JP2009263685A - High strength steel sheet having reduced deterioration in characteristic after cutting, and method for producing the same - Google Patents

High strength steel sheet having reduced deterioration in characteristic after cutting, and method for producing the same Download PDF

Info

Publication number
JP2009263685A
JP2009263685A JP2008111254A JP2008111254A JP2009263685A JP 2009263685 A JP2009263685 A JP 2009263685A JP 2008111254 A JP2008111254 A JP 2008111254A JP 2008111254 A JP2008111254 A JP 2008111254A JP 2009263685 A JP2009263685 A JP 2009263685A
Authority
JP
Japan
Prior art keywords
steel sheet
cutting
temperature
rolling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008111254A
Other languages
Japanese (ja)
Other versions
JP5136182B2 (en
Inventor
Masashi Azuma
昌史 東
Noriyuki Suzuki
規之 鈴木
Naoki Maruyama
直紀 丸山
Naoki Yoshinaga
直樹 吉永
Akinobu Murasato
映信 村里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008111254A priority Critical patent/JP5136182B2/en
Publication of JP2009263685A publication Critical patent/JP2009263685A/en
Application granted granted Critical
Publication of JP5136182B2 publication Critical patent/JP5136182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength steel sheet having excellent ductility equal to that of a DP steel and excellent hole expansibility equal to that of the one with a single structure, and in which the damage of edge faces after cutting is extremely slight, and to provide a method for producing the same. <P>SOLUTION: The high strength steel sheet having reduced deterioration in characteristics after cutting is composed of a steel, which comprises, by mass, 0.05 to 0.20% C, 0.3 to 2.00% Si, 1.3 to 2.6% Mn, 0.001 to 0.03% P, 0.0001 to 0.01% S, <0.10% Al, 0.0005 to 0.0100% N and 0.0005 to 0.007% O, and the balance iron with inevitable impurities, has a steel sheet structure mainly composed of ferrite and bainite, and in which the Mn segregation degree in the sheet thickness direction (= the central part Mn peak concentration/the average Mn concentration) is ≤1.20, and the maximum tensile strength is ≥540 MPa. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車、建材、家電製品などに適する切断後の特性劣化の少ない高強度鋼板及びその製造方法に関する。   The present invention relates to a high-strength steel sheet with little deterioration in characteristics after cutting, which is suitable for automobiles, building materials, home appliances, and the like, and a method for manufacturing the same.

近年、自動車分野においては衝突時に乗員を保護するような機能の確保、及び、燃費向上を目的とした軽量化を両立させるために、高強度鋼板が適用されている。特に、衝突安全性確保に関しては、その安全意識の高まりに加え、法規制の強化から、これまで低強度の鋼板しか用いられてこなかったような複雑形状を有する部品へまで、高強度鋼板を適用しようとするニーズがある。しかしながら、材料の成形性は強度が上昇するのに伴って劣化するので、複雑形状を有する部材へ高強度鋼板を適用するにあたっては、成形性と高強度の両方を満足する鋼板を製造する必要がある。一口に、成形性と言っても、自動車部材のような複雑形状を有する部材に適用するに当たっては、例えば、延性、張り出し成形性、穴拡げ性、伸びフランジ性の異なる成形性を同時に具備することが求められる。   In recent years, high-strength steel sheets have been applied in the automobile field in order to achieve both a function for protecting passengers in the event of a collision and weight reduction for the purpose of improving fuel efficiency. In particular, with regard to ensuring collision safety, in addition to increasing safety awareness, high-strength steel sheets are applied from strengthening laws and regulations to parts with complex shapes that have only been used with low-strength steel sheets until now. There is a need to try. However, since the formability of the material deteriorates as the strength increases, it is necessary to manufacture a steel sheet that satisfies both formability and high strength when applying a high strength steel sheet to a member having a complex shape. is there. Even if it is said that formability is a bit, when applying it to a member having a complicated shape such as an automobile member, for example, it should have simultaneously formability with different ductility, stretch formability, hole expandability, stretch flangeability, etc. Is required.

特に、自動車用部材は、部材の接合にあたってスポット溶接等を行う必要があり、部材にフランジをつける場合が多い。フランジ部は、切断ままの端面を加工する場合が多く、切断による損傷の影響で特に破断しやすいことから、加工時にこのフランジ部で破断しないことが求められる。
伸びフランジ性は、切断ままの端面を加工することから、材料特性として伸びフランジ性が良好なことと同時に、シャー等の機械切断による端面の損傷が軽微なことが要求される。
伸びフランジ性向上に必要な材料特性は、非特許文献1で示されるように、均一伸びや穴拡げ性である。このことから、均一伸びと穴拡げ性の両方を具備することが求められる。
一方、シャーや打ち抜き端面には、切断の際に介在物を引きずったと考えられる損傷が多数存在し、これが起点となり、伸びフランジ成形時や穴拡げ試験時に割れが生じることが知られている(非特許文献1)。このことから、切断時の端面の損傷を抑制することも極めて重要になる。
In particular, a member for an automobile needs to be spot-welded or the like for joining the members, and the member is often provided with a flange. In many cases, the end face of the flange part is processed as it is cut, and it is particularly easy to break due to the damage caused by cutting. Therefore, it is required that the flange part does not break during processing.
Since the stretch flangeability is obtained by processing the end face as it is cut, it is required that the stretch flangeability is good as a material characteristic, and at the same time, damage to the end face due to mechanical cutting of a shear or the like is slight.
As shown in Non-Patent Document 1, the material properties necessary for improving stretch flangeability are uniform stretch and hole expandability. For this reason, it is required to have both uniform elongation and hole expansibility.
On the other hand, there are many damages that are thought to have dragged inclusions at the time of cutting on the shears and punched end faces, and this is the starting point, and it is known that cracks occur during stretch flange molding and hole expansion tests (non- Patent Document 1). For this reason, it is also extremely important to suppress damage to the end face during cutting.

薄鋼板の成形性として重要な延性や張り出し成形性は、加工硬化指数(n値)と相関があることが知られており、n値が高い鋼板が成形性に優れる鋼板として知られている。例えば、延性や張り出し成形性に優れる鋼板として、鋼板組織がフェライト及びマルテンサイトから成るDP(Dual Phase)鋼板や、鋼板組織中に残留オーステナイトを含むTRIP(Transformation Induced Plasticity)鋼板がある(特許文献1、特許文献2)。一方、穴拡げ性に優れる鋼板としては、鋼板組織を析出強化したフェライト単相組織とした鋼板やベイナイト単相組織とした鋼板が知られている(特許文献3〜5、非特許文献2)。   It is known that ductility and stretch formability, which are important as formability of a thin steel sheet, are correlated with a work hardening index (n value), and a steel sheet having a high n value is known as a steel sheet having excellent formability. For example, as steel plates excellent in ductility and stretch formability, there are DP (Dual Phase) steel plates whose steel plate structure is composed of ferrite and martensite, and TRIP (Transformation Induced Plasticity) steel plates containing residual austenite in the steel plate structure (Patent Document 1). Patent Document 2). On the other hand, as a steel sheet excellent in hole expansibility, a steel sheet having a ferrite single-phase structure in which the steel sheet structure is precipitation strengthened and a steel sheet having a bainite single-phase structure are known (Patent Documents 3 to 5, Non-Patent Document 2).

DP鋼板は、延性に富むフェライトを主相とし、硬質組織であるマルテンサイトを鋼板組織中に分散させることで、優れた延性を得ている。また、軟質なフェライトは変形し易く、変形と共に多量の転位が導入され、硬化することから、n値も高い。しかしながら、鋼板組織を軟質なフェライトと硬質なマルテンサイトより成る組織とすると、両組織の変形能が異なることから、穴拡げ加工のような大加工を伴う成形においては、両組織の界面に微小なマイクロボイドが形成し、穴拡げ性が著しく劣化するという問題を有する。特に、引張最大強度590MPa以上のDP鋼板中に含まれるマルテンサイト体積率は比較的多く、フェライトとマルテンサイト界面も多く存在することから、界面に形成したマイクロボイドは容易に連結し、亀裂形成、破断へと至る。このことから、DP鋼板の穴拡げ性は劣位である(例えば、非特許文献3)。   The DP steel sheet has excellent ductility by having ferrite having high ductility as a main phase and dispersing martensite which is a hard structure in the steel sheet structure. Further, soft ferrite is easily deformed, and a large amount of dislocations are introduced and hardened together with the deformation, so that the n value is also high. However, if the steel sheet structure is composed of soft ferrite and hard martensite, the deformability of both structures is different, so in forming with large machining such as hole expansion, there is a minute amount at the interface between both structures. There is a problem that microvoids are formed and the hole expandability is significantly deteriorated. In particular, since the martensite volume fraction contained in the DP steel sheet having a maximum tensile strength of 590 MPa or more is relatively large and there are also many ferrite and martensite interfaces, the microvoids formed at the interface are easily connected, crack formation, It leads to breakage. From this, the hole expansibility of DP steel plate is inferior (for example, nonpatent literature 3).

鋼板組織が、フェライト及び残留オーステナイトより成るTRIP鋼板においても同様に穴拡げ性は低い。これは、自動車部材の成形加工である穴拡げ加工や伸びフランジ加工が、打ち抜き、あるいは、機械切断後、加工を行うことに起因している。TRIP鋼板に含まれる残留オーステナイトは、加工を受けるとマルテンサイトへと変態する。例えば、延引張加工や張り出し加工であれば、残留オーステナイトがマルテンサイトへと変態することで、加工部を高強度化し、変形の集中を抑制することで、高い成形性を確保可能である。しかし、一旦、打ち抜きや切断等を行うと、端面近傍は加工を受けるため、鋼板組織中に含まれる残留オーステナイトがマルテンサイトへと変態してしまう。この結果、DP鋼板と類似の組織となり、穴拡げ性や伸びフランジ成形性は劣位となる。あるいは、打ち抜き加工そのものが大変形を伴う加工であることから、打ち抜き後に、フェライトと硬質組織(ここでは、残留オーステナイトが変態したマルテンサイト)界面に、マイクロボイドが存在し、穴拡げ性を劣化させていることが報告されている。   Similarly, in the TRIP steel plate whose steel plate structure is composed of ferrite and retained austenite, the hole expandability is low. This is because hole expansion processing and stretch flange processing, which are molding processes for automobile members, are performed after punching or mechanical cutting. The retained austenite contained in the TRIP steel sheet transforms into martensite when subjected to processing. For example, in the case of stretch-stretching or overhanging, it is possible to ensure high formability by increasing the strength of the processed portion and suppressing the concentration of deformation by transforming residual austenite into martensite. However, once punching, cutting, or the like is performed, the vicinity of the end face is subjected to processing, so that residual austenite contained in the steel sheet structure is transformed into martensite. As a result, the structure becomes similar to that of the DP steel sheet, and the hole expandability and stretch flange formability are inferior. Alternatively, since the punching process itself involves a large deformation, after punching, microvoids exist at the interface between ferrite and hard structure (here, martensite transformed with retained austenite), which deteriorates hole expandability. It has been reported that

あるいは、粒界にセメンタイトやパーライト組織が存在する鋼板も、穴拡げ性は劣位である。これはフェライトとセメンタイトの境界が微小ボイド生成の起点となるためである。   Or the steel sheet in which a cementite and a pearlite structure exist in a grain boundary is also inferior in hole expansibility. This is because the boundary between ferrite and cementite is the starting point for microvoid formation.

その結果、特許文献3〜5及び非特許文献1に示されるように、穴拡げ性に優れた鋼板の開発は、鋼板の主相をベイナイトもしくは析出強化したフェライトの単相組織とし、かつ、粒界でのセメンタイト相の生成を抑えるため、Ti等の合金炭化物形成元素を多量に添加し、鋼中に含まれるCを合金炭化物とすることで、穴拡げ性に優れた高強度熱延鋼板が開発されてきた。   As a result, as shown in Patent Documents 3 to 5 and Non-Patent Document 1, the development of a steel sheet excellent in hole expansibility has a single-phase structure of ferrite in which the main phase of the steel sheet is bainite or precipitation strengthened, and grains In order to suppress the formation of cementite phase at the boundary, by adding a large amount of alloy carbide forming elements such as Ti and making C contained in the alloy alloy carbide, a high strength hot-rolled steel sheet with excellent hole expandability can be obtained. Has been developed.

ところで、高強度熱延鋼板は、合金元素を多く含んでいる。特に、組織強化を活用する場合、Mnを多く添加している。ところがMnの含有量が多い場合、板厚方向の中心部にMnが偏析する傾向がある。これは、溶鋼をスラブに連続鋳造する際に、スラブの表面から中心に向けて冷却が進行するがこのときにMnが最後まで固溶せず、Mnが次第にスラブの中心部に移動し、最後に冷えて固まるためである。このようなスラブを圧延することによって得られた高強度熱延鋼板は、厚み方向中心部に高濃度のMnが存在するために、厚み方向中心部の硬度がそれ以外の部分の硬度よりも高くなっている。   By the way, the high-strength hot-rolled steel sheet contains a lot of alloying elements. In particular, when utilizing the structure strengthening, a large amount of Mn is added. However, when there is much content of Mn, there exists a tendency for Mn to segregate in the center part of a plate | board thickness direction. This is because when the molten steel is continuously cast into the slab, cooling proceeds from the surface of the slab toward the center, but at this time, Mn does not dissolve to the end, Mn gradually moves to the center of the slab, and finally This is because it cools and hardens. The high-strength hot-rolled steel sheet obtained by rolling such a slab has a high concentration of Mn in the thickness direction center portion, so the hardness in the thickness direction center portion is higher than the hardness of the other portions. It has become.

このような高強度鋼板に対して切断や打ち抜き加工を行うと、端面はせん断面と破断面より構成される端面となるが、特に、加工はせん断面と破断面の境界近傍で大きくなりやすい。その結果、Mnの中心偏析が存在して強度の異なる板厚中心において、打ち抜き後割れや二次せん断が発生する場合がある。このような割れや二次せん断は、穴拡げや伸びフランジ成形の際に、亀裂の元になるため、著しく特性を劣化させる。特に、打ち抜き時のクリアランスを変化させると劣化が顕著になる。   When cutting or punching is performed on such a high-strength steel plate, the end surface becomes an end surface composed of a shear surface and a fracture surface, but the machining tends to be particularly large near the boundary between the shear surface and the fracture surface. As a result, cracks and secondary shearing may occur after punching in the center of the plate thickness where the center segregation of Mn exists and the strength is different. Such cracks and secondary shears cause cracks during hole expansion and stretch flange forming, and therefore the characteristics are remarkably deteriorated. In particular, when the clearance at the time of punching is changed, the deterioration becomes remarkable.

また、実部材を考えた場合、高強度熱延鋼板は打ち抜きまま若しくは切断ままで使用される場合が多いので、切断ままで伸びや穴拡げ等の特性が良好なことが求められる。ここで、打ち抜きや切断時のクリアランスは、部材の各位置で変動するか、あるいは、ポンチやシャーの磨耗によりクリアランスが経時変化する場合があるから、実部材は、必ずしも穴拡げ性が優れる条件で加工されるとは限らない。その結果、穴拡げ性に優れる鋼板であっても、破断する場合がある。   In consideration of actual members, high-strength hot-rolled steel sheets are often used as punched or as-cut, and therefore, it is required to have good characteristics such as elongation and hole expansion as they are cut. Here, the clearance at the time of punching or cutting varies at each position of the member, or the clearance may change with time due to wear of the punch or shear, so the actual member is not necessarily in the condition that the hole expandability is excellent. It is not always processed. As a result, even a steel plate excellent in hole expansibility may break.

このように実部材の特性向上にあたっては、理想的な条件での特性向上もさることながら、広い成形条件で安定して優れた特性が発揮されることが求められる。
CAMP-ISIJVol.13(2000),p399 CAMP-ISIJ vol.13(2000),p411 CAMP-ISIJ vol.13(2000),p391 特開昭53−22812号公報 特開平1−230715号公報 特開2003-321733号公報 特開2004−256906号公報 特開平11−279691号公報 特開昭63−293121号公報
As described above, in improving the characteristics of an actual member, it is required to stably exhibit excellent characteristics under a wide range of molding conditions, in addition to improving characteristics under ideal conditions.
CAMP-ISIJ Vol. 13 (2000), p399 CAMP-ISIJ vol. 13 (2000), p411 CAMP-ISIJ vol. 13 (2000), p391 JP-A-53-22812 Japanese Patent Laid-Open No. 1-2230715 JP 2003-321733 A JP 2004-256906 A Japanese Patent Application Laid-Open No. 11-296991 JP-A-63-293121

上述したように、伸びフランジ性向上のためには、延性や穴拡げ性といった材料特性の向上に加え、切断した端面の性状の改善は必要不可欠である。
本発明は、延性や穴拡げ性と言った材料特性向上と同時に、切断後の端面損傷を抑制に考慮して行われたものであり、その目的は、DP鋼並み優れた延性と、単一組織並みの優れた穴拡げ性を持つと同時に、切断後の端面の損傷が極めて軽微な高強度鋼板並びにその製造方法を提供することにある。
As described above, in order to improve stretch flangeability, in addition to improving material properties such as ductility and hole expandability, it is essential to improve the properties of the cut end face.
The present invention has been made in consideration of the improvement of material properties such as ductility and hole expansibility, as well as suppression of end face damage after cutting. An object of the present invention is to provide a high-strength steel sheet having a hole expandability similar to that of a structure and at the same time causing extremely little damage to the end face after cutting, and a method for producing the same.

上記の課題を解決することを目的とした本発明の要旨は以下のとおりである。
(1) 質量%で、C:0.05%〜0.20%、Si:0.3〜2.00%、Mn:1.3〜2.6%、P:0.001〜0.03%、S:0.0001〜0.01%、Al:0.10%未満、N:0.0005〜0.0100%、O:0.0005〜0.007%を含有し、残部が鉄および不可避的不純物からなる鋼であり、鋼板組織が主としてフェライトとベイナイトからなり、板厚方向のMn偏析度(=中心部Mnピーク濃度/平均Mn濃度)が1.20以下であり、引張最大強さが540MPa以上であることを特徴とする切断後の特性劣化の少ない高強度鋼板。
(2) さらに、質量%で、B:0.0001〜0.01%未満を含有することを特徴とする(1)に記載の切断後の特性劣化の少ない高強度鋼板。
(3) さらに、質量%で、Cr:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%、Mo:0.01〜1.0%の1種または2種以上を含有することを特徴とする(1)または(2)に記載の切断後の特性劣化の少ない高強度鋼板。
(4) さらに、質量%で、Nb、Ti、Vの1種または2種以上を合計で0.001〜0.14%含有することを特徴とする(1)〜(3)のいずれか1項に記載の切断後の特性劣化の少ない高強度鋼板。
(5) さらに、質量%で、Ca、Ce、Mg、REMの1種または2種以上を合計で0.0001〜0.5%含有することを特徴とする(1)〜(4)のいずれか1項に記載の切断後の特性劣化の少ない高強度鋼板。
(6) (1)〜(5)のいずれか1項に記載の高強度鋼板の表面に亜鉛系めっきを有することを特徴とする切断後の特性劣化の少ない高強度鋼板。
(7) (1)〜(5)のいずれか1項に記載の化学成分を有する鋳造スラブを鋳造するに当たって、板厚方向に圧下を加えつつ鋳造を行うことを特徴とする鋳造スラブ。
The gist of the present invention aimed at solving the above problems is as follows.
(1) By mass%, C: 0.05% to 0.20%, Si: 0.3 to 2.00%, Mn: 1.3 to 2.6%, P: 0.001 to 0.03 %, S: 0.0001 to 0.01%, Al: less than 0.10%, N: 0.0005 to 0.0100%, O: 0.0005 to 0.007%, the balance being iron and It is a steel composed of inevitable impurities, the steel sheet structure is mainly composed of ferrite and bainite, the Mn segregation degree in the thickness direction (= center Mn peak concentration / average Mn concentration) is 1.20 or less, and the maximum tensile strength Is a high-strength steel sheet with little deterioration in characteristics after cutting, characterized by being 540 MPa or more.
(2) The high-strength steel sheet with less deterioration in characteristics after cutting according to (1), further comprising B: 0.0001 to less than 0.01% by mass.
(3) Furthermore, Cr: 0.01-1.0%, Ni: 0.01-1.0%, Cu: 0.01-1.0%, Mo: 0.01-1. The high-strength steel sheet with little deterioration in properties after cutting according to (1) or (2), characterized by containing one or more of 0%.
(4) Further, any one of (1) to (3), characterized by containing, in mass%, 0.001 to 0.14% of one or more of Nb, Ti, and V in total. A high-strength steel sheet with little property deterioration after cutting as described in the item.
(5) Further, any one of (1) to (4), characterized by containing 0.0001 to 0.5% in total of one or more of Ca, Ce, Mg, and REM in mass% 2. A high-strength steel sheet with little deterioration in properties after cutting according to item 1.
(6) A high-strength steel sheet with little deterioration in characteristics after cutting, characterized by having zinc-based plating on the surface of the high-strength steel sheet according to any one of (1) to (5).
(7) A cast slab characterized by performing casting while applying reduction in the plate thickness direction when casting the cast slab having the chemical component according to any one of (1) to (5).

(8) (7)に記載の鋳造スラブを直接又は一旦冷却した後1050℃以上に加熱し、圧下率70%以上とする熱延を施した後、さらに85%以上の圧下率で仕上温度を820℃〜930℃とする熱間圧延を行った後、水冷を開始し、720〜800℃間の平均冷却速度が25℃/秒以上の冷却速度で水冷を行い、620〜720℃で水冷を完了し、400〜630℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続焼鈍ラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で冷却し、450℃〜300℃の温度域で30秒以上保持することを特徴とする切断後の特性劣化の少ない高強度鋼板の製造方法。
(9) (7)に記載の鋳造スラブを直接又は一旦冷却した後1050℃以上に加熱し、圧下率70%以上とする熱延を施した後、さらに85%以上の圧下率で仕上温度を820℃〜930℃とする熱間圧延を行った後、水冷を開始し、720〜800℃間の平均冷却速度が25℃/秒以上の冷却速度で水冷を行い、620〜720℃で水冷を完了し、400〜630℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続溶融亜鉛めっきラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で(亜鉛めっき浴温度―40)℃〜(亜鉛めっき浴温度+50)℃まで冷却した後、亜鉛めっき浴に浸漬前、あるいは、浸漬後の何れか一方、あるいは、両方で、(亜鉛めっき浴温度+50)℃〜300℃の温度域で30秒以上保持することを特徴とする切断後の特性劣化の少ない高強度溶融亜鉛めっき鋼板の製造方法。
(10) (7)に記載の鋳造スラブを直接又は一旦冷却した後11001050℃以上に加熱し、圧下率70%以上とする熱延を施した後、さらに85%以上の圧下率で仕上温度を820℃〜930℃とする熱間圧延を行った後、水冷を開始し、720〜800℃間の平均冷却速度が25℃/秒以上の冷却速度で水冷を行い、620〜720℃で水冷を完了し、400〜630℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続溶融亜鉛めっきラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で(亜鉛めっき浴温度―40)℃〜(亜鉛めっき浴温度+50)℃まで冷却した後、必要に応じて460〜540℃の温度で合金化処理を施し、亜鉛めっき浴に浸漬前、浸漬後、あるいは、合金化処理後の何れか、あるいは、全てで(亜鉛めっき浴温度+50)℃〜300℃の温度域で30秒以上保持することを特徴とする切断後の特性劣化の少ない高強度合金化溶融亜鉛めっき鋼板の製造方法。
(11) (8)の方法で高強度鋼板を製造したのち、亜鉛系の電気めっきを施すことを特徴とする(8)に記載の切断後の特性劣化の少ない高強度鋼板の製造方法。
(8) The cast slab described in (7) is directly or once cooled and then heated to 1050 ° C. or higher and subjected to hot rolling to a reduction rate of 70% or more, and then the finishing temperature is reduced to a reduction rate of 85% or more. After performing hot rolling to 820 ° C to 930 ° C, water cooling is started, water cooling is performed at an average cooling rate of 720 to 800 ° C at a cooling rate of 25 ° C / second or more, and water cooling is performed at 620 to 720 ° C. Completed, wound up in a temperature range of 400-630 ° C., pickled, cold rolled at a rolling reduction of 40-70%, and annealed at a maximum heating temperature of 760-870 ° C. when passing through a continuous annealing line Thereafter, the steel sheet is cooled between 630 ° C. and 570 ° C. at an average cooling rate of 3 ° C./second or more, and is maintained at a temperature range of 450 ° C. to 300 ° C. for 30 seconds or more. Manufacturing method.
(9) The cast slab described in (7) is directly or once cooled, then heated to 1050 ° C. or higher, subjected to hot rolling to a reduction rate of 70% or more, and then the finishing temperature at a reduction rate of 85% or more. After performing hot rolling to 820 ° C to 930 ° C, water cooling is started, water cooling is performed at an average cooling rate of 720 to 800 ° C at a cooling rate of 25 ° C / second or more, and water cooling is performed at 620 to 720 ° C. Completed, wound up in a temperature range of 400-630 ° C., pickled, cold-rolled with a rolling reduction of 40-70%, and passed through a continuous hot dip galvanizing line at a maximum heating temperature of 760-870 ° C. After annealing, after cooling between 630 ° C. and 570 ° C. at an average cooling rate of 3 ° C./second or more (zinc plating bath temperature−40) ° C. to (zinc plating bath temperature + 50) ° C., before being immersed in the zinc plating bath, Or either after immersion or both The method for producing a high-strength hot-dip galvanized steel sheet with little deterioration in properties after cutting, characterized by holding in a temperature range of (galvanizing bath temperature + 50) ° C. to 300 ° C. for 30 seconds or more.
(10) The casting slab described in (7) is directly or once cooled, then heated to 110001050 ° C. or higher, subjected to hot rolling to a reduction rate of 70% or more, and then the finishing temperature at a reduction rate of 85% or more. After performing hot rolling to 820 ° C to 930 ° C, water cooling is started, water cooling is performed at an average cooling rate of 720 to 800 ° C at a cooling rate of 25 ° C / second or more, and water cooling is performed at 620 to 720 ° C. Completed, wound up in a temperature range of 400-630 ° C., pickled, cold-rolled with a rolling reduction of 40-70%, and passed through a continuous hot dip galvanizing line at a maximum heating temperature of 760-870 ° C. After annealing, cooling between 630 ° C. and 570 ° C. at an average cooling rate of 3 ° C./second or more to (zinc plating bath temperature−40) ° C. to (zinc plating bath temperature + 50) ° C., and then, if necessary, 460 to 540 Alloyed at a temperature of ℃, Cutting characterized by holding for at least 30 seconds in a temperature range of (zinc plating bath temperature +50) ° C. to 300 ° C. either before or after immersion in the lead plating bath or after alloying treatment. A method for producing a high-strength galvannealed steel sheet with less characteristic deterioration later.
(11) The method for producing a high-strength steel sheet with less characteristic deterioration after cutting according to (8), wherein a high-strength steel sheet is produced by the method of (8) and then zinc-based electroplating is performed.

本発明によれば、鋼板成分、鋳造条件及び圧延条件を制御することで、引張最大強さが540MPa以上の切断後の特性劣化の少ない高強度鋼板を安定して得ることができる。   According to the present invention, by controlling the steel plate components, casting conditions, and rolling conditions, it is possible to stably obtain a high-strength steel plate having a maximum tensile strength of 540 MPa or more and less characteristic deterioration after cutting.

本発明者等は、鋭意検討を進めた結果、クリアランス変化に伴う穴拡げ性や伸びフランジ性の劣化の一因が、Mnの中心偏析に起因した切断時または打ち抜き時の端面損傷の変化に原因があることを見出した。具体的には、クリアランスが大きくなると、打ち抜き、あるいは、切断時に働く板厚方向の応力が大きくなる。その結果、板厚中心部(偏析部)に亀裂が生じる場合があり、その後の加工性を劣化させることを見出した。
以下に、本発明を詳細に説明する。
As a result of diligent investigations, the present inventors have found that the cause of deterioration in hole expandability and stretch flangeability due to clearance change is due to changes in end face damage during cutting or punching due to center segregation of Mn. Found that there is. Specifically, when the clearance is increased, the stress in the thickness direction acting during punching or cutting is increased. As a result, it has been found that cracks may occur in the central portion (segregation portion) of the plate thickness, and the subsequent workability is deteriorated.
The present invention is described in detail below.

本発明に係る切断後の特性劣化の少ない高強度鋼板とは、機械研削により作成した試験片と、切断や打ち抜きと言った加工ままの試験片の特性の差を示すのではなく、クリアランスが大きく変化したとしても、良好な伸びフランジ性が確保可能な鋼板を意味する。
また、機械加工としても、シャー切断に限定するものではなく、ポンチを用いた打ち抜きをはじめとする切断(打ち抜き)ままの端面が存在し、その後、加工を受ける加工方法を指す。
The high-strength steel sheet with less characteristic deterioration after cutting according to the present invention does not indicate a difference in characteristics between a test piece prepared by mechanical grinding and an as-processed test piece such as cutting or punching, but has a large clearance. Even if it changes, it means a steel sheet that can ensure good stretch flangeability.
Further, the machining is not limited to shear cutting, but refers to a processing method in which there is an end face as it is cut (punched) including punching using a punch, and then the machining is performed.

先ず、Mnの偏析度について説明する。
本発明者等が鋭意検討を進めた結果、鋼板組織をフェライトと硬質組織よりなる組織とすると共に、硬質組織とフェライトの硬度差を低減させつつ、マンガンの偏析度の低減による端面の亀裂発生を抑制することで、切断後の特性劣化を少なくすることが可能であることを見出した。
First, the segregation degree of Mn will be described.
As a result of diligent investigations by the inventors, the steel sheet structure is made of a ferrite and a hard structure, and the cracking of the end face is reduced by reducing the segregation degree of manganese while reducing the hardness difference between the hard structure and the ferrite. It has been found that by suppressing it, it is possible to reduce the characteristic deterioration after cutting.

高強度鋼板を断面をCMA分析またはEPMA分析すると、板厚方向の中心部に、Mnの平均濃度よりも高い濃度でMnが偏析しているMn偏析帯が観察される。このMnの偏析の程度を数量化したものが板厚方向のMn偏析度であって、CMAまたはEPMAを用いて測定することが出来る。板厚方向のMn偏析度は、中心部Mnピーク濃度を平均Mn濃度で除した値で定義され、本発明に係る高強度鋼板では、好ましくは1.2以下であり、より好ましくは1.15以下であり、更に好ましくは1.0以下である。また、板厚方向のMn偏析帯の幅も狭いことが望ましい。Mn偏析帯の幅は20μm以下が好ましく、15μm以下がより好ましく、10μm以下が更に好ましい。また、場合によっては、板厚中心部に、Mn濃度が平均Mn濃度よりも少ない不偏析がある場合があるが、このような鋼板も本発明に係る高強度鋼板に含まれる。   When the cross section of the high-strength steel plate is subjected to CMA analysis or EPMA analysis, a Mn segregation zone in which Mn is segregated at a concentration higher than the average concentration of Mn is observed at the center in the thickness direction. A quantification of the degree of segregation of Mn is the degree of Mn segregation in the plate thickness direction, which can be measured using CMA or EPMA. The Mn segregation degree in the plate thickness direction is defined by a value obtained by dividing the central Mn peak concentration by the average Mn concentration. In the high-strength steel plate according to the present invention, it is preferably 1.2 or less, more preferably 1.15. Or less, more preferably 1.0 or less. Further, it is desirable that the width of the Mn segregation band in the plate thickness direction is also narrow. The width of the Mn segregation zone is preferably 20 μm or less, more preferably 15 μm or less, and still more preferably 10 μm or less. In some cases, there is a case where there is non-segregation in which the Mn concentration is lower than the average Mn concentration at the center of the plate thickness. Such a steel plate is also included in the high-strength steel plate according to the present invention.

Mn偏析度を小さくするためには、スラブを鋳造する際に圧下を加えつつ鋳造する必要がある。例えば、厚みが240mmのスラブを鋳造するに当たっては、5mm以上の圧下を加える。即ち、入り側の厚みを245mmとするなら、出側厚みを240mmにする。ただし、Mn偏析度は、溶鋼が凝固する過程で、Mnが溶鋼へと排出されることで起こる。従って、凝固したスラブを圧下したとしてもMn偏析は改善しない。このため、圧下は、溶鋼が完全に凝固する前に行う必要がある。   In order to reduce the degree of segregation of Mn, it is necessary to cast the slab while reducing it. For example, when casting a slab having a thickness of 240 mm, a reduction of 5 mm or more is applied. That is, if the entry side thickness is 245 mm, the exit side thickness is 240 mm. However, the degree of segregation of Mn occurs when Mn is discharged into the molten steel in the process of solidifying the molten steel. Therefore, even if the solidified slab is reduced, Mn segregation does not improve. For this reason, it is necessary to perform the reduction before the molten steel is completely solidified.

また、通常の高強度鋼板においては、SもMnと同様に中心部分に偏析しやすい元素である。MnやSの偏析は、中心偏析部におけるMnSの形成を促進し、穴拡げ性を劣化させることから望ましくない。加えて、これら中心偏析部に存在するMnSは、板厚方向に沿って長く伸びていることから、打ち抜きや切断時に、板厚方向に沿った亀裂形成の原因となり、その後の伸び、穴拡げ、伸びフランジ性などの機械特性の劣化をもたらすことから望ましくない。   Further, in a normal high-strength steel sheet, S is an element that is easily segregated in the central portion, like Mn. Segregation of Mn and S is undesirable because it promotes the formation of MnS in the central segregation part and degrades the hole expandability. In addition, since MnS present in these central segregation portions extends long along the plate thickness direction, it causes crack formation along the plate thickness direction during punching or cutting, and subsequent elongation, hole expansion, This is undesirable because it causes deterioration of mechanical properties such as stretch flangeability.

加えて、Mn偏析は、組織強化を活用する鋼において、板厚方向での組織や特性を大きくばらつかせることになる。連続焼鈍設備や合金化溶融亜鉛めっき設備にて、鋼板の組織制御を行う場合、一旦、フェライト及びオーステナイトよりなる二相域、あるいは、オーステナイト単相域に焼鈍した後、冷却過程でフェライトを形成させる。あるいは、引き続いて行われる特定温度域での滞留や合金化処理時に、組織制御を行う場合が多い。Mnは、フェライト変態やベイナイト変態を遅延することが知られていることから、部分的なMn濃度の変化に伴い鋼板組織が変化する。具体的には、中心偏析部でフェライト変態やベイナイト変態を遅延することから、板厚中心は、マルテンサイトを多く含む組織になりやすい。この結果、板厚中心は著しく硬くなる。鋼板強度の変動は、板厚内での伸び等の特性変動の原因となる。大変形を伴う切断や打ち抜き加工においては、硬質なMn偏析帯と正常部の界面に変形の集中を招き、大きな応力集中や、場合によっては、界面での亀裂形成(剥離)を招くことになる。この結果、切断や打ち抜き加工後の鋼板の伸び、穴拡げ、伸びフランジ性などの機械特性の劣化をもたらすことから望ましくない。   In addition, Mn segregation greatly varies the structure and properties in the plate thickness direction in steel that utilizes structure strengthening. When controlling the structure of a steel sheet in continuous annealing equipment or alloyed hot dip galvanizing equipment, after annealing into a two-phase region consisting of ferrite and austenite or an austenite single-phase region, ferrite is formed during the cooling process. . Or, in many cases, the structure control is performed at the time of subsequent residence in a specific temperature range or alloying treatment. Since Mn is known to delay the ferrite transformation and bainite transformation, the steel sheet structure changes with a partial change in Mn concentration. Specifically, since the ferrite transformation and bainite transformation are delayed at the center segregation part, the thickness center tends to be a structure containing a lot of martensite. As a result, the thickness center becomes extremely hard. Variations in steel plate strength cause variations in characteristics such as elongation within the plate thickness. In cutting and punching with large deformation, the concentration of deformation is caused at the interface between the hard Mn segregation zone and the normal part, resulting in large stress concentration and, in some cases, crack formation (peeling) at the interface. . As a result, it is not desirable because it causes deterioration of mechanical properties such as elongation, hole expansion and stretch flangeability of the steel sheet after cutting and punching.

特に、切断や打ち抜き加工は、板厚方向に沿って層状に存在するMn偏析帯に起因した硬質組織層を剥離する方向に応力が発生し易いことから、特に亀裂形成を招き易い。
このような問題は、組織強化を行う高強度鋼板で問題となり易い。即ち、DP鋼やTRIP鋼などの組織強化を活用した高強度鋼板は、熱間圧延、連続焼鈍設備、溶融亜鉛めっき設備にて、組織制御を行うため、Mnを多量に添加する傾向にある。この傾向は、鋼板強度が高くなれば高くなるほど顕著になることから、540MPa以上の高強度鋼板で問題となりやすい。加えて、540MPa未満の高強度鋼板は、高強度化の手法として、組織強化以外の手法(例えば、固溶強化など)が活用される場合が多く、単相組織となる場合が多い。この結果、Mnを多量に含む場合であっても、組織変化に起因した強度変動が生じ難く、切断や打ち抜きに伴う特性劣化を生じ難い。
In particular, the cutting or punching process is particularly likely to cause crack formation because stress tends to occur in the direction of peeling the hard tissue layer due to the Mn segregation zone existing in layers in the plate thickness direction.
Such a problem is likely to be a problem in a high-strength steel sheet for strengthening the structure. That is, high-strength steel sheets utilizing structural strengthening such as DP steel and TRIP steel tend to add a large amount of Mn in order to control the structure in hot rolling, continuous annealing equipment, and hot dip galvanizing equipment. This tendency becomes more prominent as the strength of the steel plate increases. Therefore, it tends to be a problem with a high strength steel plate of 540 MPa or more. In addition, a high-strength steel sheet of less than 540 MPa often uses a technique other than structure strengthening (for example, solid solution strengthening) as a technique for increasing strength, and often has a single-phase structure. As a result, even when a large amount of Mn is contained, the strength fluctuation due to the structure change hardly occurs, and the characteristic deterioration due to cutting or punching hardly occurs.

本発明に係る高強度鋼板は、板厚方向のMn偏析度を1.2以下にすることで、穴拡げ、伸びフランジ性などの機械特性の劣化を防ぎ、また、切断や打ち抜きに伴う特性劣化を防止できる。   The high-strength steel sheet according to the present invention has a Mn segregation degree in the thickness direction of 1.2 or less, thereby preventing deterioration of mechanical properties such as hole expansion and stretch flangeability, and characteristic deterioration accompanying cutting and punching. Can be prevented.

また、Mn偏析帯が存在すると、フェライト変態、ベイナイト変態が遅延することから、マルテンサイトを多く含む組織となり、硬質化し易い。その結果、Mnの偏析が顕著な鋼板では、中心偏析部とそれ以外の部分で強度差が生じる。この際の硬度差は、ビッカース試験機にて測定可能である。そこで、本発明に係る高強度鋼板では、荷重50gfにてビッカース試験機による、中心偏析部とそれ以外の部位での硬度差がHv70以下であることが好ましい。硬度差がHv70超となると、打ち抜きや切断による特性劣化が顕著になるので好ましくない。   In addition, when the Mn segregation zone exists, the ferrite transformation and the bainite transformation are delayed, so that a structure containing a large amount of martensite is formed and is easily hardened. As a result, in a steel plate with significant Mn segregation, a difference in strength occurs between the central segregation portion and the other portions. The hardness difference at this time can be measured with a Vickers tester. Therefore, in the high-strength steel plate according to the present invention, it is preferable that the hardness difference between the central segregation portion and the other portion by the Vickers tester at a load of 50 gf is Hv 70 or less. When the hardness difference exceeds Hv70, the characteristic deterioration due to punching or cutting becomes remarkable, which is not preferable.

また、ビッカース試験時の荷重を50gfとしたのは、偏析帯の硬度測定を行うためである。鋳造時に形成された中心部の偏析帯は、スラブでは粗大であっても、熱間圧延や冷間圧延を経ることでその厚みが低減し、かなり狭くなる。即ち、荷重50kgfと言った大荷重で試験を行った場合、圧痕サイズが大きくなるため、中心偏析のような狭い領域の硬度変動が検出できない。一方で、荷重が極端に低い場合、硬質組織あるいは軟質組織のいずれに圧痕を付与するかで、測定結果が異なるため、中心偏析帯のような組織分布の違いに起因した硬度変動を検出できない。このことから、予備実験として、CMA分析やEPMA分析による中心偏析帯幅の測定、あるいは、様々な荷重でのビッカース硬度測定と、硬度変動と機械切断の有無による特性変化を比較し、試験条件を決定することが好ましく、本発明ではビッカース試験時の荷重を50gfとしている。   The reason why the load during the Vickers test was set to 50 gf is to measure the hardness of the segregation zone. Even if the segregation zone at the center formed at the time of casting is coarse in the slab, the thickness is reduced and narrowed by hot rolling or cold rolling. That is, when a test is performed with a large load of 50 kgf, the indentation size increases, and thus a hardness variation in a narrow region such as center segregation cannot be detected. On the other hand, when the load is extremely low, the measurement result differs depending on whether the indentation is applied to the hard tissue or the soft tissue, and therefore, the hardness variation due to the difference in the structure distribution such as the central segregation zone cannot be detected. Therefore, as a preliminary experiment, we measured the center segregation band width by CMA analysis or EPMA analysis, or Vickers hardness measurement at various loads, and compared the characteristic change due to hardness fluctuation and mechanical cutting. In the present invention, the load during the Vickers test is set to 50 gf.

測定箇所に関しては、板厚方向の強度変動を調査するため、板厚1/4t位置、中心偏析位置の硬度を測定することが好ましい。そして、それぞれ板厚方向に沿って各10点測定し、その平均値をそれぞれの硬度とすればよい。なお、薄鋼板においては、中心偏析帯は、熱間圧延及び冷間圧延を経ることから、伸ばされ厚みも小さくなっており見分け難い場合がある。本発明では、鋼板を研磨した後、ナイタール試薬にてエッチングを行い組織を現出することで中心偏析の正確な位置を特定することが望ましい。即ち、Mnを多く含む中心偏析帯は、組織強化鋼において、マルテンサイトを多く含む組織となることから、判別可能である。ビッカース試験による硬度差(ΔHv50g)が70以下のものを本発明の好ましい範囲内としている。 Regarding the measurement location, in order to investigate the strength fluctuation in the thickness direction, it is preferable to measure the hardness at the thickness 1/4 t position and the center segregation position. And each 10 points | pieces are measured along a plate | board thickness direction, and what is necessary is just to let the average value be each hardness. In the thin steel plate, the center segregation zone is subjected to hot rolling and cold rolling, and thus is stretched and has a small thickness, which may be difficult to distinguish. In the present invention, it is desirable to specify the exact position of the center segregation by polishing the steel plate and then etching with a Nital reagent to reveal the structure. That is, the central segregation zone containing a large amount of Mn is distinguishable because it becomes a structure containing a lot of martensite in the structure strengthened steel. A hardness difference (ΔHv 50 g ) as measured by the Vickers test is 70 or less within the preferable range of the present invention.

次に、鋼板の組織の限定理由について述べる。
鋼板組織をフェライトと硬質組織の複相組織とするのは、優れた延性を得るためである。軟質なフェライトは、延性に富むことから、優れた延性を得るためには必須である。加えて、適度な量の硬質組織を分散させることで、優れた延性を確保しながら、高強度化が可能である。優れた延性を確保するためには、フェライト主相とする必要がある。また、残留オーステナイトを含んでも良い。残留オーステナイトは、変形時にマルテンサイトへと変態することで、加工部を硬化し、変形の集中を妨げる。その結果、特に優れた延性が得られる。
Next, the reason for limiting the structure of the steel sheet will be described.
The reason why the steel sheet structure is a multiphase structure of ferrite and hard structure is to obtain excellent ductility. Since soft ferrite is rich in ductility, it is essential to obtain excellent ductility. In addition, it is possible to increase the strength while ensuring excellent ductility by dispersing an appropriate amount of hard structure. In order to ensure excellent ductility, it is necessary to use a ferrite main phase. Further, residual austenite may be included. Residual austenite is transformed into martensite at the time of deformation, thereby hardening the processed portion and hindering concentration of deformation. As a result, particularly excellent ductility can be obtained.

硬質組織は、ベイナイト組織を50%以上とすることが望ましい。ベイナイト組織は、マルテンサイトに比較し、軟質であることが知られている。そこで、硬質組織を軟質なベイナイト組織とすることで、穴拡げ加工時のフェライト及び硬質組織界面へのマイクロボイド形成を抑制することが出来る。硬質組織をベイナイト組織を50%以上としたのは、硬質組織の体積率の50%未満であれば、マルテンサイトや残留オーステナイトが十分離れて分散しており、穴拡げ加工時に亀裂伝播のサイトにならないと考えられるためである。   The hard structure is desirably 50% or more of the bainite structure. The bainite structure is known to be softer than martensite. Therefore, by forming the hard structure into a soft bainite structure, it is possible to suppress the formation of microvoids at the interface between the ferrite and the hard structure during the hole expanding process. The reason why the bainite structure is 50% or more when the hard structure is less than 50% of the volume ratio of the hard structure is that martensite and retained austenite are sufficiently separated and dispersed at the site of crack propagation during hole expansion processing. It is because it is thought that it must not be.

また、硬質組織の体積率は、5%以上とすることが望ましい。これは、硬質組織の体積率が5%未満では、540MPa以上の強度確保が難しいためである。上限は特に定めることなく本発明の効果である優れた延性と穴拡げ性は具備されるが、590〜1080MPaのTS範囲であれば、延性と穴拡げ性あるいは、伸びフランジ性の両立を図るため体積率50%超のフェライトを含むことが望ましい。   The volume ratio of the hard tissue is desirably 5% or more. This is because it is difficult to ensure the strength of 540 MPa or more when the volume fraction of the hard tissue is less than 5%. The upper limit is not particularly defined, and excellent ductility and hole expandability, which are the effects of the present invention, are provided, but in the TS range of 590 to 1080 MPa, in order to achieve both ductility and hole expandability or stretch flangeability. It is desirable to include ferrite with a volume ratio exceeding 50%.

また、鋼板組織としては、フェライト及びベイナイトの複合組織とすることを基本とするが、その他の硬質組織として、残留オーステナイト、マルテンサイト、セメンタイト及びパーライト等を含有しても良い。   The steel sheet structure is basically a composite structure of ferrite and bainite, but may include residual austenite, martensite, cementite, pearlite, and the like as other hard structures.

上記ミクロ組織の各相、フェライト、パーライト、セメンタイト、マルテンサイト、ベイナイト、オーステナイトおよび残部組織の同定、存在位置の観察および面積率の測定は、ナイタール試薬および特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延方向直角方向断面を腐食して、1000倍の光学顕微鏡観察及び1000〜100000倍の走査型および透過型電子顕微鏡により定量化が可能である。また、FESEM-EBSP法を用いた結晶方位解析や、マイクロビッカース硬度測定等の微小領域の硬度測定からも、組織の判別は可能である。   Identification of each phase of the above microstructure, ferrite, pearlite, cementite, martensite, bainite, austenite and the remaining structure, observation of the existing position and measurement of the area ratio are disclosed in Nital reagent and JP-A-59-219473. It is possible to corrode the steel plate rolling direction cross section or the rolling direction perpendicular direction cross section with the above-mentioned reagent, and to quantify by 1000 times optical microscope observation and 1000 to 100000 times scanning and transmission electron microscopes. The structure can also be discriminated from crystal orientation analysis using the FESEM-EBSP method and micro region hardness measurement such as micro Vickers hardness measurement.

TSを540MPa以上としたのは、この強度未満であれば、フェライト単相鋼に、固溶強化を用いた高強度化を図ることで、540MPa未満のTSと優れた延性及び穴拡げ性の両立を図ることが出来るためである。特に、540MPa以上のTS確保を考えた場合、優れた延性確保のためには、マルテンサイトや残留オーステナイトを用いた強化を行う必要があり、穴拡げ性の劣化が顕著となるためである。
フェライトの結晶粒径については特に限定しないが、強度伸びバランスの観点から公称粒径で7μm以下であることが望ましい。
If TS is 540 MPa or more, if it is less than this strength, it is possible to achieve both high ductility and hole expandability with TS of less than 540 MPa by increasing the strength of the ferrite single-phase steel using solid solution strengthening. It is because it can plan. In particular, when considering securing TS of 540 MPa or more, in order to ensure excellent ductility, it is necessary to perform reinforcement using martensite or retained austenite, and deterioration of hole expansibility becomes remarkable.
The crystal grain size of ferrite is not particularly limited, but it is preferably 7 μm or less in terms of nominal grain size from the viewpoint of balance of strength elongation.

次に、本発明の成分限定理由について述べる。尚、単位はいずれも質量%である。
(C:0.05%〜0.20%)
Cは、ベイナイトやマルテンサイトを用いた組織強化を行う場合、必須の元素である。Cが0.05%未満では、540MPa以上の強度確保が難しいことから、下限値を0.05%とした。一方、Cの含有量を0.20%以下とする理由は、Cが0.20%を超えると、スポット溶接性を確保することが困難となる。このことから、Cの範囲を0.05%〜0.20%とした。
Next, the reasons for limiting the components of the present invention will be described. All units are mass%.
(C: 0.05% to 0.20%)
C is an essential element when strengthening the structure using bainite or martensite. If C is less than 0.05%, it is difficult to ensure a strength of 540 MPa or more, so the lower limit was set to 0.05%. On the other hand, the reason why the C content is 0.20% or less is that when C exceeds 0.20%, it becomes difficult to ensure spot weldability. For this reason, the range of C is set to 0.05% to 0.20%.

(Si:0.3〜2.00%)
Siは強化元素であるのに加え、セメンタイトに固溶しない事から、粒界での粗大セメンタイトの形成を抑制する。0.3%未満の添加では、固溶強化による強化が期待できない、あるいは、粒界への粗大セメンタイトの形成が抑制できないことから0.3%以上添加する必要がある。一方で、2.00%を越える添加は、残留オーステナイトを過度に増加せしめ、打ち抜きや切断後の穴拡げ性や伸びフランジ性を劣化させる。このことから上限は2.00%とする必要がある。加えて、Siの酸化物は、溶融亜鉛めっきとの濡れ性が悪いことから、不メッキの原因となる。そこで、溶融亜鉛めっき鋼板の製造にあたっては、炉内の酸素ポテンシャルを制御し、鋼板表面へのSi酸化物形成を抑制するなどが必要となる。
(Si: 0.3-2.00%)
In addition to being a strengthening element, Si does not dissolve in cementite, so it suppresses the formation of coarse cementite at grain boundaries. If less than 0.3% is added, strengthening due to solid solution strengthening cannot be expected, or formation of coarse cementite at grain boundaries cannot be suppressed, so 0.3% or more needs to be added. On the other hand, addition exceeding 2.00% excessively increases the retained austenite, and deteriorates the hole expandability and stretch flangeability after punching or cutting. Therefore, the upper limit needs to be 2.00%. In addition, since the oxide of Si has poor wettability with hot dip galvanizing, it causes non-plating. Therefore, in manufacturing a hot-dip galvanized steel sheet, it is necessary to control the oxygen potential in the furnace and suppress the formation of Si oxide on the steel sheet surface.

(Mn:1.3〜2.6%)
Mnは、固溶強化元素であるのと同時に、オーステナイト安定化元素であることから、オーステナイトがパーライトへと変態するのを抑制する。1.3%未満ではパーライト変態の速度が速すぎてしまい、鋼板組織をフェライト及びベイナイトの複合組織とすることが出来ず、540MPa以上のTSが確保出来ない。また、穴拡げ性も劣る。このことから、下限値を1.3%以上とする。一方、Mnを多量に添加すると、P、Sとの共偏析を助長し、加工性の著しい劣化を招くことから、その上限を2.6%とした。
(Mn: 1.3-2.6%)
Since Mn is an austenite stabilizing element at the same time as a solid solution strengthening element, it suppresses the transformation of austenite to pearlite. If it is less than 1.3%, the rate of pearlite transformation is too high, and the steel sheet structure cannot be made a composite structure of ferrite and bainite, and a TS of 540 MPa or more cannot be secured. Moreover, the hole expansibility is also inferior. For this reason, the lower limit is set to 1.3% or more. On the other hand, when Mn is added in a large amount, co-segregation with P and S is promoted and workability is significantly deteriorated. Therefore, the upper limit is set to 2.6%.

(P:0.001〜0.03%)
Pは鋼板の板厚中央部に偏析する傾向があり、溶接部を脆化させる。0.03%を超えると溶接部の脆化が顕著になるため、その適正範囲を0.03%以下に限定した。Pの下限値は特に定めないが、0.001%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。
(P: 0.001 to 0.03%)
P tends to segregate in the central part of the plate thickness of the steel sheet, causing the weld to become brittle. If it exceeds 0.03%, embrittlement of the weld becomes significant, so the appropriate range is limited to 0.03% or less. Although the lower limit value of P is not particularly defined, it is preferable to set this value as the lower limit value because it is economically disadvantageous to set it to less than 0.001%.

(S:0.0001〜0.01%)
Sは、溶接性ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。このことから、その上限値を0.01%以下とした。Sの下限値は、0.0001%未満とすることは経済的に不利であることからこの値を下限値とすることが好ましい。また、SはMnと結びついて粗大なMnSを形成することから、穴拡げ性を低下させる。このことから、穴拡げ性向上のためには、出来るだけ少なくする必要がある。
(S: 0.0001 to 0.01%)
S adversely affects weldability and manufacturability during casting and hot rolling. Therefore, the upper limit is set to 0.01% or less. Since it is economically disadvantageous to set the lower limit value of S to less than 0.0001%, this value is preferably set as the lower limit value. In addition, since S is combined with Mn to form coarse MnS, the hole expandability is lowered. For this reason, it is necessary to reduce as much as possible in order to improve hole expansibility.

(Al:0.10%未満)
Alは、フェライト形成を促進し、延性を向上させるので添加しても良い。また、脱酸材としても活用可能である。しかしながら、過剰な添加はAl系の粗大介在物の個数を増大させ、穴拡げ性の劣化や表面傷の原因になる。このことから、Al添加の上限を0.1%未満とした。下限は、特に限定しないが、0.0005%以下とするのは困難であるのでこれが実質的な下限である。
(Al: less than 0.10%)
Al may be added because it promotes ferrite formation and improves ductility. It can also be used as a deoxidizer. However, excessive addition increases the number of Al-based coarse inclusions, causing deterioration of hole expansibility and surface scratches. From this, the upper limit of Al addition was made less than 0.1%. The lower limit is not particularly limited, but it is difficult to set the lower limit to 0.0005% or less, which is a practical lower limit.

(N:0.0005〜0.0100%)
N(窒素)は、粗大な窒化物を形成し、曲げ性や穴拡げ性を劣化させることから、添加量を抑える必要がある。これは、Nが0.01%を超えると、この傾向が顕著となることから、N含有量の範囲を0.01%以下とした。加えて、溶接時のブローホール発生の原因になることから少ない方が良い。下限は、特に定めることなく本発明の効果は発揮されるが、N含有量を0.0005%未満とすることは、製造コストの大幅な増加を招くことから、これが実質的な下限である。
(N: 0.0005 to 0.0100%)
N (nitrogen) forms coarse nitrides and degrades bendability and hole expansibility, so it is necessary to suppress the addition amount. This is because when N exceeds 0.01%, this tendency becomes remarkable. Therefore, the range of N content is set to 0.01% or less. In addition, it is better to use less because it causes blowholes during welding. Although the lower limit is not particularly defined, the effect of the present invention is exhibited. However, if the N content is less than 0.0005%, the manufacturing cost is significantly increased, and this is a substantial lower limit.

(O:0.0005〜0.007%)
O(酸素)は、酸化物を形成し、曲げ性や穴拡げ性を劣化させることから、添加量を抑える必要がある。特に、酸化物は介在物として存在する場合が多く、打抜き端面、あるいは、切断面に存在すると、端面に切り欠き状の傷や粗大なディンプルを形成することから、穴拡げ時や強加工時に、応力集中を招き、亀裂形成の起点となり大幅な穴拡げ性あるいは曲げ性の劣化をもたらす。これは、Oが0.007%を超えると、この傾向が顕著となることから、O含有量の上限を0.007%以下とした。0.0005%と未満とすることは、過度のコスト高を招き経済的に好ましくないことから、これを下限とした。ただし、Oを0.0005%未満としたとしても、本発明の効果である540MPa以上のTSと優れた延性を確保可能である。
(O: 0.0005 to 0.007%)
O (oxygen) forms an oxide and degrades bendability and hole expansibility, so the addition amount must be suppressed. In particular, oxides often exist as inclusions, and when they are present on the punched end surface or cut surface, they form notched scratches and coarse dimples on the end surface, so when expanding holes or during strong processing, It causes stress concentration and becomes the starting point of crack formation, resulting in a significant deterioration of hole expansibility or bendability. This is because this tendency becomes significant when O exceeds 0.007%, so the upper limit of the O content is set to 0.007% or less. Since setting it as less than 0.0005% invites excessive cost and is not economically preferable, this was made into the minimum. However, even if O is less than 0.0005%, TS of 540 MPa or more, which is the effect of the present invention, and excellent ductility can be secured.

(B:0.0001%以上0.01%未満)
Bは、0.0001質量%以上の添加で粒界の強化や鋼材の強度化に有効であるが、その添加量が0.010質量%を超えると、その効果が飽和するばかりでなく、熱延時の製造製を低下させることから、その上限を0.010%とした。
(B: 0.0001% or more and less than 0.01%)
B is effective for strengthening grain boundaries and strengthening steel by addition of 0.0001% by mass or more. However, when the addition amount exceeds 0.010% by mass, the effect is not only saturated but also heat The upper limit is set to 0.010% because the manufactured product at the time of extension is lowered.

(Cr:0.01〜1.0%)
Crは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.01%未満ではこれらの効果が得られないため下限値を0.01%とした。1%超含有すると大幅なコスト高を招くことから上限を1%とした。
(Cr: 0.01-1.0%)
Cr is a strengthening element and is important for improving hardenability. However, if it is less than 0.01%, these effects cannot be obtained, so the lower limit was set to 0.01%. If the content exceeds 1%, a significant increase in cost is caused, so the upper limit was made 1%.

(Ni:0.01〜1.0%)
Niは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.01%未満ではこれらの効果が得られないため下限値を0.01%とした。1%超含有すると大幅なコスト高を招くことから上限を1%とした。
(Ni: 0.01-1.0%)
Ni is a strengthening element and is important for improving hardenability. However, if it is less than 0.01%, these effects cannot be obtained, so the lower limit was set to 0.01%. If the content exceeds 1%, a significant increase in cost is caused, so the upper limit was made 1%.

(Cu:0.01〜1.0%)
Cuは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.01%未満ではこれらの効果が得られないため下限値を0.01%とした。逆に、1%超含有すると製造時および熱延時の製造性に悪影響を及ぼすため、上限値を1%とした。
(Cu: 0.01 to 1.0%)
Cu is a strengthening element and is important for improving hardenability. However, if it is less than 0.01%, these effects cannot be obtained, so the lower limit was set to 0.01%. On the other hand, if the content exceeds 1%, the manufacturability at the time of production and hot rolling is adversely affected, so the upper limit was made 1%.

(Mo:0.01〜1.0%)
Moは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.01%未満ではこれらの効果が得られないため下限値を0.01%とした。1%超含有すると大幅なコスト高を招くことから上限は1%であるが、0.3%以下がより好ましい。
(Mo: 0.01 to 1.0%)
Mo is a strengthening element and is important for improving hardenability. However, if it is less than 0.01%, these effects cannot be obtained, so the lower limit was set to 0.01%. If the content exceeds 1%, the cost is significantly increased, so the upper limit is 1%, but 0.3% or less is more preferable.

(Nb:0.001〜0.14%)
Nbは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。添加量が0.001%未満ではこれらの効果が得られないため、下限値を0.001%とした。0.14%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.14%とした。
(Nb: 0.001 to 0.14%)
Nb is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.001%, these effects cannot be obtained, so the lower limit was set to 0.001%. If the content exceeds 0.14%, the precipitation of carbonitride increases and the formability deteriorates, so the upper limit was made 0.14%.

(Ti:0.001〜0.14%)
Tiは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。添加量が0.001%未満ではこれらの効果が得られないため、下限値を0.001%とした。0.14%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.14%とした。
(Ti: 0.001 to 0.14%)
Ti is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.001%, these effects cannot be obtained, so the lower limit was set to 0.001%. If the content exceeds 0.14%, the precipitation of carbonitride increases and the formability deteriorates, so the upper limit was made 0.14%.

(V:0.001〜0.14%)
Vは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。添加量が0.001%未満ではこれらの効果が得られないため、下限値を0.001%とした。0.14%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.14%とした。
(V: 0.001 to 0.14%)
V is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.001%, these effects cannot be obtained, so the lower limit was set to 0.001%. If the content exceeds 0.14%, the precipitation of carbonitride increases and the formability deteriorates, so the upper limit was made 0.14%.

(Ca、Ce、Mg、REMの1種または2種以上を合計で0.0001〜0.5%)
Ca、Ce、Mg、REMから選ばれる1種または2種以上を合計で0.0001〜0.5%添加できる。Ca、Ce、Mg、REMは脱酸に用いる元素であり、1種または2種以上を合計で0.0001%以上含有することで、脱酸後の酸化物サイズを低下可能であり、穴拡げ性向上に寄与する。
(One or more of Ca, Ce, Mg, and REM in total 0.0001 to 0.5%)
One or two or more selected from Ca, Ce, Mg, and REM can be added in a total amount of 0.0001 to 0.5%. Ca, Ce, Mg, and REM are elements used for deoxidation. By containing one or more kinds in total of 0.0001% or more, the oxide size after deoxidation can be reduced, and the hole is expanded. Contributes to improved performance.

しかしながら、含有量が合計で0.5%を超えると、成形加工性の悪化の原因となる。そのため、含有量を合計で0.0001〜0.5%とした。なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をさす。本発明において、REMやCeはミッシュメタルにて添加されることが多く、LaやCeの他にランタノイド系列の元素を複合で含有する場合がある。不可避不純物として、これらLaやCe以外のランタノイド系列の元素を含んだとしても本発明の効果は発揮される。ただし、金属LaやCeを添加したとしても本発明の効果は発揮される。   However, when the content exceeds 0.5% in total, it causes deterioration of molding processability. Therefore, the content is made 0.0001 to 0.5% in total. Note that REM is an abbreviation for Rare Earth Metal and refers to an element belonging to the lanthanoid series. In the present invention, REM and Ce are often added by misch metal and may contain a lanthanoid series element in combination with La and Ce. Even if these lanthanoid series elements other than La and Ce are included as inevitable impurities, the effect of the present invention is exhibited. However, the effects of the present invention are exhibited even when metal La or Ce is added.

次に、本発明鋼板の製造条件の限定理由について説明する。
Mn偏析度を低減するためには、鋳造時にスラブを圧下しつつ鋳造する必要がある。Mn偏析度は、溶鋼が凝固する過程で、Mnが溶鋼へと排出されることで起こるので、凝固したスラブを圧下したとしてもMn偏析は改善しない。従って、スラブの圧下は、溶鋼が完全に凝固する前に行う必要がある。完全凝固前に圧下を行うことで、中心部に排出されたMnをスラブの板厚方向全体に拡散させることができ、Mn偏析度を低減できる。具体的には例えば、厚みが240mmのスラブを鋳造するに当たっては、5mm以上の圧下を加えることが好ましい。即ち、入り側の厚みを245mmとするなら、出側厚みを240mmにすればよい。
Next, the reasons for limiting the production conditions of the steel sheet of the present invention will be described.
In order to reduce the degree of segregation of Mn, it is necessary to cast while reducing the slab during casting. Since the Mn segregation degree occurs when Mn is discharged into the molten steel in the process of solidification of the molten steel, even if the solidified slab is reduced, the Mn segregation does not improve. Therefore, the slab must be reduced before the molten steel is completely solidified. By performing the reduction before complete solidification, Mn discharged to the center can be diffused in the entire plate thickness direction of the slab, and the Mn segregation degree can be reduced. Specifically, for example, when casting a slab having a thickness of 240 mm, it is preferable to apply a reduction of 5 mm or more. That is, if the entry side thickness is 245 mm, the exit side thickness may be 240 mm.

また、中心の偏析帯の板厚方向の幅を低減するには、厚減比を大きくすることが望ましい。厚減比とは、スラブ厚さに対する製品板厚みのことを指す。製品板厚3.0mmの冷延鋼板を製造するのであれば、スラブ厚みを200mm以上とすることが望ましい。これは、鋳造時に圧下を加えることで、Mn等の中心偏析を軽減したとしても、完全に除去することは難しい。このことから、スラブ厚みを厚くすることで、スラブ中に形成された中心偏析帯の割合を小さくし、後の熱間圧延や冷間圧延にて中心偏析帯の厚みを小さくし、その悪影響を取り去るためである。
同様の理由から、熱間圧延や冷間圧延での圧下率も大きくすることが望ましい。
In order to reduce the width of the central segregation zone in the thickness direction, it is desirable to increase the thickness reduction ratio. The thickness reduction ratio refers to the product plate thickness relative to the slab thickness. If a cold-rolled steel sheet having a product plate thickness of 3.0 mm is manufactured, the slab thickness is desirably 200 mm or more. Even if the central segregation of Mn or the like is reduced by applying a reduction during casting, it is difficult to completely remove it. From this, by increasing the thickness of the slab, the ratio of the center segregation zone formed in the slab is reduced, and the thickness of the center segregation zone is reduced by subsequent hot rolling or cold rolling, thereby adversely affecting the thickness. To remove it.
For the same reason, it is desirable to increase the rolling reduction in hot rolling and cold rolling.

なお、Mn偏析による組織変動の影響を低減するためには、熱間圧延時の鋼板組織制御も有利に働く。即ち、熱延鋼板の巻き取り温度を630℃以下とすることで、熱延板の組織をベイナイト組織主体の均一な組織にすることが可能であり、冷延-焼鈍後の特性向上に有利に働く。よって巻き取り温度を630℃以下にすることが望ましい。   In addition, in order to reduce the influence of the structure fluctuation | variation by Mn segregation, the steel-plate structure control at the time of hot rolling works advantageously. That is, by setting the coiling temperature of the hot-rolled steel sheet to 630 ° C. or less, it is possible to make the structure of the hot-rolled sheet a uniform structure mainly composed of bainite structure, which is advantageous for improving the properties after cold rolling and annealing. work. Therefore, it is desirable that the winding temperature is 630 ° C. or lower.

熱延スラブ加熱温度は、1050℃以上にする必要がある。スラブ加熱温度が過度に低いと、仕上げ圧延温度が820℃を下回ってしまい、フェライト及びオーステナイトの二相域圧延となり、熱延板組織が不均一な混粒組織となり、冷延及び焼鈍工程を経たとしても不均一な組織は解消されず、延性や穴拡げ性に劣る。また、本鋼板は、焼鈍後に540MPa以上の引張最大強度を確保するため、比較的多量の合金元素を添加していることから、仕上げ圧延時の強度も高くなりがちである。スラブ加熱温度の低下は、仕上げ圧延温度の低下を招き、更なる圧延荷重の増加を招き、圧延が困難となったり、圧延後の鋼板の形状不良を招く懸念があることから、スラブ加熱温度は、1050℃以上とする必要がある。スラブ加熱温度の上限は特に定めることなく、本発明の効果は発揮されるが、加熱温度を過度に高温にすることは、経済上好ましくないことから、加熱温度の上限は1300℃未満とすることが望ましい。   The hot-rolled slab heating temperature needs to be 1050 ° C. or higher. When the slab heating temperature is excessively low, the finish rolling temperature is lower than 820 ° C., resulting in a two-phase rolling of ferrite and austenite, and the hot rolled sheet structure becomes a heterogeneous mixed grain structure, which has undergone cold rolling and annealing processes. However, the non-uniform structure is not eliminated and the ductility and hole expansibility are poor. Moreover, since this steel plate ensures a tensile maximum strength of 540 MPa or more after annealing, a relatively large amount of alloy elements is added, and thus the strength at the time of finish rolling tends to be high. The decrease in the slab heating temperature causes a decrease in the finish rolling temperature, further increases the rolling load, and there is a concern that rolling may become difficult or the shape of the steel sheet after rolling may be poor. It is necessary to set it to 1050 ° C. or higher. The upper limit of the slab heating temperature is not particularly defined, and the effect of the present invention is exhibited. However, since it is economically undesirable to make the heating temperature too high, the upper limit of the heating temperature should be less than 1300 ° C. Is desirable.

以上のようにして鋳造したスラブを熱間圧延するが、本発明では、1050℃に加熱したスラブを仕上げ圧延する前に、圧下率70%以上で熱延することが望ましい。圧下率を70%以上とするのは、Mn偏析部に形成するMnSサイズを微細化し、製品板での打ち抜き、あるいは、あるいは、切断後の特性劣化を改善するためである。即ち、SはMnと結びついて、熱延段階でMnSを形成することが知られている。熱延時に形成したMnSは、冷間圧延を行うと、圧延方向に展伸した形態となるため、その先端や界面への応力集中が顕著となり、加工時の特性劣化をもたらす。あるいは、切断部や打ち抜き部にMnSが存在すると、加工後の端面に疵が形成される場合があり、更なる特性劣化を招く。この傾向は、MnSの体積率が多いほど顕著となることが知られており、MnS体積率の低減や微細化が必要とされている。また、Mn濃度が高いとMnSが形成しやすいことから、特に、Mn偏析部でのMnS形成がしやすい。更には、Mn偏析の幅が大きいと、形成されるMnSも大きくなり、特性劣化も顕著となる。そこで、穴拡げ性や伸びフランジ性をはじめとする切断後の特性向上を図るためには、熱延板内に形成するMnSを微細化する必要がある。そこで、熱延段階での圧下率を大きくすることで、Mn偏析の幅を低減し、MnSの微細化を行うことが望ましい。具体的には、MnSは、スラブ加熱や仕上げ圧延前のような高温では、オーステナイト中に固溶しており、これよりも低温側にて析出することが知られている。そこで、MnSが析出する前に、圧下を行いMn偏析の幅を低減させ、MnSも微細化することが重要となる。
これら効果は、圧下率が70%以上で顕著になることから、圧下率は出来るだけ高いことが望ましい。上限は特に定めないが、生産性や設備制約の観点から90%超とすることは困難であるので、90%が実質的な上限である。
The slab cast as described above is hot-rolled. In the present invention, it is desirable to hot-roll the slab heated to 1050 ° C. at a reduction rate of 70% or more before finish rolling. The reduction ratio is set to 70% or more in order to refine the MnS size formed in the Mn segregation part and improve the property deterioration after punching with the product plate or after cutting. That is, it is known that S is combined with Mn to form MnS at the hot rolling stage. When cold rolling, MnS formed at the time of hot rolling becomes a form expanded in the rolling direction, so that stress concentration at the tip and interface becomes remarkable, resulting in deterioration of characteristics during processing. Or when MnS exists in a cutting part or a punching part, a wrinkle may be formed in the end surface after a process, and the further characteristic deterioration is caused. This tendency is known to become more prominent as the volume ratio of MnS increases, and reduction or refinement of the MnS volume ratio is required. Moreover, since MnS is easily formed when the Mn concentration is high, it is particularly easy to form MnS at the Mn segregation part. Furthermore, if the width of Mn segregation is large, the MnS formed is also large, and the characteristic deterioration becomes remarkable. Therefore, in order to improve the characteristics after cutting including hole expandability and stretch flangeability, it is necessary to refine MnS formed in the hot-rolled sheet. Therefore, it is desirable to reduce the width of Mn segregation and to refine MnS by increasing the rolling reduction in the hot rolling stage. Specifically, it is known that MnS is dissolved in austenite at a high temperature before slab heating or finish rolling, and precipitates at a lower temperature side than this. Therefore, it is important to reduce the width of Mn segregation and reduce MnS before MnS is precipitated.
Since these effects become significant when the rolling reduction is 70% or more, it is desirable that the rolling reduction is as high as possible. Although the upper limit is not particularly defined, it is difficult to make it more than 90% from the viewpoint of productivity and equipment restrictions, so 90% is a practical upper limit.

仕上げ圧延温度は、820℃以上930℃以下の範囲にする必要がある。仕上げ圧延温度がオーステナイト+フェライトの2相域になると、鋼板内の組織不均一性が大きくなり、焼鈍後の成形性が劣化するので、820℃以上が望ましい。
一方、仕上げ温度の上限は特に定めなくとも本発明の効果は発揮されるが、仕上げ圧延温度を過度に高温と使用とした場合、その温度を確保するため、スラブ加熱温度を過度に高温にせねばならない。このことから、仕上げ圧延温度の上限温度は、930℃以下とすることが望ましい。
The finish rolling temperature needs to be in the range of 820 ° C. or higher and 930 ° C. or lower. When the finish rolling temperature is in the two-phase region of austenite + ferrite, the structure non-uniformity in the steel sheet increases and the formability after annealing deteriorates, so 820 ° C. or higher is desirable.
On the other hand, the effect of the present invention is exhibited even if the upper limit of the finishing temperature is not particularly defined, but when the finishing rolling temperature is excessively high and used, in order to secure the temperature, the slab heating temperature must be excessively high. Don't be. For this reason, the upper limit temperature of the finish rolling temperature is desirably 930 ° C. or lower.

引き続く圧延の圧下率は合計で85%以上とする。圧下率の計算は圧延前の板厚で圧延完了後の板厚を除して100倍すればよい。仕上げ圧延での圧下率も、同様の理由で決定される。すなわち、圧下率85%未満の圧延ではMn偏析帯の厚みを十分に小さくすることは困難である。また98%を超える圧延は、設備にとって過大な付加となるのでこれを上限とする。90〜94%がより好ましい圧下率である。
ただし、MnSは、低温であればオーステナイト中でも析出可能であることから、MnSを微細化する目的であれば、仕上げ圧延前で出来るだけ沢山圧下することが望ましい。
The rolling reduction ratio of the subsequent rolling is 85% or more in total. The rolling reduction may be calculated by dividing the sheet thickness before rolling by the sheet thickness before rolling and multiplying by 100. The rolling reduction in finish rolling is determined for the same reason. That is, it is difficult to sufficiently reduce the thickness of the Mn segregation zone by rolling with a rolling reduction of less than 85%. Further, rolling exceeding 98% is an excessive addition to the equipment, so this is the upper limit. 90 to 94% is a more preferable rolling reduction.
However, since MnS can be precipitated even in austenite at low temperatures, it is desirable to reduce as much as possible before finish rolling for the purpose of refining MnS.

また、熱間圧延の終了後で巻き取りの前に、圧延鋼板を水冷することが望ましい。水冷は、最終圧延後から7秒以内に水冷を開始し、720〜800℃間の平均冷却速度が25℃/秒以上の冷却速度で水冷を行い、620〜720℃で水冷を完了することが望ましい。
仕上げ圧延後の冷却条件は、特に限定することなく本発明の効果は発揮される。ただし、熱延板組織の均一化による製品板特性の向上の観点からは、仕上げ圧延から巻き取りまでの平均冷却速度を10℃/秒以上とすることが望ましく、より好ましくは25℃/秒以上である。一方、過度に冷却速度を上げることは、効果が飽和するばかりでなく、大幅な設備投資の増加を招くことから、冷却速度は、900℃/秒以下とすることが望ましい。冷却方法に関しては、特に限定されるものではなく、空冷、ガス冷却、水冷、ミスト、あるいは、その何れかを併用した方法であっても構わない。
Moreover, it is desirable that the rolled steel sheet is water-cooled after completion of hot rolling and before winding. Water cooling starts water cooling within 7 seconds after the final rolling, water cooling is performed at an average cooling rate of 720 to 800 ° C. at a cooling rate of 25 ° C./second or more, and water cooling is completed at 620 to 720 ° C. desirable.
The effect of the present invention is exhibited without particular limitation on the cooling conditions after finish rolling. However, from the viewpoint of improving the product sheet characteristics by homogenizing the hot-rolled sheet structure, the average cooling rate from finish rolling to winding is desirably 10 ° C./second or more, more preferably 25 ° C./second or more. It is. On the other hand, excessively increasing the cooling rate not only saturates the effect but also causes a significant increase in capital investment. Therefore, the cooling rate is desirably 900 ° C./second or less. The cooling method is not particularly limited, and air cooling, gas cooling, water cooling, mist, or a method using any one of them may be used.

水冷後の巻き取り温度は630℃以下にする必要がある。630℃を超えると熱延組織中に粗大なフェライトやパーライト組織が存在するため、焼鈍後の組織不均一性が大きくなり、最終製品の延性が劣化する。焼鈍後の組織を微細にして強度延性バランスを向上させる、更には、第二相を均一分散させ穴拡げ性を向上させる観点からは600℃以下で巻き取ることがより好ましい。また、630℃を超える温度で巻き取ることは、鋼板表面に形成する酸化物の厚さを過度に増大させるため、酸洗性が劣るので好ましくない。下限については特に定めなくとも本発明の効果は発揮されるが、400℃以下の温度で巻き取ると、熱延板の強度が過度に増大し、冷間圧延が困難となることから、下限値を400℃以上とすることが望ましい。なお、熱延時に粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。   The coiling temperature after water cooling needs to be 630 ° C. or lower. When the temperature exceeds 630 ° C., coarse ferrite and pearlite structures exist in the hot-rolled structure, so that the structure non-uniformity after annealing increases and the ductility of the final product deteriorates. It is more preferable to wind up at 600 ° C. or less from the viewpoint of improving the strength ductility balance by making the microstructure after annealing fine, and further improving the hole expandability by uniformly dispersing the second phase. In addition, winding at a temperature exceeding 630 ° C. is not preferable because the thickness of the oxide formed on the steel sheet surface is excessively increased, and the pickling property is poor. Although the lower limit is not particularly defined, the effect of the present invention is exhibited. However, when winding at a temperature of 400 ° C. or lower, the strength of the hot rolled sheet increases excessively, and cold rolling becomes difficult. Is preferably 400 ° C. or higher. Note that rough rolling sheets may be joined to each other during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once.

このようにして製造した熱延鋼板に、酸洗を行う。酸洗は鋼板表面の酸化物の除去が可能であることから、最終製品の冷延高強度鋼板の化成性や、溶融亜鉛あるいは合金化溶融亜鉛めっき鋼板用の冷延鋼板の溶融めっき性向上のためには重要である。また、一回の酸洗を行っても良いし、複数回に分けて酸洗を行っても良い。   The hot-rolled steel sheet thus manufactured is pickled. Since pickling can remove oxides on the surface of steel sheets, it can improve the chemical conversion properties of cold-rolled high-strength steel sheets as final products, and improve the hot-plating properties of cold-rolled steel sheets for hot-dip galvanized or galvannealed steel sheets It is important for that. Moreover, pickling may be performed once, or pickling may be performed in a plurality of times.

酸洗した熱延鋼板を圧下率40〜70%で冷間圧延して、連続焼鈍ラインや連続溶融亜鉛めっきラインを通板する。圧下率が40%未満では、形状を平坦に保つことが困難である。また、最終製品の延性が劣悪となるのでこれを下限とする。一方、70%を越える冷延は、冷延荷重が大きくなりすぎてしまい冷延が困難となることから、これを上限とする。45〜65%がより好ましい範囲である。圧延パスの回数、各パス毎の圧下率については特に規定することなく本発明の効果は発揮される。   The pickled hot-rolled steel sheet is cold-rolled at a rolling reduction of 40 to 70% and passed through a continuous annealing line or a continuous hot-dip galvanizing line. If the rolling reduction is less than 40%, it is difficult to keep the shape flat. Moreover, since the ductility of the final product becomes poor, this is the lower limit. On the other hand, cold rolling exceeding 70% makes the cold rolling difficult because the cold rolling load becomes too large. 45 to 65% is a more preferable range. The effect of the present invention is exhibited without particularly specifying the number of rolling passes and the rolling reduction for each pass.

冷間圧延後、最高加熱温度760〜870℃の間で焼鈍する。760℃未満では、セメンタイトやパーライトからオーステナイトへの逆変態に過度の時間を要するためである。加えて、最高到達温度が、760℃未満では、セメンタイトやパーライトの一部がオーステナイトへと変態できず、焼鈍後も鋼板組織中に残存してしまう。このセメンタイトやパーライトは粗大であることから、穴拡げ性の劣化を引き起こすことから好ましくない。あるいは、オーステナイトが変態して出来たベイナイトやマルテンサイト、あるいは、オーステナイトそのものが加工時にマルテンサイトへと変態することで、540MPa以上の強度を達成可能であることから、セメンタイトやパーライトの一部がオーステナイトへと変態しないと、硬質組織が少なくなりすぎてしまい540MPa以上の強度を確保することが出来ない。このことから、最高加熱温度の下限は760℃とする必要がある。一方、過度に加熱温度を上げることは、経済上好ましくない。このことから加熱温度の上限を870℃とすることが望ましい。   After cold rolling, annealing is performed at a maximum heating temperature of 760 to 870 ° C. This is because if the temperature is lower than 760 ° C., an excessive time is required for reverse transformation from cementite or pearlite to austenite. In addition, when the maximum attainable temperature is less than 760 ° C., part of cementite and pearlite cannot be transformed into austenite and remain in the steel sheet structure even after annealing. Since this cementite and pearlite are coarse, it is not preferable because it causes deterioration of hole expansibility. Alternatively, bainite and martensite formed by transformation of austenite, or austenite itself can be transformed into martensite during processing, so that a strength of 540 MPa or more can be achieved, so that part of cementite and pearlite is austenite. If it does not transform into, the hard structure becomes too small and it is not possible to secure a strength of 540 MPa or more. Therefore, the lower limit of the maximum heating temperature needs to be 760 ° C. On the other hand, it is economically undesirable to raise the heating temperature excessively. Therefore, it is desirable that the upper limit of the heating temperature is 870 ° C.

その後、630℃〜570℃間を平均冷却速度3℃/秒以上で冷却する必要がある。冷却速度が小さすぎると、冷却過程にてオーステナイトがパーライト組織へと変態することから、540MPa以上の強度に必要な量の硬質組織を確保できない。冷却速度を大きくしたとしても、材質上なんら問題はないが、過度に冷却速度を上げる事は、製造コスト高を招くこととなるので、上限を200℃/秒とすることが好ましい。冷却方法については、ロール冷却、空冷、水冷およびこれらを併用したいずれの方法でも構わない。   Thereafter, it is necessary to cool between 630 ° C. and 570 ° C. at an average cooling rate of 3 ° C./second or more. If the cooling rate is too low, austenite transforms into a pearlite structure during the cooling process, and thus a hard structure of an amount necessary for a strength of 540 MPa or more cannot be secured. Even if the cooling rate is increased, there is no problem in terms of the material. However, excessively increasing the cooling rate leads to an increase in manufacturing cost, so the upper limit is preferably set to 200 ° C./second. The cooling method may be roll cooling, air cooling, water cooling, or any combination of these methods.

引き続き450℃〜300℃の温度域で30秒以上保持する必要がある。これは、オーステナイトを、ベイナイトへと変態させるためである。450℃超の温度域にて保持を行うと、粗大なセメンタイトが粒界に析出するため、穴拡げ性が大幅に劣化する。このことから上限温度を450℃とする。一方、保持温度が300℃未満では、ベイナイト変態がほとんど起こらず、オーステナイトはその後の冷却過程にて、マルテンサイトへと変態することとなる。その結果、フェライト及びベイナイトよりなる組織とすることが出来ず、穴拡げ性が大幅に劣化する。このことから300℃が下限の温度である。   Subsequently, it is necessary to hold at a temperature range of 450 ° C. to 300 ° C. for 30 seconds or more. This is because austenite is transformed into bainite. When holding in a temperature range higher than 450 ° C., coarse cementite precipitates at the grain boundaries, so that the hole expandability is greatly deteriorated. Therefore, the upper limit temperature is set to 450 ° C. On the other hand, when the holding temperature is less than 300 ° C., bainite transformation hardly occurs, and austenite is transformed into martensite in the subsequent cooling process. As a result, the structure cannot be made of ferrite and bainite, and the hole expandability is greatly deteriorated. Therefore, 300 ° C. is the lower limit temperature.

450℃〜300℃の温度域で30秒未満では、ベイナイト組織が形成したとしても、その体積率は、十分でなく、残ったオーステナイトが引き続き行われる冷却過程でマルテンサイトへと変態することから、穴拡げ性に劣る。このことから滞留時間の下限は30秒以上とする。滞留時間の上限は特に定めることなく、本発明の効果を得ることが出来るが、滞留時間の増加は、有限の長さを有する設備での熱処理を考えた場合、通板速度を落とした操業を意味することから、経済性が悪く好ましくない。   In a temperature range of 450 ° C. to 300 ° C. for less than 30 seconds, even if a bainite structure is formed, the volume ratio is not sufficient, and the remaining austenite is transformed into martensite in the subsequent cooling process, Poor hole expandability. For this reason, the lower limit of the residence time is 30 seconds or more. The upper limit of the residence time is not particularly defined, and the effect of the present invention can be obtained. However, the increase in residence time can be achieved by lowering the plate passing speed when considering heat treatment in a facility having a finite length. This means that it is not preferable because it is not economical.

なお、保持とは等温保持のみさすのではなく、450〜300℃の温度域で滞留させることを意味する。即ち、一旦、300℃に冷却した後、450℃まで加熱しても良いし、450℃に冷却後300℃まで冷却しても良い。   In addition, holding does not only mean isothermal holding, but means retaining in a temperature range of 450 to 300 ° C. That is, after cooling to 300 ° C., it may be heated to 450 ° C., or may be cooled to 450 ° C. and then cooled to 300 ° C.

熱処理後には、表面粗度の制御、板形状制御、あるいは、降伏点伸びの抑制のためには、スキンパス圧延を行うことが望ましい。その際のスキンパス圧延の圧下率は、0.1〜1.5%の範囲が好ましい。スキンパス圧延率は、0.1%未満では効果が小さく、制御も困難であることから、これが下限となる。1.5%超えると生産性が著しく低下するのでこれを上限とする。スキンパスは、インラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。   After the heat treatment, it is desirable to perform skin pass rolling in order to control surface roughness, plate shape control, or suppression of yield point elongation. The reduction ratio of the skin pass rolling at that time is preferably in the range of 0.1 to 1.5%. If the skin pass rolling rate is less than 0.1%, the effect is small and control is difficult, so this is the lower limit. If it exceeds 1.5%, the productivity is remarkably lowered, so this is the upper limit. The skin pass may be performed inline or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.

冷延後に溶融亜鉛めっきラインを通板する場合の最高加熱温度も、連続焼鈍ラインを通板する場合と同様の理由により、760〜870℃とする。焼鈍後の冷却に関しても、連続焼鈍ラインを通板する場合と同様の理由により、630℃と570℃間を3℃/秒以上で冷却する必要がある。   The maximum heating temperature when passing through the hot dip galvanizing line after cold rolling is set to 760 to 870 ° C. for the same reason as when passing through the continuous annealing line. Regarding the cooling after annealing, it is necessary to cool between 630 ° C. and 570 ° C. at 3 ° C./second or more for the same reason as when the continuous annealing line is passed through.

めっき浴浸漬板温度は、溶融亜鉛めっき浴温度より40℃低い温度から溶融亜鉛めっき浴温度より50℃高い温度までの温度範囲とすることが望ましい。浴浸漬板温度が溶融亜鉛めっき浴温度−40)℃を下回ると、めっき浴浸漬進入時の抜熱が大きく、溶融亜鉛の一部が凝固してしまいめっき外観を劣化させる場合があることから、下限を(溶融亜鉛めっき浴温度−40)℃とする。ただし、浸漬前の板温度が(溶融亜鉛めっき浴温度−40)℃を下回っても、めっき浴浸漬前に再加熱を行い、板温度を(溶融亜鉛めっき浴温度−40)℃以上としてめっき浴に浸漬させても良い。また、めっき浴浸漬温度が(溶融亜鉛めっき浴温度+50)℃を超えると、めっき浴温度上昇に伴う操業上の問題を誘発する。また、めっき浴は、純亜鉛に加え、Fe、Al、Mg、Mn、Si、Crなどを含有しても構わない。   The plating bath immersion plate temperature is preferably in a temperature range from a temperature 40 ° C. lower than the hot dip galvanizing bath temperature to a temperature 50 ° C. higher than the hot dip galvanizing bath temperature. If the bath immersion plate temperature is lower than the hot dip galvanizing bath temperature −40) ° C., the heat removal at the time of immersion in the plating bath is large, and part of the molten zinc may solidify and deteriorate the plating appearance. The lower limit is (hot dip galvanizing bath temperature −40) ° C. However, even if the plate temperature before immersion is lower than (hot dip galvanizing bath temperature −40) ° C., reheating is performed before immersion in the plating bath, and the plate temperature is set to (hot dip galvanizing bath temperature −40) ° C. or higher. It may be immersed in. On the other hand, if the plating bath immersion temperature exceeds (hot dip galvanizing bath temperature + 50) ° C., operational problems accompanying the rise of the plating bath temperature are induced. Further, the plating bath may contain Fe, Al, Mg, Mn, Si, Cr, etc. in addition to pure zinc.

また、めっき層の合金化を行う場合には、460℃以上で行う。合金化処理温度が460℃未満であると合金化の進行が遅く、生産性が悪い。上限は、540℃を超えると炭化物が形成し硬質組織(マルテンサイト、ベイナイト、残留オーステナイト)体積率を減少させ、540MPa以上の強度確保が難しくなるので、これが上限となる。   Moreover, when alloying a plating layer, it carries out at 460 degreeC or more. When the alloying treatment temperature is less than 460 ° C., the progress of alloying is slow and the productivity is poor. If the upper limit exceeds 540 ° C., carbides are formed to reduce the volume ratio of the hard structure (martensite, bainite, retained austenite), and it becomes difficult to ensure the strength of 540 MPa or more, so this is the upper limit.

めっき浴浸漬前、あるいは、浸漬後のいずれか一方、あるいは、両方で、(亜鉛めっき浴温度+50)℃〜300℃の温度域で30秒以上保持する付加的な熱処理を行う必要がある。熱処理温度の上限を(亜鉛めっき浴温度+50)℃としたのは、この温度以上では、セメンタイトやパーライトの形成が顕著となり、硬質組織の体積率を減じることから、540MPa以上の強度確保が困難となるためである。一方、300℃未満では、ベイナイト変態の進行が遅すぎてしまい、組織をフェライト及びベイナイトよりなる組織とすることが出来ない。このことから下限は、300℃以上とする。   It is necessary to perform an additional heat treatment for 30 seconds or more in the temperature range of (zinc plating bath temperature + 50) ° C. to 300 ° C. either before or after immersion in the plating bath, or after immersion. The upper limit of the heat treatment temperature is set to (zinc plating bath temperature +50) ° C. Above this temperature, the formation of cementite and pearlite becomes remarkable, and the volume fraction of the hard tissue is reduced, so it is difficult to ensure the strength of 540 MPa or more. It is to become. On the other hand, if it is less than 300 ° C., the progress of bainite transformation is too slow, and the structure cannot be made of ferrite and bainite. Therefore, the lower limit is set to 300 ° C. or higher.

保持時間は30秒以上とする必要がある。保持時間が30秒未満では、ベイナイト組織が形成したとしても、その体積率は、十分でなく、残ったオーステナイトが引き続き行われる冷却過程でマルテンサイトへと変態することから、穴拡げ性に劣る。このことから滞留時間の下限は30秒以上とする。滞留時間の上限は特に定めることなく、本発明の効果を得ることが出来るが、滞留時間の増加は、有限の長さを有する設備での熱処理を考えた場合、通板速度を落とした操業を意味することから、経済性が悪く好ましくない。保持時間とは、単に等温保持のみを意味するのではなく、この温度域での滞留を意味し、この温度域での除冷や加熱も含まれる。   The holding time needs to be 30 seconds or more. When the holding time is less than 30 seconds, even if a bainite structure is formed, the volume ratio is not sufficient, and the remaining austenite is transformed into martensite in the subsequent cooling process, and therefore the hole expandability is poor. For this reason, the lower limit of the residence time is 30 seconds or more. The upper limit of the residence time is not particularly defined, and the effect of the present invention can be obtained. However, the increase in residence time can be achieved by lowering the plate passing speed when considering heat treatment in a facility having a finite length. This means that it is not preferable because it is not economical. The holding time does not simply mean isothermal holding, but means residence in this temperature range, and includes cooling and heating in this temperature range.

また、(亜鉛めっき浴温度+50)℃〜300℃の温度範囲での30秒以上の付加的な熱処理も、めっき浴浸漬前、あるいは、浸漬後の何れか一方、あるいは、両方で行っても構わない。これは主相であるフェライトとの結晶方位差が9°未満の硬質組織を確保できるのであれば、いずれの条件で付加的な熱処理を行ったとしても、本発明の効果である540MPa以上の強度と、優れた延性並びに穴拡げ性が得られるためである。   Further, the additional heat treatment for 30 seconds or more in the temperature range of (zinc plating bath temperature + 50) ° C. to 300 ° C. may be performed either before or after immersion in the plating bath, or both. Absent. As long as a hard structure having a crystal orientation difference of less than 9 ° with respect to ferrite as the main phase can be secured, the strength of 540 MPa or more, which is the effect of the present invention, can be achieved regardless of the additional heat treatment. This is because excellent ductility and hole expansibility can be obtained.

熱処理後には、表面粗度の制御、板形状制御、あるいは、降伏点伸びの抑制のためには、スキンパス圧延を行うことが望ましい。その際のスキンパス圧延の圧下率は、0.1〜1.5%の範囲が好ましい。スキンパス圧延率は、0.1%未満では効果が小さく、制御も困難であることから、これが下限となる。1.5%超えると生産性が著しく低下するのでこれを上限とする。スキンパスは、インラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。   After the heat treatment, it is desirable to perform skin pass rolling in order to control surface roughness, plate shape control, or suppression of yield point elongation. The reduction ratio of the skin pass rolling at that time is preferably in the range of 0.1 to 1.5%. If the skin pass rolling rate is less than 0.1%, the effect is small and control is difficult, so this is the lower limit. If it exceeds 1.5%, the productivity is remarkably lowered, so this is the upper limit. The skin pass may be performed inline or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.

また、めっき密着性をさらに向上させるために、焼鈍前に鋼板に、Ni、Cu、Co、Feの単独あるいは複数より成るめっきを施しても本発明を逸脱するものではない。   Further, in order to further improve the plating adhesion, the present invention does not depart from the present invention even if the steel plate is plated with Ni, Cu, Co, or Fe alone or before the annealing.

さらには、めっき前の焼鈍については、「脱脂酸洗後、非酸化雰囲気にて加熱し、H及びNを含む還元雰囲気にて焼鈍後、めっき浴温度近傍まで冷却し、めっき浴に侵漬」というゼンジマー法、「焼鈍時の雰囲気を調節し、最初、鋼板表面を酸化させた後、その後還元することによりめっき前の清浄化を行った後にめっき浴に侵漬」という全還元炉方式、あるいは、「鋼板を脱脂酸洗した後、塩化アンモニウムなどを用いてフラックス処理を行って、めっき浴に侵漬」というフラックス法等があるが、いずれの条件で処理を行ったとしても本発明の効果は発揮できる。また、めっき前の焼鈍の手法によらず、加熱中の露点を―20℃以上とすることで、めっきの濡れ性やめっきの合金化の際の合金化反応に有利に働く。 Further, regarding annealing before plating, “after degreasing pickling, heating in a non-oxidizing atmosphere, annealing in a reducing atmosphere containing H 2 and N 2 , cooling to near the plating bath temperature, and invading the plating bath. Zenjimer method called “Kizuke”, an all-reduction furnace method called “immersion in the plating bath after adjusting the atmosphere during annealing, first oxidizing the steel plate surface, and then reducing it before cleaning by plating” Alternatively, there is a flux method such as “after degreasing and pickling a steel plate, and then fluxing it with ammonium chloride and soaking it in a plating bath”, etc. The effect of can be demonstrated. Regardless of the annealing method prior to plating, the dew point during heating is set to −20 ° C. or higher, which advantageously works on the wettability of the plating and the alloying reaction at the time of plating alloying.

なお、本冷延鋼板を電気めっきしても鋼板の有する引張強度、延性及び穴拡げ性を何ら損なうことはない。すなわち、本発明鋼板は電気めっき用素材としても好適である。有機皮膜や上層めっきを行ったとしても、本発明の効果は得られる。   In addition, even if this cold-rolled steel sheet is electroplated, the tensile strength, ductility, and hole expandability of the steel sheet are not impaired at all. That is, the steel sheet of the present invention is also suitable as a material for electroplating. Even if an organic film or upper layer plating is performed, the effect of the present invention can be obtained.

また、本発明の成形性と穴拡げ性に優れた高強度高延性溶融亜鉛めっき鋼板の素材は、通常の製鉄工程である精錬、製鋼、鋳造、熱延、冷延工程を経て製造されることを原則とするが、その一部あるいは全部を省略して製造されるものでも、本発明に係わる条件を満足する限り、本発明の効果を得ることができる。   In addition, the material of the high strength and high ductility hot dip galvanized steel sheet excellent in formability and hole expansibility of the present invention is manufactured through refining, steel making, casting, hot rolling, and cold rolling processes that are normal iron making processes. However, even if it is manufactured by omitting part or all of it, the effects of the present invention can be obtained as long as the conditions according to the present invention are satisfied.

表1に示す化学成分を含有する厚み240mmのスラブを鋳造した。スラブの鋳造の際には、表2に示す圧下量で溶鋼が完全に凝固する前に圧下を行った。
次に、得られたスラブを1230℃に加熱してから、表2及び表3に示す圧下率で圧下しつつ熱延し、更に表2及び表3に示す条件で仕上げ熱間圧延を行った。そして、表2及び表3に示す条件で冷延、焼鈍、冷却および熱処理を行った。このようにして、鋼板を製造した。熱間圧延及び冷延を施した鋼板を表2及び表3ではCRと表記した。
A 240 mm thick slab containing the chemical components shown in Table 1 was cast. During casting of the slab, rolling was performed with the rolling amount shown in Table 2 before the molten steel was completely solidified.
Next, the obtained slab was heated to 1230 ° C., and then hot-rolled while being reduced at the reduction rate shown in Tables 2 and 3, and further subjected to finish hot rolling under the conditions shown in Tables 2 and 3. . Then, cold rolling, annealing, cooling and heat treatment were performed under the conditions shown in Tables 2 and 3. In this way, a steel plate was produced. The steel plates subjected to hot rolling and cold rolling are indicated as CR in Tables 2 and 3.

また、一部の鋼板については、上記の熱処理前後において、連続溶融亜鉛めっきラインに通板することで、溶融亜鉛めっき鋼板とした。連続溶融亜鉛めっきラインにおいては、表2または表3に示す条件で焼鈍した後、630℃〜570℃間を表2または表3に示す平均冷却速度以上で420℃〜500℃の範囲まで冷却した後、溶融亜鉛メッキを行い、亜鉛めっき浴に浸漬前、あるいは、浸漬後の何れか一方、あるいは、両方で、表2及び表3に示す熱処理を行った。連続溶融亜鉛めっきを施した鋼板を表2及び表3ではGIと表記した。   Moreover, about some steel plates, it was set as the hot dip galvanized steel plate by letting a continuous hot dip galvanizing line pass before and after said heat processing. In the continuous hot dip galvanizing line, after annealing under the conditions shown in Table 2 or Table 3, cooling between 630 ° C. and 570 ° C. was carried out to the range of 420 ° C. to 500 ° C. above the average cooling rate shown in Table 2 or Table 3. Thereafter, hot dip galvanization was performed, and the heat treatment shown in Tables 2 and 3 was performed either before or after immersion in the galvanizing bath, or both. In Tables 2 and 3, steel sheets subjected to continuous hot dip galvanization are indicated as GI.

更に、他の一部の鋼板については、上記の熱処理前後において、連続溶融亜鉛めっきラインに通板するとともに合金化することで、合金化溶融亜鉛めっき鋼板とした。連続溶融亜鉛めっきラインにおいては、表2または表3に示す条件で焼鈍した後、630℃〜570℃間を表2または表3に示す平均冷却速度以上で430℃〜500℃まで冷却した後、溶融亜鉛メッキを行い、更に500℃〜550℃の温度で合金化処理を施した。そして、亜鉛めっき浴に浸漬前、浸漬後、あるいは、合金化処理後の何れか、あるいは、全てで、表2及び表3に示す熱処理を行った。連続溶融亜鉛めっきを施し、かつ合金化を行った鋼板を表2及び表3ではGAと表記した。   Furthermore, about the other one part steel plate, it was set as the alloyed hot-dip galvanized steel plate by making it pass through a continuous hot-dip galvanizing line and alloying before and after said heat processing. In the continuous hot dip galvanizing line, after annealing under the conditions shown in Table 2 or Table 3, after cooling between 630 ° C and 570 ° C to 430 ° C to 500 ° C at an average cooling rate or more shown in Table 2 or Table 3, Hot dip galvanization was performed, and an alloying treatment was further performed at a temperature of 500 ° C to 550 ° C. And the heat processing shown in Table 2 and Table 3 was performed either before or after immersion in the galvanizing bath, after alloying treatment, or all. The steel plates that were subjected to continuous hot dip galvanizing and alloyed were indicated as GA in Tables 2 and 3.

なお、表2以降において、例えば鋼No.A−1〜A−14は、表1に示す組成の鋼Aを用いた例である。以下、他の鋼B〜Iについても同様である。   In Table 2 and later, for example, steel No. A-1 to A-14 are examples using steel A having the composition shown in Table 1. Hereinafter, the same applies to the other steels B to I.

Figure 2009263685
Figure 2009263685

Figure 2009263685
Figure 2009263685

Figure 2009263685
Figure 2009263685

得られた冷延鋼板CR、溶融亜鉛めっき鋼板GI及び合金化溶融亜鉛めっき鋼板GAについて、Mn偏析度及びMn偏析帯の厚みを測定した。Mn偏析度は、鋼板の断面をEPMA装置で元素分析を行い、板厚方向のMn偏析度(=中心部Mnピーク濃度/平均Mn濃度)を算出した。更に、Mn偏析帯の厚みも測定した。Mn偏析帯は、平均Mn濃度よりも高いMn濃度を示す領域をMn偏析帯とした。結果を表4及び表5に示す。   About the obtained cold-rolled steel sheet CR, hot-dip galvanized steel sheet GI, and alloyed hot-dip galvanized steel sheet GA, the Mn segregation degree and the thickness of the Mn segregation zone were measured. The Mn segregation degree was obtained by conducting elemental analysis on the cross section of the steel sheet with an EPMA apparatus and calculating the Mn segregation degree in the thickness direction (= center Mn peak concentration / average Mn concentration). Furthermore, the thickness of the Mn segregation zone was also measured. The Mn segregation zone was defined as a region showing a Mn concentration higher than the average Mn concentration. The results are shown in Tables 4 and 5.

また、中心偏析部とそれ以外の部分で強度差の有無を調べるため、ビッカース硬度の硬度差を測定した。測定は、荷重50gfにてビッカース試験機による、中心偏析部とそれ以外の部位での硬度をそれぞれ求め、差を硬度差とした。結果を表4及び5に示す。   Moreover, in order to investigate the presence or absence of a strength difference between the central segregation part and the other part, the hardness difference of Vickers hardness was measured. In the measurement, the hardness at the central segregation part and other parts was determined by a Vickers tester with a load of 50 gf, and the difference was defined as the hardness difference. The results are shown in Tables 4 and 5.

更に、ミクロ組織の各相、フェライト、パーライト、セメンタイト、マルテンサイト、ベイナイト、オーステナイトおよび残部組織の同定、存在位置の観察および面積率の測定は、ナイタール試薬および特開59−219473号公報に開示された試薬により鋼板圧延方向断面を腐食して、1000倍の光学顕微鏡観察及び1000〜100000倍の走査型および透過型電子顕微鏡により定量化した。結果を表4及び5に示す。   Further, identification of each phase of the microstructure, ferrite, pearlite, cementite, martensite, bainite, austenite and the remaining structure, observation of the existing position, and measurement of the area ratio are disclosed in Nital reagent and Japanese Patent Application Laid-Open No. 59-219473. The steel sheet was eroded with the reagent in the rolling direction of the steel plate and quantified by observation with an optical microscope of 1000 times and scanning and transmission electron microscopes of 1000 to 100,000 times. The results are shown in Tables 4 and 5.

また、得られた冷延鋼板CR、溶融亜鉛めっき鋼板GI及び合金化溶融亜鉛めっき鋼板GAについて、引張試験を行い、降伏応力(YS)、引張最大応力(TS)、全伸び(El)を測定した。なお、本鋼板は、フェライトと硬質組織より成る複合組織鋼板であり、降伏点伸びが出現しない場合が多い。このことから、降伏応力は0.2%オフセット法により測定した。TS×Elが、16000(MPa×%)以上となるものを強度-延性バランスが良好な高強度鋼板とした。
穴拡げ率(λ)は、直径10mmの円形穴を、クリアランスが12.5%となる条件にて打ち抜き、かえりがダイ側となるようにし、60°円錐ポンチにて成形し、評価した。各条件とも、5回の穴拡げ試験を実施し、その平均値を穴拡げ率とした。TS×λが、40000(MPa×%)以上となるものを、強度-穴拡げ性バランスが良好な高強度鋼板とした。
結果を表6及び表7に示す。
In addition, the obtained cold-rolled steel sheet CR, hot-dip galvanized steel sheet GI, and alloyed hot-dip galvanized steel sheet GA are subjected to a tensile test to measure yield stress (YS), maximum tensile stress (TS), and total elongation (El). did. In addition, this steel plate is a composite structure steel plate which consists of a ferrite and a hard structure, and yield point elongation does not appear in many cases. From this, the yield stress was measured by the 0.2% offset method. A steel sheet having a TS × El of 16000 (MPa ×%) or more was defined as a high-strength steel sheet having a good strength-ductility balance.
The hole expansion rate (λ) was evaluated by punching a circular hole having a diameter of 10 mm under the condition that the clearance was 12.5%, forming the burr on the die side, and molding with a 60 ° conical punch. Under each condition, five hole expansion tests were performed, and the average value was defined as the hole expansion ratio. A steel sheet having a TS × λ of 40000 (MPa ×%) or more was defined as a high-strength steel sheet having a good strength-hole expansibility balance.
The results are shown in Tables 6 and 7.

また、Mnの中心偏析が大きく、かつ、クリアランスが大きな場合、打ち抜き端面、あるいは、切断端面へ、亀裂(剥離)が形成する場合がある。
また、亀裂が生じる条件にて、打ち抜きを行った試験片を加工すると特性が劣化することから、切断後の特性劣化を評価する項目として、打ち抜き端部の損傷も併せて評価した。切断後の端面損傷は、切断する方位によって異なる。このことから、全断面での損傷評価を同時に行うべく、10mmφのポンチにて、打ち抜き加工を行い端面の損傷を調査した。打ち抜き後の亀裂や二次せん断面の合計長さは、全周360°に対して、個別の亀裂の合計長さを、何°として表記した。中心偏析が大きく、板厚方向の硬度差が大きい鋼板にて、亀裂形成が顕著となると共に、詳細な理由は不明なものの、圧延方向に平行な面に沿って亀裂が入り易かった。
切断でも同様の傾向が得られるものの、切断する方向に依存して、亀裂の出易さが変化することから、本発明では、打ち抜き試験により、端面損傷を評価した。打ち抜き端面に形成された亀裂の合計を元に、下記の評点付けを行った。
Further, when the center segregation of Mn is large and the clearance is large, cracks (peeling) may be formed on the punched end face or the cut end face.
In addition, since the characteristics deteriorated when a punched test piece was processed under the conditions that cause cracks, damage to the punched end was also evaluated as an item for evaluating the deterioration of characteristics after cutting. End face damage after cutting varies depending on the cutting direction. From this, in order to simultaneously evaluate the damage on the entire cross section, the end face was examined for damage by punching with a 10 mmφ punch. The total length of the cracks after punching and the secondary shear surface is expressed as the total length of the individual cracks with respect to the entire circumference of 360 °. Crack formation was prominent in steel sheets with large center segregation and a large hardness difference in the sheet thickness direction, and cracks were easily formed along a plane parallel to the rolling direction, although the detailed reason was unknown.
Although the same tendency can be obtained by cutting, the ease of cracking changes depending on the cutting direction. Therefore, in the present invention, end face damage was evaluated by a punching test. The following scoring was performed based on the total number of cracks formed in the punched end face.

○:120°以下。
△:120超〜270°以下。
×:270°超。
○: 120 ° or less.
Δ: More than 120 to 270 ° or less.
X: Over 270 °.

打ち抜きクリアランスと、切断後の特性比較を行うため、クリアランス12.5%、25.0%、37.5%のいずれの条件でも、打ち抜き端面の亀裂が120°以下となるものを本発明の切断後の特性劣化の少ない高強度鋼板とした。結果を表6及び表7に示す。   In order to compare the punching clearance with the characteristics after cutting, the cutting according to the present invention is such that the crack of the punched end face is 120 ° or less under any conditions of clearance 12.5%, 25.0%, 37.5%. A high-strength steel sheet with less characteristic deterioration later was obtained. The results are shown in Tables 6 and 7.

また、本発明において、切断あるいは打ち抜き後の伸びフランジ成形性の変化を評価するため、下記の成形手法を用いた。実部材の伸びフランジ部は、不均一な変形を受けることから、伸びフランジ部での破断抑制には、伸び(均一伸び)が優れることが求められる。また、特定部位への変形集中を伴う場合が多く、n値(均一伸び)向上による歪集中の緩和が必要となる。一方、加工された端部は、亀裂が形成しやすいことから、円錐ポンチを用いた穴拡げ試験に代表される端部で亀裂形成し難いことが求められる。しかしながら、穴拡げ試験は、打ち抜き穴周りを均一に変形させるため、実部材で生じる不均一な変形と、歪集中部での亀裂形成といった実部材での伸びフランジ性を評価し難いという問題を有していた。そこで、本発明では、下記の試験方法を用いた。   In the present invention, in order to evaluate the change in stretch flangeability after cutting or punching, the following molding technique was used. Since the stretch flange portion of the actual member is subjected to non-uniform deformation, it is required that the stretch (uniform stretch) is excellent for suppressing breakage at the stretch flange portion. Further, there are many cases where deformation is concentrated on a specific part, and it is necessary to alleviate strain concentration by improving n value (uniform elongation). On the other hand, since the processed end portion is easy to form a crack, it is required that the end portion typified by a hole expansion test using a conical punch is difficult to form a crack. However, since the hole expansion test uniformly deforms around the punched hole, there is a problem that it is difficult to evaluate the stretch flangeability in the actual member, such as non-uniform deformation that occurs in the actual member and crack formation in the strain concentration part. Was. Therefore, in the present invention, the following test method was used.

具体的には、通常行われている円筒ポンチによる穴広げ試験の素板形状を分割し伸びフランジ成形を模擬した図1(a)〜図1(c)に示すよう成形実験を行った。ダイ1は肩Rが5mmで106φのものを用い、しわ押さえ2で拘束した後に、肩R10mm、コーナー半径50mmの100φ円筒平底ポンチ3を用いて成形を行った。   Specifically, a molding experiment was performed as shown in FIGS. 1A to 1C, in which a base plate shape of a hole expansion test using a cylindrical punch that is normally performed was divided to simulate stretch flange molding. A die 1 having a shoulder R of 5 mm and a diameter of 106 φ was used. After being restrained by the crease presser 2, the die 1 was molded using a 100φ cylindrical flat bottom punch 3 having a shoulder R of 10 mm and a corner radius of 50 mm.

成形に用いた素板は、板厚1.2mmの鋼板を180mm角に切断した後、40φのポンチにて打ち抜きを行った。この際、打ち抜き時のクリアランス変化に伴う特性劣化を調査するため、クリアランスを12.5、25.0.37.5%と種々変化させ、打ち抜き後の伸びフランジ性に及ぼすクリアランスの影響を調査した。その後、1/2に切断し、伸びフランジ試験用の試験片4とした(図2)。   The base plate used for forming was obtained by cutting a steel plate having a thickness of 1.2 mm into 180 mm squares and then punching it with a 40φ punch. At this time, in order to investigate the characteristic deterioration accompanying the clearance change at the time of punching, the clearance was variously changed to 12.5 and 25.0.37.5%, and the influence of the clearance on the stretch flangeability after punching was investigated. . Then, it cut | disconnected to 1/2 and it was set as the test piece 4 for a stretch flange test (FIG. 2).

本成形手法では、図1(c)に示すポンチによる成形高さ5を増加させると、試験片4の端部の穴底は、変形を受ける。その結果、延性、特に、均一伸びが劣る材料は、低い成形高さ5においても、穴底に大きな歪集中を生じ、破断に至る。一方、穴拡げ性が劣る材料は、亀裂が入りやすいことから、穴底への歪集中が小さくとも、破断に至る。このことから、不均一な歪集中と、端部への亀裂形成を伴うような実部材の伸びフランジ性評価が可能である。本試験では、穴底に板厚を貫通する亀裂が生じた成形高さ5を伸びフランジ性の指標として評価可能である。即ち、亀裂発生なく高い成形高さが得られるということは、フランジ高さの高い、あるいは、大変形を伴う伸びフランジ加工が可能なことを意味している。   In this molding method, when the molding height 5 by the punch shown in FIG. 1C is increased, the hole bottom at the end of the test piece 4 is deformed. As a result, a material with inferior ductility, particularly uniform elongation, causes a large strain concentration at the bottom of the hole even at a low molding height 5, leading to fracture. On the other hand, since the material with poor hole expandability is easily cracked, even if the strain concentration at the hole bottom is small, it breaks. From this, it is possible to evaluate the stretch flangeability of an actual member with non-uniform strain concentration and crack formation at the end. In this test, it is possible to evaluate the forming height 5 at which a crack penetrating the plate thickness is formed at the hole bottom as an index of stretch flangeability. That is, the fact that a high molding height can be obtained without occurrence of cracks means that the flange height is high or stretch flange processing with large deformation is possible.

本発明では、打ち抜き条件の影響を見るべく、クリアランスを12.5%、25.0%、37.5%と変化させ、クリアランス12.5%の成形高さ(h12.5)に対する各クリアランスでの成形高さ比を評価した。   In the present invention, in order to see the influence of the punching conditions, the clearance is changed to 12.5%, 25.0%, 37.5%, and each clearance with respect to the molding height (h12.5) of the clearance 12.5%. The molding height ratio was evaluated.

クリアランス25.0%における成形高さ比=h(25.0%)/h(12.5%)   Molding height ratio at clearance 25.0% = h (25.0%) / h (12.5%)

クリアランス37.5%における成形高さ比=h(37.5%)/h(12.5%)   Molding height ratio at clearance 37.5% = h (37.5%) / h (12.5%)

クリアランス25.0%と37.5%の何れにおいても、その比が下記範囲を満たすものを切断後の特性劣化の少ない高強度鋼板と定義した。結果を表6及び表7に示す。本発明の切断後の特性劣化の少ない高強度鋼板は、切断後の延性劣化や、打ち抜き後の穴拡げ試験による穴拡げ値の劣化も少ない。   In both of the clearances of 25.0% and 37.5%, those satisfying the following range were defined as high-strength steel plates with little characteristic deterioration after cutting. The results are shown in Tables 6 and 7. The high-strength steel sheet with less characteristic deterioration after cutting according to the present invention is less susceptible to ductility deterioration after cutting and hole expansion value due to a hole expansion test after punching.

◎:0.9以上。
○:0.8以上〜0.9未満。
×:0.8未満。
A: 0.9 or more.
○: 0.8 or more and less than 0.9.
X: Less than 0.8.

Figure 2009263685
Figure 2009263685

Figure 2009263685
Figure 2009263685

Figure 2009263685
Figure 2009263685

Figure 2009263685
Figure 2009263685

表4〜7に示すように、鋼番号A-1〜3、6、7、9、11、B-1、3、5、6、C-1、3、D-1、3、5、E-1、2、F-1、G-1、2、H-1、I-1、4、6は、鋼板の化学的成分が本発明で規定する範囲内にあり、かつ、製造条件も本発明で規定する範囲内にある。この結果、良好な延性と穴拡げ性を同時に具備し、かつ、打ち抜き時のクリアランスを12.5〜37.5%の広い範囲で変化させたとしても、伸びフランジ性はほとんど変化しない。この結果、540MPa以上の引張最大強度を有しながらも、切断、あるいは、打ち抜き後の特性劣化の少ない高強度鋼板が製造可能である。   As shown in Tables 4 to 7, steel numbers A-1 to 3, 6, 7, 9, 11, B-1, 3, 5, 6, C-1, 3, D-1, 3, 5, E -1, 2, F-1, G-1, 2, H-1, I-1, 4, and 6 are within the range specified by the present invention for the chemical composition of the steel sheet, and the manufacturing conditions are also the same. It is within the range specified by the invention. As a result, the stretch flangeability hardly changes even if the ductility and the hole expandability are simultaneously provided and the clearance at the time of punching is changed in a wide range of 12.5 to 37.5%. As a result, it is possible to produce a high-strength steel sheet having a maximum tensile strength of 540 MPa or more and having little characteristic deterioration after cutting or punching.

一方、表4〜7に示すように、鋼番号A-4、10、12、B-2、7、C-2、D-2、4、6、E-3、F-2、G-3、4、H-2、I-2、5、7は、鋳造時の圧下量が0mmであることから、中心偏析、特に、Mn偏析度や偏析帯の厚みが大きく、大きなクリアランスで打ち抜きを行った場合、打ち抜き後の端面に亀裂が形成し易く、かつ、大きなクリアランスでの打ち抜き後の特性劣化が大きい。即ち、打ち抜き後の特性劣化が大きい。   On the other hand, as shown in Tables 4-7, steel numbers A-4, 10, 12, B-2, 7, C-2, D-2, 4, 6, E-3, F-2, G-3 4, H-2, I-2, 5, and 7 have a reduction of 0 mm during casting. Therefore, center segregation, in particular, Mn segregation degree and segregation band thickness are large, and punching is performed with a large clearance. In this case, cracks are easily formed on the end face after punching, and the characteristic deterioration after punching with a large clearance is large. That is, the characteristic deterioration after punching is large.

また、鋼番号A-5、13、B-4、G-5、H-3、I-3は、冷延鋼板であれば、300〜450℃の温度範囲での滞留時間が30秒に満たないことから、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板であれば、(亜鉛めっき浴温度+50)℃〜300℃の温度範囲での滞留時間が30秒に満たないことから、非常に硬質なマルテンサイトが多く出てしまい穴拡げ性に劣る。   Steel numbers A-5, 13, B-4, G-5, H-3, and I-3 are cold-rolled steel sheets, and the residence time in the temperature range of 300 to 450 ° C. is less than 30 seconds. Therefore, if it is a hot dip galvanized steel sheet and an alloyed hot dip galvanized steel sheet, the residence time in the temperature range of (zinc plating bath temperature +50) ° C. to 300 ° C. is less than 30 seconds. A lot of martensite appears and the hole expandability is inferior.

更に、鋼番号A-8は、焼鈍温度が720℃と低く、鋼板組織中に、熱延時に形成したパーライト組織や、これが球状化したセメンタイトが残ることから、硬質組織であるベイナイトやマルテンサイトが十分な体積率確保できないため、540MPa以上の高強度を確保できない。また、強度-延性バランスも劣る。   Furthermore, Steel No. A-8 has an annealing temperature as low as 720 ° C., and the pearlite structure formed during hot rolling and the cementite that has been spheroidized remain in the steel sheet structure. Therefore, bainite and martensite which are hard structures are present. Since a sufficient volume ratio cannot be secured, a high strength of 540 MPa or more cannot be secured. In addition, the strength-ductility balance is poor.

また、鋼番号A-14は、630〜570℃の温度範囲の冷却速度が遅すぎるため、オーステナイトがパーライトへと変態してしまい540MPa以上の高強度を確保できない。また、強度-延性バランスも劣る。   Steel No. A-14 has too low a cooling rate in the temperature range of 630 to 570 ° C., and thus austenite is transformed into pearlite, so that a high strength of 540 MPa or more cannot be secured. In addition, the strength-ductility balance is poor.

鋼番号J-1、2は、Si及びMnが、それぞれ0.03%及び1.14%と低く、焼鈍後の冷却過程において、パーライト変態を抑制し、ベイナイト、マルテンサイト、残留オーステナイトといった硬質組織を確保することが出来ないため、540MPa以上の高強度を確保できない。   Steel numbers J-1 and 2 are low in Si and Mn at 0.03% and 1.14%, respectively, suppress pearlite transformation in the cooling process after annealing, and have a hard structure such as bainite, martensite, and retained austenite. Therefore, it is impossible to secure a high strength of 540 MPa or more.

鋼番号K-1は、C含有量が0.027%と低く、十分な量の硬質組織を確保できないことから540MPa以上の高強度を確保できない。
鋼番号L-1〜3は、Mn含有量が3.28%と高く、焼鈍時にオーステナイト体積率が一旦減ると、冷却過程で、十分な量のフェライトを出すことが出来ない。このことから、著しく強度-延性バランスも劣る。
Steel number K-1 cannot secure a high strength of 540 MPa or more because the C content is as low as 0.027% and a sufficient amount of hard structure cannot be secured.
Steel numbers L-1 to L-3 have a high Mn content of 3.28%, and once the austenite volume fraction is reduced during annealing, a sufficient amount of ferrite cannot be produced in the cooling process. For this reason, the strength-ductility balance is remarkably inferior.

本発明は、自動車用の構造用部材、補強用部材、足廻り用部材に好適な引張り最大強度540MPa以上であり、良好な延性と穴拡げ性を有し、かつ、切断後の特性劣化が少ない鋼板を安価に提供するものであり、この鋼板は例えば自動車用の構造部材や、補強用部材、足回り用部材などに用いて好適なことから、自動車の軽量化に大きく貢献することが期待でき、産業上の効果は極めて高い。   The present invention has a maximum tensile strength of 540 MPa or more suitable for structural members, reinforcing members, and suspension members for automobiles, has good ductility and hole expansibility, and has little deterioration in properties after cutting. The steel sheet is provided at a low cost, and since this steel sheet is suitable for use in, for example, structural members for automobiles, reinforcing members, suspension members, etc., it can be expected to greatly contribute to weight reduction of automobiles. Industrial effect is extremely high.

実施例における伸びフランジ成形性の変化を評価するための評価装置を示す図であって、(a)は試験開始前の状態を示す断面模式図であり、(b)は試験開始前の状態を示す平面模式図であり、(c)は試験後の状態を示す断面模式図である。It is a figure which shows the evaluation apparatus for evaluating the change of the stretch flange formability in an Example, (a) is a cross-sectional schematic diagram which shows the state before a test start, (b) is the state before a test start. It is a plane schematic diagram to show, (c) is a cross-sectional schematic diagram which shows the state after a test. 実施例における伸びフランジ成形性の変化の評価に用いる試験片を示す平面模式図である。It is a plane schematic diagram which shows the test piece used for evaluation of the change of the stretch flangeability in an Example.

Claims (11)

質量%で、
C :0.05%〜0.20%、
Si:0.3〜2.00%、
Mn:1.3〜2.6%、
P :0.001〜0.03%、
S :0.0001〜0.01%、
Al:0.10%未満、
N :0.0005〜0.0100%、
O:0.0005〜0.007%
を含有し、残部が鉄および不可避的不純物からなる鋼であり、鋼板組織が主としてフェライトとベイナイトからなり、板厚方向のMn偏析度(=中心部Mnピーク濃度/平均Mn濃度)が1.20以下であり、引張最大強さが540MPa以上であることを特徴とする切断後の特性劣化の少ない高強度鋼板。
% By mass
C: 0.05% to 0.20%,
Si: 0.3 to 2.00%
Mn: 1.3-2.6%,
P: 0.001 to 0.03%,
S: 0.0001 to 0.01%
Al: less than 0.10%,
N: 0.0005 to 0.0100%,
O: 0.0005 to 0.007%
The balance is steel composed of iron and inevitable impurities, the steel sheet structure is mainly composed of ferrite and bainite, and the Mn segregation degree in the thickness direction (= center Mn peak concentration / average Mn concentration) is 1.20. A high-strength steel sheet having less characteristic deterioration after cutting, wherein the maximum tensile strength is 540 MPa or more.
さらに、質量%で、
B:0.0001%以上0.01%未満
を含有することを特徴とする請求項1に記載の切断後の特性劣化の少ない高強度鋼板。
Furthermore, in mass%,
B: The high-strength steel sheet with less property deterioration after cutting according to claim 1, characterized by containing 0.0001% or more and less than 0.01%.
さらに、質量%で、
Cr:0.01〜1.0%、
Ni:0.01〜1.0%、
Cu:0.01〜1.0%、
Mo:0.01〜1.0%
の1種または2種以上を含有することを特徴とする請求項1または2に記載の切断後の特性劣化の少ない高強度鋼板。
Furthermore, in mass%,
Cr: 0.01 to 1.0%,
Ni: 0.01 to 1.0%,
Cu: 0.01 to 1.0%,
Mo: 0.01 to 1.0%
The high-strength steel sheet with little characteristic deterioration after cutting according to claim 1 or 2, characterized by containing one or more of the following.
さらに、質量%で、Nb、Ti、Vの1種または2種以上を合計で0.001〜0.14%含有することを特徴とする請求項1〜3のいずれか1項に記載の切断後の特性劣化の少ない高強度鋼板。   The cutting according to any one of claims 1 to 3, further comprising 0.001 to 0.14% of Nb, Ti, or V in total by mass, containing one or more of Nb, Ti, and V. A high-strength steel plate with less characteristic deterioration afterwards. さらに、質量%で、Ca、Ce、Mg、REMの1種または2種以上を合計で0.0001〜0.5%含有することを特徴とする請求項1〜4のいずれか1項に記載の切断後の特性劣化の少ない高強度鋼板。   Furthermore, 0.0001-0.5% of 1 type or 2 types in total of Ca, Ce, Mg, and REM is contained by mass%, The any one of Claims 1-4 characterized by the above-mentioned. High-strength steel sheet with little deterioration in properties after cutting. 請求項1〜5のいずれか1項に記載の高強度鋼板の表面に亜鉛系めっきを有することを特徴とする切断後の特性劣化の少ない高強度鋼板。     A high-strength steel sheet with little deterioration in characteristics after cutting, characterized by having zinc-based plating on the surface of the high-strength steel sheet according to any one of claims 1 to 5. 請求項1〜5のいずれか1項に記載の化学成分を有する鋳造スラブを鋳造するに当たって、板厚方向に圧下を加えつつ鋳造を行うことを特徴とする鋳造スラブ。   6. A cast slab, wherein the casting slab having the chemical component according to claim 1 is cast while being reduced in the thickness direction. 請求項7に記載の鋳造スラブを直接又は一旦冷却した後1050℃以上に加熱し、圧下率70%以上とする熱延を施した後、さらに85%以上の圧下率で仕上温度を820℃〜930℃とする熱間圧延を行った後、水冷を開始し、720〜800℃間の平均冷却速度が25℃/秒以上の冷却速度で水冷を行い、620〜720℃で水冷を完了し、400〜630℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続焼鈍ラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で冷却し、450℃〜300℃の温度域で30秒以上保持することを特徴とする切断後の特性劣化の少ない高強度鋼板の製造方法。   The cast slab according to claim 7 is directly or once cooled and then heated to 1050 ° C or higher and subjected to hot rolling to a reduction rate of 70% or more, and then the finishing temperature is 820 ° C to a reduction rate of 85% or more. After performing hot rolling to 930 ° C, water cooling is started, water cooling is performed at an average cooling rate of 720 to 800 ° C at a cooling rate of 25 ° C / second or more, and water cooling is completed at 620 to 720 ° C. After winding in a temperature range of 400 to 630 ° C, pickling, cold rolling with a rolling reduction of 40 to 70%, and passing through a continuous annealing line, after annealing at a maximum heating temperature of 760 to 870 ° C, 630 A method for producing a high-strength steel sheet with less property deterioration after cutting, characterized in that the temperature is cooled between 3 ° C. and 570 ° C. at an average cooling rate of 3 ° C./second or more and is maintained in a temperature range of 450 ° C. to 300 ° C. for 30 seconds or more . 請求項7に記載の鋳造スラブを直接又は一旦冷却した後1050℃以上に加熱し、圧下率70%以上とする熱延を施した後、さらに85%以上の圧下率で仕上温度を820℃〜930℃とする熱間圧延を行った後、水冷を開始し、720〜800℃間の平均冷却速度が25℃/秒以上の冷却速度で水冷を行い、620〜720℃で水冷を完了し、400〜630℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続溶融亜鉛めっきラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で(亜鉛めっき浴温度―40)℃〜(亜鉛めっき浴温度+50)℃まで冷却した後、亜鉛めっき浴に浸漬前、あるいは、浸漬後の何れか一方、あるいは、両方で、(亜鉛めっき浴温度+50)℃〜300℃の温度域で30秒以上保持することを特徴とする切断後の特性劣化の少ない高強度溶融亜鉛めっき鋼板の製造方法。   The cast slab according to claim 7 is directly or once cooled and then heated to 1050 ° C or higher and subjected to hot rolling to a reduction rate of 70% or more, and then the finishing temperature is 820 ° C to a reduction rate of 85% or more. After performing hot rolling to 930 ° C, water cooling is started, water cooling is performed at an average cooling rate of 720 to 800 ° C at a cooling rate of 25 ° C / second or more, and water cooling is completed at 620 to 720 ° C. After winding in a temperature range of 400 to 630 ° C., pickling, cold rolling with a rolling reduction of 40 to 70%, and annealing at a maximum heating temperature of 760 to 870 ° C. when passing through a continuous hot dip galvanizing line After cooling between 630 ° C. and 570 ° C. at an average cooling rate of 3 ° C./second or more (zinc plating bath temperature−40) ° C. to (zinc plating bath temperature + 50) ° C., before or after immersion in the zinc plating bath Either later or both, Method for producing a less high strength galvanized steel sheet characteristic degradation after cutting, characterized in that the holding in a temperature range of galvanizing bath temperature +50) ℃ ~300 ℃ 30 seconds or more. 請求項7に記載の鋳造スラブを直接又は一旦冷却した後1050℃以上に加熱し、圧下率70%以上とする熱延を施した後、さらに85%以上の圧下率で仕上温度を820℃〜930℃とする熱間圧延を行った後、水冷を開始し、720〜800℃間の平均冷却速度が25℃/秒以上の冷却速度で水冷を行い、620〜720℃で水冷を完了し、400〜630℃の温度域にて巻き取り、酸洗後、圧下率40〜70%の冷延を施し、連続溶融亜鉛めっきラインを通板するに際して、最高加熱温度760〜870℃で焼鈍した後、630℃〜570℃間を平均冷却速度3℃/秒以上で(亜鉛めっき浴温度―40)℃〜(亜鉛めっき浴温度+50)℃まで冷却した後、必要に応じて460〜540℃の温度で合金化処理を施し、亜鉛めっき浴に浸漬前、浸漬後、あるいは、合金化処理後の何れか、あるいは、全てで(亜鉛めっき浴温度+50)℃〜300℃の温度域で30秒以上保持することを特徴とする切断後の特性劣化の少ない高強度合金化溶融亜鉛めっき鋼板の製造方法。   The cast slab according to claim 7 is directly or once cooled and then heated to 1050 ° C or higher and subjected to hot rolling to a reduction rate of 70% or more, and then the finishing temperature is 820 ° C to a reduction rate of 85% or more. After performing hot rolling to 930 ° C, water cooling is started, water cooling is performed at an average cooling rate of 720 to 800 ° C at a cooling rate of 25 ° C / second or more, and water cooling is completed at 620 to 720 ° C. After winding in a temperature range of 400 to 630 ° C., pickling, cold rolling with a rolling reduction of 40 to 70%, and annealing at a maximum heating temperature of 760 to 870 ° C. when passing through a continuous hot dip galvanizing line After cooling from 630 ° C to 570 ° C at an average cooling rate of 3 ° C / second or more to (zinc plating bath temperature -40) ° C to (zinc plating bath temperature +50) ° C, a temperature of 460 to 540 ° C is necessary. Is alloyed and immersed in a galvanizing bath. Characteristic deterioration after cutting, characterized by holding for at least 30 seconds in a temperature range of (zinc plating bath temperature +50) ° C. to 300 ° C. either before, after immersion, after alloying treatment or at all A method for producing few high-strength galvannealed steel sheets. 請求項8の方法で高強度鋼板を製造したのち、亜鉛系の電気めっきを施すことを特徴とする請求項8に記載の切断後の特性劣化の少ない高強度鋼板の製造方法。   9. The method for producing a high-strength steel sheet with less characteristic deterioration after cutting according to claim 8, wherein the high-strength steel sheet is produced by the method of claim 8 and then zinc-based electroplating is performed.
JP2008111254A 2008-04-22 2008-04-22 High-strength steel sheet with less characteristic deterioration after cutting and method for producing the same Active JP5136182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111254A JP5136182B2 (en) 2008-04-22 2008-04-22 High-strength steel sheet with less characteristic deterioration after cutting and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111254A JP5136182B2 (en) 2008-04-22 2008-04-22 High-strength steel sheet with less characteristic deterioration after cutting and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009263685A true JP2009263685A (en) 2009-11-12
JP5136182B2 JP5136182B2 (en) 2013-02-06

Family

ID=41389907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111254A Active JP5136182B2 (en) 2008-04-22 2008-04-22 High-strength steel sheet with less characteristic deterioration after cutting and method for producing the same

Country Status (1)

Country Link
JP (1) JP5136182B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097326A (en) * 2010-11-02 2012-05-24 Nippon Steel Corp Method for producing high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet
CN102719749A (en) * 2012-06-28 2012-10-10 宝山钢铁股份有限公司 Steel for railway axle and production process for steel
JP2013163827A (en) * 2012-02-09 2013-08-22 Nippon Steel & Sumitomo Metal Corp High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength alloying hot-dip galvanized steel sheet, excellent in bendability, and method for manufacturing the same
JP2015063748A (en) * 2013-08-30 2015-04-09 Jfeスチール株式会社 High strength hot rolling steel sheet and manufacturing method therefor
WO2016092733A1 (en) * 2014-12-12 2016-06-16 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for producing same
WO2017149999A1 (en) * 2016-02-29 2017-09-08 株式会社神戸製鋼所 Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening
WO2018143318A1 (en) 2017-02-06 2018-08-09 Jfeスチール株式会社 Molten zinc plating steel sheet and production method therefor
KR20180099876A (en) * 2016-02-10 2018-09-05 제이에프이 스틸 가부시키가이샤 High strength steel sheet and manufacturing method thereof
US20180258507A1 (en) * 2014-12-19 2018-09-13 Baoshan Iron & Steel Co., Ltd. Good fatigue- and crack growth-resistant steel plate and manufacturing method therefor
CN108779527A (en) * 2016-02-29 2018-11-09 株式会社神户制钢所 The manufacturing method of quenching steel plate, quenching component and quenching steel plate
WO2020203159A1 (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Steel sheet and manufacturing method thereof
WO2021057899A1 (en) * 2019-09-27 2021-04-01 宝山钢铁股份有限公司 Complex-phase steel having high hole expansibility and manufacturing method therefor
JPWO2021153036A1 (en) * 2020-01-27 2021-08-05
WO2021153037A1 (en) * 2020-01-27 2021-08-05 日本製鉄株式会社 Hot-rolled steel sheet
WO2021182395A1 (en) * 2020-03-11 2021-09-16 日本製鉄株式会社 Hot-rolled steel sheet
EP4067523A4 (en) * 2020-01-31 2022-12-07 JFE Steel Corporation Steel plate, member, and methods for manufacturing said steel plate and said member
WO2023026465A1 (en) 2021-08-27 2023-03-02 日本製鉄株式会社 Steel plate and press-molded article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001198B2 (en) 2020-01-31 2022-01-19 Jfeスチール株式会社 Steel sheets, members and their manufacturing methods

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615424A (en) * 1992-07-03 1994-01-25 Sumitomo Metal Ind Ltd Continuous casting method
JPH06220577A (en) * 1993-01-26 1994-08-09 Kawasaki Steel Corp High tensile strength steel excellent in hic resistance and its production
JPH1161328A (en) * 1997-08-28 1999-03-05 Sumitomo Metal Ind Ltd High manganese ingot, its continuous casting and manufacture of high tensile steel
JP2004001079A (en) * 2002-04-08 2004-01-08 Sumitomo Metal Ind Ltd Continuous casting method, continuous casting device, and continuously cast slab
JP2006257499A (en) * 2005-03-17 2006-09-28 Sumitomo Metal Ind Ltd High tensile strength steel sheet, welded steel tube and method for producing them
JP2007070660A (en) * 2005-09-05 2007-03-22 Nippon Steel Corp High strength thin steel sheet having excellent formability, and method for producing the same
JP2007070649A (en) * 2005-09-02 2007-03-22 Nippon Steel Corp Hot dip galvanized high strength steel sheet and alloyed hot dip galvanized high strength steel sheet having excellent corrosion resistance and hole expandability, and method for producing them
JP2007070648A (en) * 2005-09-02 2007-03-22 Nippon Steel Corp High strength thin steel sheet having excellent hole expandability, and method for producing the same
JP2007070662A (en) * 2005-09-05 2007-03-22 Nippon Steel Corp Hot dip galvanized high strength steel sheet and hot dip zincing high strength steel sheet having excellent corrosion resistance and formability, and method for producing them
JP2009221519A (en) * 2008-03-14 2009-10-01 Sumitomo Metal Ind Ltd Steel sheet and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615424A (en) * 1992-07-03 1994-01-25 Sumitomo Metal Ind Ltd Continuous casting method
JPH06220577A (en) * 1993-01-26 1994-08-09 Kawasaki Steel Corp High tensile strength steel excellent in hic resistance and its production
JPH1161328A (en) * 1997-08-28 1999-03-05 Sumitomo Metal Ind Ltd High manganese ingot, its continuous casting and manufacture of high tensile steel
JP2004001079A (en) * 2002-04-08 2004-01-08 Sumitomo Metal Ind Ltd Continuous casting method, continuous casting device, and continuously cast slab
JP2006257499A (en) * 2005-03-17 2006-09-28 Sumitomo Metal Ind Ltd High tensile strength steel sheet, welded steel tube and method for producing them
JP2007070649A (en) * 2005-09-02 2007-03-22 Nippon Steel Corp Hot dip galvanized high strength steel sheet and alloyed hot dip galvanized high strength steel sheet having excellent corrosion resistance and hole expandability, and method for producing them
JP2007070648A (en) * 2005-09-02 2007-03-22 Nippon Steel Corp High strength thin steel sheet having excellent hole expandability, and method for producing the same
JP2007070660A (en) * 2005-09-05 2007-03-22 Nippon Steel Corp High strength thin steel sheet having excellent formability, and method for producing the same
JP2007070662A (en) * 2005-09-05 2007-03-22 Nippon Steel Corp Hot dip galvanized high strength steel sheet and hot dip zincing high strength steel sheet having excellent corrosion resistance and formability, and method for producing them
JP2009221519A (en) * 2008-03-14 2009-10-01 Sumitomo Metal Ind Ltd Steel sheet and method for manufacturing the same

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097326A (en) * 2010-11-02 2012-05-24 Nippon Steel Corp Method for producing high-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet
JP2013163827A (en) * 2012-02-09 2013-08-22 Nippon Steel & Sumitomo Metal Corp High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength alloying hot-dip galvanized steel sheet, excellent in bendability, and method for manufacturing the same
CN102719749A (en) * 2012-06-28 2012-10-10 宝山钢铁股份有限公司 Steel for railway axle and production process for steel
JP2015063748A (en) * 2013-08-30 2015-04-09 Jfeスチール株式会社 High strength hot rolling steel sheet and manufacturing method therefor
US10590504B2 (en) 2014-12-12 2020-03-17 Jfe Steel Corporation High-strength cold-rolled steel sheet and method for manufacturing the same
WO2016092733A1 (en) * 2014-12-12 2016-06-16 Jfeスチール株式会社 High-strength cold-rolled steel sheet and method for producing same
JP5991450B1 (en) * 2014-12-12 2016-09-14 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
US20180258507A1 (en) * 2014-12-19 2018-09-13 Baoshan Iron & Steel Co., Ltd. Good fatigue- and crack growth-resistant steel plate and manufacturing method therefor
US10920298B2 (en) * 2014-12-19 2021-02-16 Baoshan Iron & Steel Co., Ltd. Good fatigue- and crack growth-resistant steel plate and manufacturing method therefor
US11111553B2 (en) 2016-02-10 2021-09-07 Jfe Steel Corporation High-strength steel sheet and method for producing the same
KR20180099876A (en) * 2016-02-10 2018-09-05 제이에프이 스틸 가부시키가이샤 High strength steel sheet and manufacturing method thereof
KR102119333B1 (en) * 2016-02-10 2020-06-04 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
CN108779527A (en) * 2016-02-29 2018-11-09 株式会社神户制钢所 The manufacturing method of quenching steel plate, quenching component and quenching steel plate
WO2017149999A1 (en) * 2016-02-29 2017-09-08 株式会社神戸製鋼所 Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening
EP3553196A4 (en) * 2017-02-06 2019-12-25 JFE Steel Corporation Molten zinc plating steel sheet and production method therefor
KR20190104183A (en) 2017-02-06 2019-09-06 제이에프이 스틸 가부시키가이샤 Hot-dip galvanized steel and its manufacturing method
WO2018143318A1 (en) 2017-02-06 2018-08-09 Jfeスチール株式会社 Molten zinc plating steel sheet and production method therefor
US11208712B2 (en) 2017-02-06 2021-12-28 Jfe Steel Corporation Galvanized steel sheet and method for manufacturing the same
WO2020203159A1 (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Steel sheet and manufacturing method thereof
JPWO2020203159A1 (en) * 2019-03-29 2021-10-21 日本製鉄株式会社 Steel plate and its manufacturing method
JP7160184B2 (en) 2019-03-29 2022-10-25 日本製鉄株式会社 Steel plate and its manufacturing method
WO2021057899A1 (en) * 2019-09-27 2021-04-01 宝山钢铁股份有限公司 Complex-phase steel having high hole expansibility and manufacturing method therefor
JP7375179B2 (en) 2019-09-27 2023-11-07 宝山鋼鉄股▲分▼有限公司 High hole expandability multi-phase steel and its manufacturing method
WO2021153036A1 (en) * 2020-01-27 2021-08-05 日本製鉄株式会社 Hot-rolled steel sheet
CN114929915B (en) * 2020-01-27 2023-10-27 日本制铁株式会社 Hot rolled steel sheet
JPWO2021153037A1 (en) * 2020-01-27 2021-08-05
CN114929915A (en) * 2020-01-27 2022-08-19 日本制铁株式会社 Hot rolled steel plate
CN115003835A (en) * 2020-01-27 2022-09-02 日本制铁株式会社 Hot rolled steel plate
CN115003835B (en) * 2020-01-27 2024-04-12 日本制铁株式会社 Hot rolled steel sheet
WO2021153037A1 (en) * 2020-01-27 2021-08-05 日本製鉄株式会社 Hot-rolled steel sheet
EP4098761A4 (en) * 2020-01-27 2022-12-07 Nippon Steel Corporation Hot-rolled steel sheet
EP4098762A4 (en) * 2020-01-27 2022-12-07 Nippon Steel Corporation Hot-rolled steel sheet
JPWO2021153036A1 (en) * 2020-01-27 2021-08-05
JP7260825B2 (en) 2020-01-27 2023-04-19 日本製鉄株式会社 hot rolled steel
JP7260824B2 (en) 2020-01-27 2023-04-19 日本製鉄株式会社 hot rolled steel
EP4067523A4 (en) * 2020-01-31 2022-12-07 JFE Steel Corporation Steel plate, member, and methods for manufacturing said steel plate and said member
CN115244203A (en) * 2020-03-11 2022-10-25 日本制铁株式会社 Hot rolled steel plate
JP7348574B2 (en) 2020-03-11 2023-09-21 日本製鉄株式会社 hot rolled steel plate
CN115244203B (en) * 2020-03-11 2023-11-21 日本制铁株式会社 Hot rolled steel sheet
WO2021182395A1 (en) * 2020-03-11 2021-09-16 日本製鉄株式会社 Hot-rolled steel sheet
WO2023026465A1 (en) 2021-08-27 2023-03-02 日本製鉄株式会社 Steel plate and press-molded article
KR20240036620A (en) 2021-08-27 2024-03-20 닛폰세이테츠 가부시키가이샤 Steel plates and press formed products

Also Published As

Publication number Publication date
JP5136182B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5136182B2 (en) High-strength steel sheet with less characteristic deterioration after cutting and method for producing the same
JP6409917B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
JP5365216B2 (en) High-strength steel sheet and its manufacturing method
KR101758003B1 (en) Hot-rolled steel sheet
JP4700764B2 (en) High-strength cold-rolled steel sheet excellent in formability and weldability, high-strength galvanized steel sheet, high-strength galvannealed steel sheet, and methods for producing them
JP4659134B2 (en) High-strength steel sheet and galvanized steel sheet with excellent balance between hole expansibility and ductility and excellent fatigue durability, and methods for producing these steel sheets
JP4964494B2 (en) High-strength steel sheet excellent in hole expansibility and formability and method for producing the same
JP5354135B2 (en) High-strength hot-dip galvanized steel sheet excellent in mechanical cutting characteristics, high-strength galvannealed steel sheet, and methods for producing them
JP5114747B2 (en) Manufacturing method of high-strength steel sheet with extremely good balance between hole expansibility and ductility and manufacturing method of galvanized steel sheet
JP6314520B2 (en) High-strength steel sheet having a maximum tensile strength of 1300 MPa or more, excellent formability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, and methods for producing them
US20120175028A1 (en) High strength steel sheet and method for manufacturing the same
US20110030854A1 (en) High-strength steel sheet and method for manufacturing the same
JP5412746B2 (en) High strength steel plate with good weldability and stretch flangeability
WO2018043473A1 (en) High-strength steel plate and production method thereof
JP2006104532A (en) High strength thin steel sheet having excellent elongation and hole expansibility and method for producing the same
KR20120113813A (en) High strength hot-dip galvanized steel sheet with superior workability and production method therefor
JP2007211280A (en) High strength hot dip galvanized steel sheet and high strength hot dip alloyed galvanized steel sheet having excellent formability and hole expandability, method for producing high strength hot dip galvanized steel sheet and method for producing high strength hot dip alloyed galvanized steel sheet
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP2011132602A (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, and high-strength hot-dip galvannealed steel sheet
WO2018043474A1 (en) High-strength steel plate and production method thereof
JP6409916B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
CA2844202A1 (en) Hot-dip galvanized steel sheet and method for manufacturing the same
JP6683291B2 (en) Steel plate and method for manufacturing steel plate
JP6683292B2 (en) Steel plate and method for manufacturing steel plate
JP4306497B2 (en) High-strength cold-rolled steel sheet with excellent workability and post-coating corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R151 Written notification of patent or utility model registration

Ref document number: 5136182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350