellent brittle fracture resistance and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R151 Written notification of patent or utility model registration

Ref document number: 7124631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151