WO2017149999A1 - Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening - Google Patents

Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening Download PDF

Info

Publication number
WO2017149999A1
WO2017149999A1 PCT/JP2017/002186 JP2017002186W WO2017149999A1 WO 2017149999 A1 WO2017149999 A1 WO 2017149999A1 JP 2017002186 W JP2017002186 W JP 2017002186W WO 2017149999 A1 WO2017149999 A1 WO 2017149999A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
quenching
temperature
concentration
Prior art date
Application number
PCT/JP2017/002186
Other languages
French (fr)
Japanese (ja)
Inventor
紗江 濱本
達也 浅井
裕之 大森
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016207673A external-priority patent/JP2017155329A/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020187026939A priority Critical patent/KR20180117127A/en
Priority to CN201780013823.XA priority patent/CN108779527A/en
Priority to EP17759471.0A priority patent/EP3421631A4/en
Priority to CA3015966A priority patent/CA3015966A1/en
Priority to MX2018010347A priority patent/MX2018010347A/en
Priority to BR112018067894A priority patent/BR112018067894A2/en
Priority to US16/080,566 priority patent/US20190017142A1/en
Publication of WO2017149999A1 publication Critical patent/WO2017149999A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a steel plate for quenching, a quenching member, and a method for producing a steel plate for quenching. More specifically, a steel sheet for quenching useful as a material for providing a quenching member having excellent bending workability in T-direction bending in which the bending ridge line is parallel to the rolling direction in a region where the hardness after quenching is 515 HV or more. And a manufacturing method thereof.
  • a hot press forming technique is adopted in which press forming is performed with a mold in a state where the strength is lowered by heating to a temperature at which the austenite single phase is formed, and the forming is facilitated.
  • the tensile strength of the hot press-formed product is increased, breakage tends to occur at the time of collision.
  • the bendability of the hot press-formed product needs to be excellent.
  • Examples of the steel material for hot press working used for hot press-molded products include steel materials described in Patent Document 1 and Patent Document 2.
  • Patent Document 1 describes a steel material for hot press working that has a specific chemical composition and has a steel structure in which the spheroidization rate of carbides in steel is 0.60 to 0.90.
  • Patent Document 2 has a specific chemical composition, a steel structure having a prior austenite average particle size of 10 ⁇ m or less, and mechanical properties having a tensile strength of 1.8 GPa or more and 2.0 GPa or less. A hot pressed steel sheet member is described.
  • the present invention provides a quenched member excellent in T-direction bendability, a quenched steel plate capable of producing the quenched member, and a method for producing the same, even in a high-strength region having a hardness after quenching of 515 HV or higher. With the goal.
  • the component composition is mass%, C: more than 0.2% and 0.4% or less, Si: 0.8% or more and 1.4% or less, Mn: 1% or more and 3% or less, P: more than 0% and 0.02% or less, S: more than 0% and 0.002% or less, sol.
  • [Mn] Mn concentration (% by mass) of the steel sheet analyzed by inductively coupled plasma emission spectroscopy
  • S1 Area% of the region where the Mn concentration analyzed by the electron microprobe analyzer is more than twice the above [Mn] in the structure of the steel plate at the thickness 1/4 position.
  • S2 Area% of a region in which the Mn concentration analyzed by an electron beam microprobe analyzer is 0.5 times or less of the above [Mn] in the structure of the steel plate with a thickness of 1/4.
  • FIG. 1 is a diagram showing the relationship between the hardness of the quenched member and the T-direction bending angle.
  • the steel sheets described in Patent Document 1 and Patent Document 2 have excellent bending workability in L-direction bending in which the bending ridge line is perpendicular to the rolling direction, but the bending ridge line It has been found that the bending workability of T-direction bending (hereinafter referred to as T-direction bending property) that is parallel to the rolling direction is insufficient.
  • the hot press forming technique has been described as an example.
  • the above problem that it is difficult to achieve both high strength and bendability is a hot press. It is not limited to molded products but can be found in all hardened members.
  • the present inventors provide a steel sheet for quenching that can be a quenching member excellent in T-direction bendability even when the tensile strength after quenching is about 1600 MPa or higher, that is, the hardness after quenching is high strength of 515 HV or higher. For this reason, we have been studying earnestly.
  • quenching means not only a mode in which a press working is performed in a softened state by heating to about 900 ° C. as in a hot press, and at the same time quenching is performed by a cooling effect accompanying contact with a mold. It is also intended to include a mode in which quenching is performed after press working such as warm press and cold press other than hot press.
  • C more than 0.2% and 0.4% or less
  • the C content is more than 0.2%, preferably 0.22% or more, more preferably 0.24% or more.
  • the C content is preferably 0.4% or less, preferably Is 0.38% or less, more preferably 0.36% or less.
  • Si 0.8% to 1.4%
  • Si is one of the important elements in the present invention. Si can improve the adhesion of the scale after quenching and prevent scale peeling. Moreover, since hardenability improves by containing Si, the hardness of a quenching member can be improved. In order to effectively exhibit such an action, the Si content is 0.8% or more, preferably 0.9% or more, more preferably 1% or more. However, when the Si content is excessive, retained austenite is likely to be generated, which promotes the diffusion of Mn into the retained austenite, and as a result, the Mn concentration in the steel sheet tends to be non-uniform. Therefore, the Si content is 1.4% or less, preferably 1.35% or less, more preferably 1.3% or less.
  • Mn is an element that contributes to increasing the hardness of the quenched member.
  • the Mn content is 1% or more, preferably 1.1% or more, more preferably 1.2% or more.
  • the Mn content is 3% or less, preferably 2.8% or less, more preferably 2.6% or less.
  • P more than 0% and 0.02% or less
  • P is an element inevitably contained, and is an element that deteriorates the weldability of the steel sheet. Therefore, the P content is 0.02% or less, preferably 0.018% or less, more preferably 0.017% or less.
  • the P content may be over 0%, but industrially it is 0.0005% or more.
  • S is an element that is inevitably contained, and is an element that degrades the weldability of the steel sheet. Further, when S is contained, MnS is generated in the steel sheet. As a result, the homogeneity of the concentration distribution of Mn is lowered, and Mn is segregated. Therefore, the S content is 0.002% or less, preferably 0.0018% or less, more preferably 0.0015% or less. Since the S content should be as low as possible, it should be over 0%, but industrially it is 0.0001% or more.
  • sol. Al is an element that acts as a deoxidizer. In order to effectively exhibit such an action, sol.
  • the Al content is 0.02% or more, more preferably 0.025% or more. However, sol. When the Al content is excessive, the hardness of the quenched member is lowered.
  • the Al content is 0.06% or less, preferably 0.055% or less, more preferably 0.05% or less.
  • N more than 0% and 0.01% or less
  • N is an element inevitably contained, and when the N content is excessive, boride is generated and the B content is reduced, so that the hardenability of the steel sheet may be lowered. Therefore, the N content is 0.01% or less, preferably 0.008% or less, more preferably 0.005% or less. In addition, since it is better that the N content is as small as possible, the N content may be over 0%, but industrially it is 0.0001% or more.
  • O is an element inevitably contained, and an element that causes a decrease in the T-direction bendability of the quenched member when included in excess. Therefore, the O content is 0.01% or less, preferably 0.005% or less, more preferably 0.003% or less. In addition, since it is better that the O content is as small as possible, it may be over 0%, but industrially it is 0.0001% or more.
  • B is an element that improves the hardenability of the steel sheet.
  • the B content is 0.0005% or more, preferably 0.001% or more, more preferably 0.0012% or more, and further preferably 0.0015% or more.
  • the B content is 0.005% or less, preferably 0.004% or less, more preferably 0.0035. % Or less.
  • Ti can suppress the decrease in the B content by generating TiN, and can improve the hardenability of the steel sheet by B. Therefore, the Ti content is 0.005% or more, preferably 0.01% or more, more preferably 0.015% or more. However, when it contains excessively, a carbide will precipitate in a grain boundary and the hardenability of a steel plate will deteriorate. Therefore, the Ti content is 0.1% or less, preferably 0.08% or less, more preferably 0.06% or less.
  • the steel sheet for quenching satisfies the above component composition, and the balance is iron and inevitable impurities.
  • an unavoidable impurity for example, not only P, S, N, and O which may be brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc., but Pb , Bi, Sb, and Sn may be included.
  • the inevitable impurities here are impurities other than the above P, S, N, and O, and examples thereof include Trump elements such as Pb, Bi, Sb, and Sn.
  • One type, (B) Nb: more than 0% and 0.1% or less, and V: at least one selected from the group consisting of more than 0% and 0.1% or less may be contained.
  • These elements (A) and (B) can be contained alone or in combination with the element described in (A) and the element described in (B). The reason for setting this range is as follows.
  • Cr and Mo are both effective elements for improving the hardenability and improving the strength of the quenched member, and can be used alone or in combination.
  • the Cr and Mo contents are each more than 0%, preferably 0.1% or more, more preferably 0.3% or more.
  • the contents of Cr and Mo are preferable when each is contained alone. Is 3% or less, more preferably 2.5% or less, and still more preferably 2% or less.
  • Nb and V are both effective elements for forming carbides in the steel sheet and improving the strength of the quenched member, and can be used alone or in combination.
  • the contents of Nb and V are each over 0%, preferably 0.005% or more, more preferably 0.008% or more.
  • the contents of Nb and V are each preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.06% or less.
  • the present inventors appropriately control the Mn concentration distribution to be within the range of the following formula (1), that is, quenching by suppressing segregation of Mn. It was derived that a quenched member excellent in T-direction bendability can be obtained even in a high strength region where the later hardness is 515 HV or higher. That is, quenching is performed by setting the steel sheet thickness 1/4 position (the position of 1/4 t portion of the steel sheet for quenching with thickness t, the same applies hereinafter) to a steel sheet for quenching that satisfies the following formula (1). It has been clarified that despite the high hardness of the member, it exhibits good T-direction bendability. In addition, the evaluation method of T direction bendability is mentioned later.
  • [Mn] Mn concentration (% by mass) of the steel sheet analyzed by inductively coupled plasma emission spectroscopy
  • S1 Area% of the region where the Mn concentration analyzed by the electron microprobe analyzer is more than twice the above [Mn] in the structure of the steel plate at the thickness 1/4 position.
  • S2 Area% of a region in which the Mn concentration analyzed by an electron beam microprobe analyzer is 0.5 times or less of the above [Mn] in the structure of the steel plate with a thickness of 1/4.
  • Mn segregation means the area% (S1) of the region that is twice or more the Mn concentration of the base material (quenched steel plate) and 0.5 times or less the Mn concentration of the base material. It means that the sum (S1 + S2 (area%)) with the area% (S2) of the region is large. A method for obtaining S1 + S2 (area%) will be described later.
  • the Mn concentration [Mn] of the base material is calculated by chemically analyzing the quenching steel plate by inductively coupled plasma emission spectroscopy. That is, [Mn] is an average value of Mn concentration in the whole steel plate.
  • the present inventors must further suppress the segregation of Mn when the Mn concentration of the base material is higher than when the Mn concentration of the base material is low. Also derived. For example, when [Mn] is 1.3 mass%, S1 + S2 may be less than 31 area%, but when [Mn] is 2.3 mass%, S1 + S2 must be less than 21 area%. .
  • the value of S1 + S2 only needs to be smaller than the value of ⁇ 10 ⁇ [Mn] +44, but since the lower limit of the Mn content is 1%, it is preferably less than 34 area%, and is 31 area% or less. Is more preferably 25% by area or less, and particularly preferably 21% by area or less.
  • the lower limit is not particularly limited and may be 0 area%, but is industrially 5 area% or more, and practically 10 area% or more.
  • S1 + S2 only needs to be smaller than the value of ⁇ 10 ⁇ [Mn] +44. That is, ⁇ 10 ⁇ [Mn] + 44 ⁇ (S1 + S2) only needs to be larger than zero. Further, ⁇ 10 ⁇ [Mn] + 44 ⁇ (S1 + S2) is preferably 1.0 or more, and more preferably 2.0 or more. Further, ⁇ 10 ⁇ [Mn] + 44 ⁇ (S1 + S2) is preferably 10 or less, and more preferably 5.0 or less.
  • the area ratio of ferrite with respect to the entire structure is preferably 50% or less.
  • the area ratio of ferrite with respect to the entire structure is more preferably less than 50%, further preferably 45% or less, and still more preferably 30% or less.
  • the amount of ferrite is preferably small, and may be 0%.
  • the area ratio of the ferrite is measured by observing the position of the steel sheet with a thickness of 1/4 with an optical microscope or a scanning electron microscope (SEM). In some cases, precipitation of carbides may be observed in the ferrite grains. In that case, the ferrite area ratio may be measured including the carbides, assuming that there are no carbides. That is, the ferrite area ratio does not change due to precipitation of carbide.
  • the main structure is preferably a structure other than ferrite.
  • the main structure is pearlite, bainite, and martensite (including autotemper martensite).
  • a tempered martensite is 0%.
  • hot rolling is performed using steel having the above-described component composition.
  • cooling is performed at an average cooling rate [R] (° C./s) from the finish rolling temperature to the winding temperature, and winding is performed at the winding temperature [T] (° C.). take.
  • winding hold at a temperature from the winding temperature to “winding temperature ⁇ 50 ° C.” for [t] time.
  • the above [R], [t], and [T] need to satisfy the following formula (2).
  • the average cooling rate [R] is preferably 10 ° C./s or more, more preferably 15 ° C./s or more.
  • the upper limit of the average cooling rate [R] is not particularly limited, but is industrially preferably 200 ° C./s or less, more preferably 100 ° C./s or less, and 50 ° C./s or less. Is more preferable.
  • the finish rolling temperature is not particularly limited as long as it is an austenite region, but it is preferably at least the Ar 3 transformation point from the viewpoint of suppressing an increase in hot deformation resistance. Moreover, it is preferable that it is 950 degrees C or less from a viewpoint of suppressing scale generation according to a conventional method.
  • Winding temperature [T] (° C)>
  • the coiling temperature is high, untransformed austenite is likely to be generated, which promotes the diffusion of Mn into the untransformed austenite, and as a result, the Mn concentration in the steel sheet may become uneven.
  • winding temperature [T] becomes like this.
  • it is 320 degreeC or more and 650 degrees C or less, More preferably, it is 350 degreeC or more and 600 degrees C or less.
  • the holding time [t] in the above temperature range is preferably 15 hours or less, more preferably 10 hours or less. If the holding time at the temperature from the coiling temperature to the coiling temperature ⁇ 50 ° C. is too long, Mn tends to segregate. Moreover, the lower limit of the holding time [t] is not particularly limited, but is preferably 0.25 hours or more industrially.
  • the “holding” does not necessarily have to be held at the same temperature, and may be varied as long as it is within the above temperature range.
  • the temperature may be kept constant within the above temperature range, or changes within this range, that is, temperature increase due to temperature decrease or heating, temperature increase due to recuperation due to transformation, and the like may be included.
  • the temperature is kept at the above temperature range for a predetermined time, and then cooled to room temperature, but the cooling rate at that time is not particularly limited, and may be air cooling, for example.
  • plating After the hot rolling, plating may be performed if the temperature of the steel sheet in the production process is 300 ° C. or less.
  • a hardened member having a high strength of 515 HV or more and excellent in T-direction bendability can be obtained.
  • the quenching member has high strength after quenching of 515 HV or more and excellent in T-direction bendability.
  • the hardness of the quenched member is preferably 525 HV or more, and more preferably 535 HV or more.
  • the upper limit of the hardness of the quenched member is not particularly limited, but is, for example, 680 HV or less, preferably 650 HV or less, more preferably 600 HV or less, and even more preferably 570 HV or less.
  • the quenched member has a relationship between a bending angle obtained by converting a displacement at the maximum load obtained by a bending test in a T-direction bending according to a VDA standard (VDA238-100) defined by the German Automobile Manufacturers Association and the hardness.
  • VDA238-100 VDA standard
  • the value of the following formula (5) showing is preferably larger than 0, more preferably 5 or more.
  • the value of the following formula (5) being greater than 0 indicates that both the hardness and the bending angle are large.
  • the manufacturing method of the quenching member in the case where the steel plate for quenching according to the present embodiment is applied to hot press forming is not particularly limited, and a known method such as a die quench method can be used. Specifically, there is a method in which the steel sheet for quenching is heated to a temperature at which it becomes an austenite single phase to reduce the strength and press forming with a mold in a state where forming is facilitated. More specifically, the steel sheet for quenching according to the present embodiment is heated to a temperature equal to or higher than the Ac 3 point defined by the following formula (3), and then press forming of the steel sheet is started by a mold. After the start of the above, there is a method of cooling up to the range of the Ms point defined by the following formula (4) while securing an average cooling rate of 20 to 300 ° C./s in the mold.
  • the manufacturing method of the quenching member in the case of applying to hot press molding is not particularly limited as long as it satisfies the hardness of 515 HV or higher. After performing, cooling such as air cooling may be performed.
  • the steel sheet for quenching according to the present embodiment can be applied to press forming other than hot pressing, and then quenched to form a quenched member.
  • a quenched member can be manufactured.
  • the steel plate for hardening which concerns on this embodiment to cold press molding after performing cold press, only the part which requires hardness can be hardened with a high frequency etc., and a hardened member can be manufactured.
  • the component composition is mass%, C: more than 0.2% and 0.4% or less, Si: 0.8% or more and 1.4% or less, Mn: 1% or more and 3% or less, P: more than 0% and 0.02% or less, S: more than 0% and 0.002% or less, sol.
  • [Mn] Mn concentration (% by mass) of the steel sheet analyzed by inductively coupled plasma emission spectroscopy
  • S1 Area% of the region where the Mn concentration analyzed by the electron microprobe analyzer is more than twice the above [Mn] in the structure of the steel plate at the thickness 1/4 position.
  • S2 Area% of a region in which the Mn concentration analyzed by an electron beam microprobe analyzer is 0.5 times or less of the above [Mn] in the structure of the steel plate with a thickness of 1/4.
  • the quenching steel sheet has a ferrite area ratio of 0% or more and 50% or less at a 1 ⁇ 4 thickness position of the steel sheet.
  • the quenching steel plate preferably has a composition of mass% and satisfies B: 0.001% or more and 0.005% or less.
  • the quenching steel plate further contains, as other elements, mass%, Cr: more than 0% and 3% or less, Mo: more than 0% and 3% or less, Nb: more than 0% and 0.1% or less, and V: 0%. It is preferable to contain at least one selected from the group consisting of more than 0.1%.
  • Another aspect of the present invention is a quenched member manufactured using the steel sheet for quenching, which has a hardness of 515 HV or more and has excellent T-direction bendability. .
  • Another aspect of the present invention is a method for producing the steel sheet for quenching, which includes a step of satisfying the following formula (2) after performing finish rolling in the austenite region. It is a manufacturing method of a steel plate.
  • the average cooling rate R is preferably 10 ° C./s or more and 200 ° C./s or less.
  • the held time t is 0.25 hours or more and 15 hours or less.
  • the winding temperature T is preferably 320 ° C. or higher and 650 ° C. or lower.
  • the quenching steel plate by using the quenching steel plate, it is possible to provide a quenching member having excellent T-direction bendability even in a high strength region where the hardness after quenching is 515 HV or higher.
  • [Mn concentration distribution] Using the following formula (1), the concentration distribution of Mn was evaluated according to the following criteria, and A evaluation was passed and B evaluation was rejected.
  • the measurement method of [Mn] and the calculation method of S1 + S2 are as follows.
  • [Mn] Mn concentration (% by mass) of the steel sheet analyzed by inductively coupled plasma emission spectroscopy
  • S1 Area% of the region where the Mn concentration analyzed by the electron microprobe analyzer is more than twice the above [Mn] in the structure of the steel plate at the thickness 1/4 position.
  • S2 Area% of a region in which the Mn concentration analyzed by an electron beam microprobe analyzer is 0.5 times or less of the above [Mn] in the structure of the steel plate with a thickness of 1/4.
  • Measurement area X 300 points Y: 240 points Feed: 0.4 ⁇ m Beam diameter setting: Zero Acquisition time: 20 msec / point Electron beam acceleration voltage: 15 kV Irradiation current: 1 ⁇ 10 ⁇ 6 A (1 ⁇ A) Next, the Mn concentration at each point measured under the above conditions is divided by [Mn], the number of points at which the Mn concentration is 2 times or more of [Mn], and the Mn concentration is 0.5 times or less of [Mn]. A certain number of points was obtained.
  • the total value of the number of points where the Mn concentration is 2 times or more of [Mn] and the number of points where the Mn concentration is 0.5 times or less of [Mn] is the total number of measurement points (300 ⁇ 240 points). Then, S1 + S2 (area%) was calculated.
  • the quenching test was performed under the following conditions using a die quench method simulating a mold.
  • Plate temperature of steel plate for quenching 900 ° C Heating time: 100 seconds Cooling time: about 15 seconds Die quench start temperature: 700 ° C Die quench load: 2000kgf Molded bottom dead center retention time: 30 seconds
  • the T-direction bendability of the quenched member was evaluated under the following measurement conditions based on the VDA standard (VDA238-100) defined by the German Automobile Manufacturers Association.
  • VDA238-100 the displacement at the maximum load obtained in the bending test was converted into an angle based on the VDA, and the bending angle was obtained.
  • the correlation is generally such that the higher the hardness of the quenched member, the lower the bending angle, the T-direction bendability was evaluated based on the magnitude of the bending angle with respect to the hardness of the quenched member.
  • the T-direction bendability was evaluated according to the following criteria based on the value of the following formula (5), and A evaluation was determined to be acceptable ( ⁇ ), and B evaluation was determined to be unacceptable (x). Moreover, the relationship between the hardness [hardness after quenching (HV)] and the bending angle [bending angle after quenching (°)] of each quenched member is shown in FIG.
  • the steel sheets other than the above did not satisfy the component composition or manufacturing conditions defined in the present invention, and the desired characteristics could not be obtained.
  • a quenching member having excellent T-direction bendability is provided even in a high strength region where the hardness after quenching is 515 HV or higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

An aspect of the present invention is a steel sheet for hardening characterized in satisfying a prescribed component composition and in the Mn concentration satisfying expression (1). S1+S2 < −10 × [Mn] + 44 (1) [Mn]: Mn concentration (mass%) of the steel sheet analyzed by inductively coupled plasma emission spectroscopy S1: In the structure of the steel sheet at the ¼ sheet thickness position, the area% of regions in which the Mn concentration, as analyzed by an electron microprobe analyzer, is at least 2 times [Mn] S2: In the structure of the steel sheet at the ¼ sheet thickness position, the area% of regions in which the Mn concentration, as analyzed by an electron microprobe analyzer, is not more than 0.5 times [Mn]

Description

焼入れ用鋼板、焼入れ部材、及び焼入れ用鋼板の製造方法Quenching steel plate, quenching member, and quenching steel plate manufacturing method
 本発明は、焼入れ用鋼板、焼入れ部材、及び焼入れ用鋼板の製造方法に関する。より詳しくは、焼入れ後の硬度が515HV以上の領域で、曲げ稜線を圧延方向に対して平行とするT方向曲げの曲げ加工性に優れた焼入れ部材を提供するための素材として有用な焼入れ用鋼板及びその製造方法に関する。 The present invention relates to a steel plate for quenching, a quenching member, and a method for producing a steel plate for quenching. More specifically, a steel sheet for quenching useful as a material for providing a quenching member having excellent bending workability in T-direction bending in which the bending ridge line is parallel to the rolling direction in a region where the hardness after quenching is 515 HV or more. And a manufacturing method thereof.
 自動車や輸送機等の低燃費化を実現するために、自動車や輸送機の自重を軽量化することが望まれている。軽量化のためには、例えば、高強度鋼板を使用して、板厚を薄くすることが有効である。しかしながら、引張強度が980MPaを超える高強度鋼板に対して、冷間加工を施す場合、プレス成形荷重が増大したり、寸法精度が著しく悪化したりする等の問題がある。 In order to reduce fuel consumption of automobiles and transport aircraft, it is desired to reduce the weight of automobiles and transport aircraft. In order to reduce the weight, for example, it is effective to use a high-strength steel plate to reduce the plate thickness. However, when cold working is performed on a high-strength steel sheet having a tensile strength exceeding 980 MPa, there are problems such as an increase in press forming load and a significant deterioration in dimensional accuracy.
 上記問題を解決する方法として、オーステナイト単相となる温度に加熱して強度を低下させて、成形を容易にした状態で、金型にてプレス成形する熱間プレス成形技術が採用されている。しかしながら、熱間プレス成形品の引張強度が上昇すると、衝突時に破断が発生しやすくなる。破断の発生を抑制するためには、熱間プレス成形品の曲げ性が優れている必要がある。 As a method for solving the above problem, a hot press forming technique is adopted in which press forming is performed with a mold in a state where the strength is lowered by heating to a temperature at which the austenite single phase is formed, and the forming is facilitated. However, when the tensile strength of the hot press-formed product is increased, breakage tends to occur at the time of collision. In order to suppress the occurrence of breakage, the bendability of the hot press-formed product needs to be excellent.
 熱間プレス成型品に供される熱間プレス加工用の鋼材としては、例えば、特許文献1及び特許文献2に記載の鋼材が挙げられる。 Examples of the steel material for hot press working used for hot press-molded products include steel materials described in Patent Document 1 and Patent Document 2.
 特許文献1には、特定の化学組成を有し、かつ鋼中の炭化物の球状化率が0.60~0.90である鋼組織を有する熱間プレス加工用鋼材が記載されている。 Patent Document 1 describes a steel material for hot press working that has a specific chemical composition and has a steel structure in which the spheroidization rate of carbides in steel is 0.60 to 0.90.
 また、特許文献2には、特定の化学組成を有し、旧オーステナイト平均粒径が10μm以下である鋼組織を有し、引張強さが1.8GPa以上2.0GPa以下である機械特性を有する熱間プレス鋼板部材が記載されている。 Further, Patent Document 2 has a specific chemical composition, a steel structure having a prior austenite average particle size of 10 μm or less, and mechanical properties having a tensile strength of 1.8 GPa or more and 2.0 GPa or less. A hot pressed steel sheet member is described.
特開2011-195958号公報JP 2011-195958 A 特開2014-15638号公報JP 2014-15638 A
 本発明は、焼入れ後の硬度が515HV以上の高強度領域であっても、T方向曲げ性に優れた焼入れ部材、及び前記焼入れ部材を製造可能な焼入れ用鋼板、及びその製造方法を提供することを目的とする。 The present invention provides a quenched member excellent in T-direction bendability, a quenched steel plate capable of producing the quenched member, and a method for producing the same, even in a high-strength region having a hardness after quenching of 515 HV or higher. With the goal.
 本発明の一局面は、成分組成が、質量%で、C:0.2%超0.4%以下、Si:0.8%以上1.4%以下、Mn:1%以上3%以下、P:0%超0.02%以下、S:0%超0.002%以下、sol.Al:0.02%以上0.06%以下、N:0%超0.01%以下、O:0%超0.01%以下、B:0.0005%以上0.005%以下、及びTi:0.005%以上0.1%以下を満たし、残部が鉄及び不可避的不純物からなり、かつ、Mn濃度が下記式(1)を満たすことを特徴とする焼入れ用鋼板である。 In one aspect of the present invention, the component composition is mass%, C: more than 0.2% and 0.4% or less, Si: 0.8% or more and 1.4% or less, Mn: 1% or more and 3% or less, P: more than 0% and 0.02% or less, S: more than 0% and 0.002% or less, sol. Al: 0.02% to 0.06%, N: more than 0% to 0.01%, O: more than 0% to 0.01%, B: 0.0005% to 0.005%, and Ti : A steel sheet for quenching characterized by satisfying 0.005% or more and 0.1% or less, the balance being iron and inevitable impurities, and Mn concentration satisfying the following formula (1).
  S1+S2 < -10×[Mn]+44  (1)
 [Mn]:誘導結合プラズマ発光分光法で分析した鋼板のMn濃度(質量%)
 S1:鋼板の板厚1/4位置の組織において、電子線マイクロプローブ分析計で分析したMn濃度が前記[Mn]の2倍以上である領域の面積%
 S2:鋼板の板厚1/4位置の組織において、電子線マイクロプローブ分析計で分析したMn濃度が前記[Mn]の0.5倍以下である領域の面積%
 前記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。
S1 + S2 <−10 × [Mn] +44 (1)
[Mn]: Mn concentration (% by mass) of the steel sheet analyzed by inductively coupled plasma emission spectroscopy
S1: Area% of the region where the Mn concentration analyzed by the electron microprobe analyzer is more than twice the above [Mn] in the structure of the steel plate at the thickness 1/4 position.
S2: Area% of a region in which the Mn concentration analyzed by an electron beam microprobe analyzer is 0.5 times or less of the above [Mn] in the structure of the steel plate with a thickness of 1/4.
The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
図1は、焼入れ部材の硬度とT方向曲げ角度との関係を示した図である。FIG. 1 is a diagram showing the relationship between the hardness of the quenched member and the T-direction bending angle.
 一般に、強度と曲げ性は相反する傾向にある。すなわち、高強度になればなるほど曲げ性は低下する傾向がある。特に、高強度になればなるほど、曲げ稜線を圧延方向に対して平行とするT方向曲げの曲げ加工性は低下する傾向がある。 Generally, strength and bendability tend to conflict. That is, the bendability tends to decrease as the strength increases. In particular, the higher the strength, the lower the bending workability of T-direction bending with the bending ridge line parallel to the rolling direction.
 本発明者らの検討によれば、上記特許文献1及び特許文献2に記載の鋼板は、曲げ稜線を圧延方向に対して垂直とするL方向曲げの曲げ加工性は優れているものの、曲げ稜線を圧延方向に対して平行とするT方向曲げの曲げ加工性(以下、T方向曲げ性という)は不充分であることを見出した。 According to the study by the present inventors, the steel sheets described in Patent Document 1 and Patent Document 2 have excellent bending workability in L-direction bending in which the bending ridge line is perpendicular to the rolling direction, but the bending ridge line It has been found that the bending workability of T-direction bending (hereinafter referred to as T-direction bending property) that is parallel to the rolling direction is insufficient.
 なお、上記では熱間プレス成形技術を例に挙げて説明したが、高強度と曲げ性と(特に高強度とT方向曲げ性と)の両立が困難であるという上記問題点は、熱間プレス成形品に限らず、焼入れ部材全般に見られるものである。 In the above description, the hot press forming technique has been described as an example. However, the above problem that it is difficult to achieve both high strength and bendability (particularly high strength and bendability in the T direction) is a hot press. It is not limited to molded products but can be found in all hardened members.
 本発明者らは、焼入れ後の引張強度が約1600MPa以上、すなわち、焼入れ後の硬度が515HV以上の高強度であっても、T方向曲げ性に優れた焼入れ部材となり得る焼入れ用鋼板を提供するために、鋭意検討を重ねてきた。 The present inventors provide a steel sheet for quenching that can be a quenching member excellent in T-direction bendability even when the tensile strength after quenching is about 1600 MPa or higher, that is, the hardness after quenching is high strength of 515 HV or higher. For this reason, we have been studying earnestly.
 その結果、成分組成を適切に制御することを前提とした上で、Mnの濃度分布を適切に制御した焼入れ用鋼板を用いれば、焼入れ後の硬度が515HV以上の高強度領域であっても、T方向曲げ性が改善された焼入れ部材が得られることを見出し、本発明に至った。 As a result, on the premise that the component composition is appropriately controlled, if a steel sheet for quenching in which the Mn concentration distribution is appropriately controlled is used, even if the hardness after quenching is a high strength region of 515 HV or more, The inventors found that a quenched member having improved T-direction bendability was obtained, and reached the present invention.
 本明細書において「焼入れ」とは、熱間プレスのように900℃程度に加熱して軟質化した状態でプレス加工を行い、同時に金型との接触に伴う冷却効果により焼入れする態様のみならず、熱間プレス以外の温間プレス及び冷間プレス等のプレス加工の後に焼入れを行う態様も含む趣旨である。 In this specification, “quenching” means not only a mode in which a press working is performed in a softened state by heating to about 900 ° C. as in a hot press, and at the same time quenching is performed by a cooling effect accompanying contact with a mold. It is also intended to include a mode in which quenching is performed after press working such as warm press and cold press other than hot press.
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto.
 まず、本発明の一実施形態に係る焼入れ用鋼板の成分組成について説明する。 First, the component composition of the steel sheet for quenching according to one embodiment of the present invention will be described.
 [C:0.2%超0.4%以下]
 焼入れ部材の硬度は、C含有量でおおよそ決定するため、Cは必要な元素である。焼入れ部材の硬度を高めるためには、C含有量は、0.2%超、好ましくは0.22%以上、より好ましくは0.24%以上とする。しかし、C含有量が過剰になると、熱間圧延後の強度が上昇し、冷間圧延時に割れが生じたり、鋼板の溶接性が低下するため、C含有量は、0.4%以下、好ましくは0.38%以下、より好ましくは0.36%以下とする。
[C: more than 0.2% and 0.4% or less]
Since the hardness of the quenched member is roughly determined by the C content, C is a necessary element. In order to increase the hardness of the quenched member, the C content is more than 0.2%, preferably 0.22% or more, more preferably 0.24% or more. However, if the C content is excessive, the strength after hot rolling increases, cracks occur during cold rolling, and the weldability of the steel sheet decreases, so the C content is preferably 0.4% or less, preferably Is 0.38% or less, more preferably 0.36% or less.
 [Si:0.8%以上1.4%以下]
 Siは、本発明において重要な元素の一つである。Siは、焼入れ後におけるスケールの密着性を向上させ、スケール剥がれを防止することができる。また、Siを含むことによって焼入れ性が高まるため、焼入れ部材の硬度を向上させることができる。こうした作用を有効に発揮させるには、Si含有量は、0.8%以上、好ましくは0.9%以上、より好ましくは1%以上とする。しかし、Si含有量が過剰になると、残留オーステナイトが生成されやすいため、残留オーステナイトへのMnの拡散を助長し、その結果、鋼板中のMn濃度が不均一となりやすくなる。よって、Si含有量は、1.4%以下、好ましくは1.35%以下、より好ましくは1.3%以下とする。
[Si: 0.8% to 1.4%]
Si is one of the important elements in the present invention. Si can improve the adhesion of the scale after quenching and prevent scale peeling. Moreover, since hardenability improves by containing Si, the hardness of a quenching member can be improved. In order to effectively exhibit such an action, the Si content is 0.8% or more, preferably 0.9% or more, more preferably 1% or more. However, when the Si content is excessive, retained austenite is likely to be generated, which promotes the diffusion of Mn into the retained austenite, and as a result, the Mn concentration in the steel sheet tends to be non-uniform. Therefore, the Si content is 1.4% or less, preferably 1.35% or less, more preferably 1.3% or less.
 [Mn:1%以上3%以下]
 Mnは、焼入れ部材の高硬度化に寄与する元素である。このような作用を有効に発揮させるには、Mn含有量は1%以上、好ましくは1.1%以上、より好ましくは1.2%以上とする。しかし、Mn含有量が過剰になると、熱間圧延後の強度が上昇し、冷間圧延時に割れが生じたり、鋼板の溶接性が劣化する原因となる。また、過剰なMnの添加は、Mnが偏析して加工性が劣化する原因となる。よって、Mn含有量は、3%以下、好ましくは2.8%以下、より好ましくは2.6%以下とする。
[Mn: 1% to 3%]
Mn is an element that contributes to increasing the hardness of the quenched member. In order to effectively exhibit such an action, the Mn content is 1% or more, preferably 1.1% or more, more preferably 1.2% or more. However, when the Mn content is excessive, the strength after hot rolling is increased, causing cracks during cold rolling or degrading the weldability of the steel sheet. In addition, excessive addition of Mn causes segregation of Mn and deterioration of workability. Therefore, the Mn content is 3% or less, preferably 2.8% or less, more preferably 2.6% or less.
 [P:0%超0.02%以下]
 Pは、不可避的に含有する元素であり、鋼板の溶接性を劣化させる元素である。したがって、P含有量は、0.02%以下、好ましくは0.018%以下、より好ましくは0.017%以下とする。なお、P含有量はできるだけ少ないほうがよいため、0%超であればよいが、工業的には0.0005%以上である。
[P: more than 0% and 0.02% or less]
P is an element inevitably contained, and is an element that deteriorates the weldability of the steel sheet. Therefore, the P content is 0.02% or less, preferably 0.018% or less, more preferably 0.017% or less. In addition, since it is better that the P content is as small as possible, the P content may be over 0%, but industrially it is 0.0005% or more.
 [S:0%超0.002%以下]
 Sは、Pと同様、不可避的に含有する元素であり、鋼板の溶接性を劣化させる元素である。また、Sが含まれることによって、鋼板中にMnSが生成され、その結果、Mnの濃度分布の均質性が低下し、Mnが偏析する原因となる。したがって、S含有量は、0.002%以下、好ましくは0.0018%以下、より好ましくは0.0015%以下とする。S含有量はできるだけ少ないほうがよいため、0%超であればよいが、工業的には0.0001%以上である。
[S: more than 0% and 0.002% or less]
S, like P, is an element that is inevitably contained, and is an element that degrades the weldability of the steel sheet. Further, when S is contained, MnS is generated in the steel sheet. As a result, the homogeneity of the concentration distribution of Mn is lowered, and Mn is segregated. Therefore, the S content is 0.002% or less, preferably 0.0018% or less, more preferably 0.0015% or less. Since the S content should be as low as possible, it should be over 0%, but industrially it is 0.0001% or more.
 [sol.Al:0.02%以上0.06%以下]
 sol.Alは、脱酸剤として作用する元素である。このような作用を有効に発揮させるには、sol.Al含有量は、0.02%以上、より好ましくは0.025%以上とする。しかし、sol.Al含有量が過剰になると、焼入れ部材の硬度が低下するため、sol.Al含有量は、0.06%以下、好ましくは0.055%以下、より好ましくは0.05%以下とする。
[Sol. Al: 0.02% to 0.06%]
sol. Al is an element that acts as a deoxidizer. In order to effectively exhibit such an action, sol. The Al content is 0.02% or more, more preferably 0.025% or more. However, sol. When the Al content is excessive, the hardness of the quenched member is lowered. The Al content is 0.06% or less, preferably 0.055% or less, more preferably 0.05% or less.
 [N:0%超0.01%以下]
 Nは、不可避的に含有する元素であり、N含有量が過剰になると、ホウ化物が生成され、B含有量が減少するため、鋼板の焼入れ性が低下するおそれがある。したがって、N含有量は、0.01%以下、好ましくは0.008%以下、より好ましくは0.005%以下とする。なお、N含有量はできるだけ少ないほうがよいため、0%超であればよいが、工業的には0.0001%以上である。
[N: more than 0% and 0.01% or less]
N is an element inevitably contained, and when the N content is excessive, boride is generated and the B content is reduced, so that the hardenability of the steel sheet may be lowered. Therefore, the N content is 0.01% or less, preferably 0.008% or less, more preferably 0.005% or less. In addition, since it is better that the N content is as small as possible, the N content may be over 0%, but industrially it is 0.0001% or more.
 [O:0%超0.01%以下]
 Oは、不可避的に含有する元素であり、過剰に含まれると焼入れ部材のT方向曲げ性の低下を招く元素である。したがって、O含有量は、0.01%以下、好ましくは0.005%以下、より好ましくは0.003%以下とする。なお、O含有量はできるだけ少ないほうがよいため、0%超であればよいが、工業的には0.0001%以上である。
[O: more than 0% and 0.01% or less]
O is an element inevitably contained, and an element that causes a decrease in the T-direction bendability of the quenched member when included in excess. Therefore, the O content is 0.01% or less, preferably 0.005% or less, more preferably 0.003% or less. In addition, since it is better that the O content is as small as possible, it may be over 0%, but industrially it is 0.0001% or more.
 [B:0.0005%以上0.005%以下]
 Bは、鋼板の焼入れ性を向上させる元素である。こうした作用を有効に発揮させるには、B含有量は、0.0005%以上、好ましくは0.001%以上、より好ましくは0.0012%以上、さらに好ましくは0.0015%以上とする。しかし、Bが過剰に含有すると、粗大な鉄窒化物が生成して、靭性が劣化するため、B含有量は、0.005%以下、好ましくは0.004%以下、より好ましくは0.0035%以下とする。
[B: 0.0005% to 0.005%]
B is an element that improves the hardenability of the steel sheet. In order to effectively exert such effects, the B content is 0.0005% or more, preferably 0.001% or more, more preferably 0.0012% or more, and further preferably 0.0015% or more. However, if B is contained excessively, coarse iron nitride is generated and toughness is deteriorated, so that the B content is 0.005% or less, preferably 0.004% or less, more preferably 0.0035. % Or less.
 [Ti:0.005%以上0.1%以下]
 Tiは、TiNを生成させることでB含有量の減少を抑制し、Bによる鋼板の焼入れ性を向上させることができる。そのため、Ti含有量は、0.005%以上、好ましくは0.01%以上、より好ましくは0.015%以上とする。しかし、過剰に含有すると粒界に炭化物が析出し、鋼板の焼入れ性が劣化する。したがって、Ti含有量は、0.1%以下、好ましくは0.08%以下、より好ましくは0.06%以下とする。
[Ti: 0.005% to 0.1%]
Ti can suppress the decrease in the B content by generating TiN, and can improve the hardenability of the steel sheet by B. Therefore, the Ti content is 0.005% or more, preferably 0.01% or more, more preferably 0.015% or more. However, when it contains excessively, a carbide will precipitate in a grain boundary and the hardenability of a steel plate will deteriorate. Therefore, the Ti content is 0.1% or less, preferably 0.08% or less, more preferably 0.06% or less.
 [その他の成分]
 前記焼入れ用鋼板は、上記成分組成を満足し、残部は鉄及び不可避的不純物である。前記焼入れ用鋼板には、不可避的に含有される不純物として、例えば、鋼中に原料、資材、製造設備等の状況によって持ち込まれることがある上記P、S、N、及びOだけではなく、Pb、Bi、Sb、及びSn等のトランプ元素が含まれることがある。なお、ここでの不可避的不純物とは、上記P、S、N、及びO以外の不純物であり、例えば、Pb、Bi、Sb、Sn等のトランプ元素が挙げられる。
[Other ingredients]
The steel sheet for quenching satisfies the above component composition, and the balance is iron and inevitable impurities. In the steel sheet for quenching, as an unavoidable impurity, for example, not only P, S, N, and O which may be brought into the steel depending on the situation of raw materials, materials, manufacturing equipment, etc., but Pb , Bi, Sb, and Sn may be included. The inevitable impurities here are impurities other than the above P, S, N, and O, and examples thereof include Trump elements such as Pb, Bi, Sb, and Sn.
 また、上記本発明の作用に悪影響を与えない範囲で、更に他の元素として、(A)Cr:0%超3%以下、及びMo:0%超3%以下よりなる群から選択される少なくとも一種、(B)Nb:0%超0.1%以下、及びV:0%超0.1%以下よりなる群から選択される少なくとも一種を含有してもよい。これら(A)、(B)の元素は、単独で、或いは(A)に記載の元素と(B)に記載の元素とを組み合わせて含有させることができる。こうした範囲を定めた理由は次の通りである。 Moreover, as long as the effect of the present invention is not adversely affected, as another element, at least selected from the group consisting of (A) Cr: more than 0% and 3% or less and Mo: more than 0% and 3% or less One type, (B) Nb: more than 0% and 0.1% or less, and V: at least one selected from the group consisting of more than 0% and 0.1% or less may be contained. These elements (A) and (B) can be contained alone or in combination with the element described in (A) and the element described in (B). The reason for setting this range is as follows.
 [(A)Cr:0%超3%以下、及びMo:0%超3%以下よりなる群から選択される少なくとも一種]
 Cr及びMoは、いずれも焼入れ性を高めて焼入れ部材の強度を向上させるのに有効な元素であり、単独で、或いは併用して使用できる。こうした作用を有効に発揮させるには、Cr及びMoの含有量は、夫々、0%超であり、好ましくは0.1%以上、より好ましくは0.3%以上とする。しかし、過剰に含有すると熱間圧延後の強度が増加するため、冷間圧延性が悪化し、高コストとなることから、Cr及びMoの含有量は、夫々単独で含有させる場合には、好ましくは3%以下、より好ましくは2.5%以下、更に好ましくは2%以下である。
[(A) Cr: at least one selected from the group consisting of more than 0% and 3% or less and Mo: more than 0% and 3% or less]
Cr and Mo are both effective elements for improving the hardenability and improving the strength of the quenched member, and can be used alone or in combination. In order to effectively exhibit these actions, the Cr and Mo contents are each more than 0%, preferably 0.1% or more, more preferably 0.3% or more. However, since excessive strength increases the strength after hot rolling, the cold rolling property deteriorates and the cost increases. Therefore, the contents of Cr and Mo are preferable when each is contained alone. Is 3% or less, more preferably 2.5% or less, and still more preferably 2% or less.
 [(B)Nb:0%超0.1%以下、及びV:0%超0.1%以下よりなる群から選択される少なくとも一種]
 Nb及びVは、いずれも鋼板中に炭化物を形成し、焼入れ部材の強度を向上させるのに有効な元素であり、単独で、或いは併用して使用できる。こうした作用を有効に発揮させるには、Nb及びVの含有量は、夫々、0%超であり、好ましくは0.005%以上、より好ましくは0.008%以上である。しかし、過剰に含有すると粒界に炭化物が析出し、鋼板の焼入れ性が劣化する。したがって、Nb及びVの含有量は、夫々、好ましくは0.1%以下、より好ましくは0.08%以下、更に好ましくは0.06%以下である。
[(B) At least one selected from the group consisting of Nb: more than 0% and 0.1% or less and V: more than 0% and 0.1% or less]
Nb and V are both effective elements for forming carbides in the steel sheet and improving the strength of the quenched member, and can be used alone or in combination. In order to effectively exert such actions, the contents of Nb and V are each over 0%, preferably 0.005% or more, more preferably 0.008% or more. However, when it contains excessively, a carbide will precipitate in a grain boundary and the hardenability of a steel plate will deteriorate. Therefore, the contents of Nb and V are each preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.06% or less.
 [Mnの濃度分布]
 本発明者らは、上記成分組成を満たす焼入れ用鋼板において、Mnの濃度分布を以下の式(1)の範囲内となるように適切に制御する、すなわち、Mnの偏析を抑えることによって、焼入れ後の硬度が515HV以上の高強度領域であってもT方向曲げ性に優れた焼入れ部材が得られることを導き出した。つまり、鋼板の板厚1/4位置(厚さtの焼入れ用鋼板の1/4×t部の位置、以下同様)が、以下の式(1)を満たす焼入れ用鋼板とすることによって、焼入れ部材の硬度が高いにもかかわらず、良好なT方向曲げ性を示すことを明らかにした。なお、T方向曲げ性の評価方法については後述する。
[Mn concentration distribution]
In the steel sheet for quenching satisfying the above component composition, the present inventors appropriately control the Mn concentration distribution to be within the range of the following formula (1), that is, quenching by suppressing segregation of Mn. It was derived that a quenched member excellent in T-direction bendability can be obtained even in a high strength region where the later hardness is 515 HV or higher. That is, quenching is performed by setting the steel sheet thickness 1/4 position (the position of 1/4 t portion of the steel sheet for quenching with thickness t, the same applies hereinafter) to a steel sheet for quenching that satisfies the following formula (1). It has been clarified that despite the high hardness of the member, it exhibits good T-direction bendability. In addition, the evaluation method of T direction bendability is mentioned later.
  S1+S2<-10×[Mn]+44 (1)
 [Mn]:誘導結合プラズマ発光分光法で分析した鋼板のMn濃度(質量%)
 S1:鋼板の板厚1/4位置の組織において、電子線マイクロプローブ分析計で分析したMn濃度が前記[Mn]の2倍以上である領域の面積%
 S2:鋼板の板厚1/4位置の組織において、電子線マイクロプローブ分析計で分析したMn濃度が前記[Mn]の0.5倍以下である領域の面積%
S1 + S2 <−10 × [Mn] +44 (1)
[Mn]: Mn concentration (% by mass) of the steel sheet analyzed by inductively coupled plasma emission spectroscopy
S1: Area% of the region where the Mn concentration analyzed by the electron microprobe analyzer is more than twice the above [Mn] in the structure of the steel plate at the thickness 1/4 position.
S2: Area% of a region in which the Mn concentration analyzed by an electron beam microprobe analyzer is 0.5 times or less of the above [Mn] in the structure of the steel plate with a thickness of 1/4.
 本明細書において、「Mnの偏析」とは、母材(焼入れ用鋼板)のMn濃度の2倍以上である領域の面積%(S1)と母材のMn濃度の0.5倍以下である領域の面積%(S2)との合計(S1+S2(面積%))が大きいことを意味する。S1+S2(面積%)の求め方については後述する。 In this specification, “Mn segregation” means the area% (S1) of the region that is twice or more the Mn concentration of the base material (quenched steel plate) and 0.5 times or less the Mn concentration of the base material. It means that the sum (S1 + S2 (area%)) with the area% (S2) of the region is large. A method for obtaining S1 + S2 (area%) will be described later.
 母材のMn濃度[Mn]は、焼入れ用鋼板を誘導結合プラズマ発光分光法で化学分析することによって算出される。すなわち、[Mn]は、鋼板全体におけるMn濃度の平均値である。 The Mn concentration [Mn] of the base material is calculated by chemically analyzing the quenching steel plate by inductively coupled plasma emission spectroscopy. That is, [Mn] is an average value of Mn concentration in the whole steel plate.
 また、本発明者らは、上記式(1)に示すとおり、母材のMn濃度が低い場合に比べて、母材のMn濃度が高い場合は、Mnの偏析をさらに抑制しなければならないことも導き出した。例えば、[Mn]が1.3質量%のときは、S1+S2は31面積%未満であればよいが、[Mn]が2.3質量%のときは、S1+S2は21面積%未満でなければならない。 In addition, as shown in the above formula (1), the present inventors must further suppress the segregation of Mn when the Mn concentration of the base material is higher than when the Mn concentration of the base material is low. Also derived. For example, when [Mn] is 1.3 mass%, S1 + S2 may be less than 31 area%, but when [Mn] is 2.3 mass%, S1 + S2 must be less than 21 area%. .
 S1+S2の値は、-10×[Mn]+44の値より小さければよいが、Mn含有量の下限が1%であることから、34面積%未満であることが好ましく、31面積%以下であることがより好ましく、25面積%以下であることがさらに好ましく、21面積%以下であることが特に好ましい。下限についても、特に限定されず、0面積%でもよいが、工業的には5面積%以上であり、現実的には10面積%以上である。 The value of S1 + S2 only needs to be smaller than the value of −10 × [Mn] +44, but since the lower limit of the Mn content is 1%, it is preferably less than 34 area%, and is 31 area% or less. Is more preferably 25% by area or less, and particularly preferably 21% by area or less. The lower limit is not particularly limited and may be 0 area%, but is industrially 5 area% or more, and practically 10 area% or more.
 S1+S2の値は、-10×[Mn]+44の値より小さければよい。すなわち、-10×[Mn]+44-(S1+S2)が0より大きければよい。また、-10×[Mn]+44-(S1+S2)が1.0以上であることが好ましく、2.0以上であることがより好ましい。また、-10×[Mn]+44-(S1+S2)が10以下であることが好ましく、5.0以下であることがより好ましい。 The value of S1 + S2 only needs to be smaller than the value of −10 × [Mn] +44. That is, −10 × [Mn] + 44− (S1 + S2) only needs to be larger than zero. Further, −10 × [Mn] + 44− (S1 + S2) is preferably 1.0 or more, and more preferably 2.0 or more. Further, −10 × [Mn] + 44− (S1 + S2) is preferably 10 or less, and more preferably 5.0 or less.
 〔焼入れ用鋼板の組織〕
 次に、本実施形態に係る焼入れ用鋼板の組織を説明する。
[Structure of steel plate for quenching]
Next, the structure of the steel sheet for quenching according to the present embodiment will be described.
 Mnは、フェライト中に固溶しにくいため、フェライトが多く生成するとMnが偏析しやすくなる。そのため、全組織に対するフェライトの面積率は50%以下であることが好ましい。全組織に対するフェライトの面積率は50%未満であることがより好ましく、45%以下であることがさらに好ましく、30%以下であることがさらにより好ましい。また、フェライトは少ない方が好ましく、0%であってもよい。フェライトの面積率は、鋼板の板厚1/4位置を光学顕微鏡又は走査型電子顕微鏡(Scanning Electron Microscope:SEM)で観察して測定する。なお、フェライト粒内に炭化物の析出が認められる場合があるが、その場合、炭化物は無いものとして、炭化物を含めてフェライト面積率を測定すればよい。すなわち、炭化物の析出によってフェライト面積率が変化することはない。 Since Mn hardly dissolves in ferrite, Mn tends to segregate when a large amount of ferrite is formed. Therefore, the area ratio of ferrite with respect to the entire structure is preferably 50% or less. The area ratio of ferrite with respect to the entire structure is more preferably less than 50%, further preferably 45% or less, and still more preferably 30% or less. Further, the amount of ferrite is preferably small, and may be 0%. The area ratio of the ferrite is measured by observing the position of the steel sheet with a thickness of 1/4 with an optical microscope or a scanning electron microscope (SEM). In some cases, precipitation of carbides may be observed in the ferrite grains. In that case, the ferrite area ratio may be measured including the carbides, assuming that there are no carbides. That is, the ferrite area ratio does not change due to precipitation of carbide.
 前記焼入れ用鋼板において、主要組織は、フェライト以外の組織であることが好ましく、例えば、パーライト、ベイナイト、及びマルテンサイト(オートテンパーマルテンサイトを含む)を主要組織とするものであることが好ましい。なお、後述するように、前記焼入れ用鋼板は、焼戻しを行わずに製造されるため、焼戻しマルテンサイトは0%であることが好ましい。 In the steel sheet for quenching, the main structure is preferably a structure other than ferrite. For example, it is preferable that the main structure is pearlite, bainite, and martensite (including autotemper martensite). In addition, since the said steel plate for hardening is manufactured without performing tempering so that it may mention later, it is preferable that a tempered martensite is 0%.
 〔焼入れ用鋼板の製造方法〕
 次に、本実施形態に係る焼入れ用鋼板の製造方法を説明する。
[Method of manufacturing steel sheet for quenching]
Next, the manufacturing method of the steel plate for hardening which concerns on this embodiment is demonstrated.
 まず、上述した成分組成を有する鋼を用いて、熱間圧延を行う。熱間圧延では、オーステナイト域で仕上げ圧延を行った後、仕上げ圧延温度から巻取温度までの平均冷却速度[R](℃/s)で冷却し、巻取温度[T](℃)で巻取る。巻取った後、巻取温度から「巻取温度-50℃」までの温度で[t]時間保持する。ここで、上記[R]、[t]、[T]は、下記式(2)を満たすことが必要である。 First, hot rolling is performed using steel having the above-described component composition. In hot rolling, after finish rolling is performed in the austenite region, cooling is performed at an average cooling rate [R] (° C./s) from the finish rolling temperature to the winding temperature, and winding is performed at the winding temperature [T] (° C.). take. After winding, hold at a temperature from the winding temperature to “winding temperature−50 ° C.” for [t] time. Here, the above [R], [t], and [T] need to satisfy the following formula (2).
  6.0<2×10×(ln[R]+10)/((ln[t]+70)×[T]) (2) 6.0 <2 × 10 4 × (ln [R] +10) / ((ln [t] +70) × [T]) (2)
 巻取温度[T]が高くなるほど、Mnが偏析しやすくなる。また、巻取温度から巻取温度-50℃までの温度での保持時間[t]が長くなるほど、Mnが偏析しやすくなる。そして、仕上げ圧延温度から巻取温度までの平均冷却速度[R]が遅いほど、Mnが偏析しやすくなる。上述の[R]、[t]、[T]の各パラメータとMnの偏析との関係、及び「土山聡宏、焼戻しパラメータの物理的意味の解釈と連続加熱・冷却熱処理過程への応用、熱処理、42巻、3号、P163」の論文に記載の方法によって求められる連続加熱時の焼戻しパラメータを参考にして、上記式(2)を導き出した。以下、上記式(2)の各パラメータについて詳述する。 Mn becomes more segregated as the coiling temperature [T] increases. Further, as the holding time [t] at the temperature from the coiling temperature to the coiling temperature −50 ° C. becomes longer, Mn is more easily segregated. And Mn becomes easy to segregate, so that average cooling rate [R] from finish rolling temperature to coiling temperature is slow. The relationship between the parameters [R], [t] and [T] described above and segregation of Mn, and “Tatsuhiro Tsuchiyama, interpretation of physical meaning of tempering parameters and application to continuous heating / cooling heat treatment process, heat treatment , 42, No. 3, P163 ”, the above formula (2) was derived with reference to the tempering parameters during continuous heating obtained by the method described in the paper. Hereinafter, each parameter of the formula (2) will be described in detail.
 <仕上げ圧延温度から巻取温度までの平均冷却速度[R](℃/s)>
 冷却速度が遅いと冷却中にフェライトが生成し、フェライトに固溶しにくいMnは未変態オーステナイト中へ拡散するため、Mnが偏析しやすくなる。そのため、平均冷却速度[R]は、好ましくは10℃/s以上であり、より好ましくは15℃/s以上である。平均冷却速度[R]の上限は、特に限定されないが、工業的には200℃/s以下であることが好ましく、100℃/s以下であることがより好ましく、50℃/s以下であることがさらに好ましい。
<Average cooling rate from finish rolling temperature to winding temperature [R] (° C./s)>
When the cooling rate is slow, ferrite is generated during cooling, and Mn that is difficult to dissolve in ferrite diffuses into untransformed austenite, so that Mn tends to segregate. Therefore, the average cooling rate [R] is preferably 10 ° C./s or more, more preferably 15 ° C./s or more. The upper limit of the average cooling rate [R] is not particularly limited, but is industrially preferably 200 ° C./s or less, more preferably 100 ° C./s or less, and 50 ° C./s or less. Is more preferable.
 仕上げ圧延温度は、オーステナイト域であれば特に限定されないが、熱間変形抵抗の増加を抑える観点から、Ar変態点以上であることが好ましい。また、常法に従い、スケール発生を抑える観点から、950℃以下であることが好ましい。 The finish rolling temperature is not particularly limited as long as it is an austenite region, but it is preferably at least the Ar 3 transformation point from the viewpoint of suppressing an increase in hot deformation resistance. Moreover, it is preferable that it is 950 degrees C or less from a viewpoint of suppressing scale generation according to a conventional method.
 <巻取温度[T](℃)>
 巻取温度が高いと未変態オーステナイトが生成されやすいため、未変態オーステナイトへのMnの拡散を助長し、その結果、鋼板中のMn濃度が不均一となるおそれがある。一方、巻取温度が低いと鋼板の強度が高くなってしまい、冷間圧延性が損なわれてしまう。そのため、巻取温度[T]は、好ましくは320℃以上650℃以下であり、より好ましくは350℃以上600℃以下である。
<Winding temperature [T] (° C)>
When the coiling temperature is high, untransformed austenite is likely to be generated, which promotes the diffusion of Mn into the untransformed austenite, and as a result, the Mn concentration in the steel sheet may become uneven. On the other hand, when the coiling temperature is low, the strength of the steel sheet is increased and the cold rolling property is impaired. Therefore, winding temperature [T] becomes like this. Preferably it is 320 degreeC or more and 650 degrees C or less, More preferably, it is 350 degreeC or more and 600 degrees C or less.
 <巻取温度から「巻取温度-50℃」までの温度での保持時間[t](時間)>
 巻取温度にもよるが、上記温度域での保持時間[t]は、好ましくは15時間以下であり、より好ましくは10時間以下である。巻取温度から巻取温度-50℃までの温度での保持時間が長すぎるとMnが偏析しやすくなる。また、上記保持時間[t]の下限は、特に限定されないが、工業的には0.25時間以上であることが好ましい。
<Holding time [t] (hours) at a temperature from the winding temperature to "winding temperature-50 ° C">
Although depending on the coiling temperature, the holding time [t] in the above temperature range is preferably 15 hours or less, more preferably 10 hours or less. If the holding time at the temperature from the coiling temperature to the coiling temperature −50 ° C. is too long, Mn tends to segregate. Moreover, the lower limit of the holding time [t] is not particularly limited, but is preferably 0.25 hours or more industrially.
 上記「保持」とは、必ずしも同一温度で保持し続けなくてもよく、上記温度域の範囲内であれば、変動してもよい。例えば、上記温度域の範囲内で恒温保持してもよいし、この範囲内で変化、即ち、温度低下や加熱による温度上昇、変態に伴う復熱による温度上昇等を含んでもよい。 The “holding” does not necessarily have to be held at the same temperature, and may be varied as long as it is within the above temperature range. For example, the temperature may be kept constant within the above temperature range, or changes within this range, that is, temperature increase due to temperature decrease or heating, temperature increase due to recuperation due to transformation, and the like may be included.
 本実施形態に係る製造方法では、上記温度域で所定の時間保持した後、室温まで冷却するが、その際の冷却速度は特に限定されず、例えば、空冷等でよい。 In the manufacturing method according to the present embodiment, the temperature is kept at the above temperature range for a predetermined time, and then cooled to room temperature, but the cooling rate at that time is not particularly limited, and may be air cooling, for example.
 [酸洗、冷延]
 上記熱間圧延後は、必要に応じて酸洗し、冷延率30~80%程度の冷間圧延を行ってもよい。
[Pickling, cold rolling]
After the hot rolling, pickling may be performed as necessary, and cold rolling with a cold rolling rate of about 30 to 80% may be performed.
 [めっき]
 上記熱間圧延後は、製造工程における鋼板温度の上昇が300℃以下であれば、めっきを行ってもよい。
[Plating]
After the hot rolling, plating may be performed if the temperature of the steel sheet in the production process is 300 ° C. or less.
 [焼入れ部材]
 Mnの偏析が抑えられた本実施形態に係る焼入れ用鋼板を使用して製造することによって、硬度が515HV以上の高強度であり、かつ、T方向曲げ性に優れた焼入れ部材を得ることができる。具体的には、Mnの偏析が抑えられた本実施形態に係る焼入れ用鋼板を焼入れすることによって、焼入れ後の硬度が515HV以上の高強度であり、かつ、T方向曲げ性に優れた焼入れ部材を得ることができる。焼入れ部材の硬度は、525HV以上であることが好ましく、535HV以上であることがより好ましい。焼入れ部材の硬度の上限は、特に限定されないが、例えば680HV以下であり、650HV以下であることが好ましく、600HV以下であることがより好ましく、570HV以下であることが更に好ましい。
[Hardened material]
By using the steel sheet for quenching according to this embodiment in which segregation of Mn is suppressed, a hardened member having a high strength of 515 HV or more and excellent in T-direction bendability can be obtained. . Specifically, by quenching the steel sheet for quenching according to the present embodiment in which segregation of Mn is suppressed, the quenching member has high strength after quenching of 515 HV or more and excellent in T-direction bendability. Can be obtained. The hardness of the quenched member is preferably 525 HV or more, and more preferably 535 HV or more. The upper limit of the hardness of the quenched member is not particularly limited, but is, for example, 680 HV or less, preferably 650 HV or less, more preferably 600 HV or less, and even more preferably 570 HV or less.
 また、前記焼入れ部材は、T方向曲げの曲げ試験で得られる最大荷重時の変位を、ドイツ自動車工業会で規定されたVDA基準(VDA238-100)で変換した曲げ角度と、上記硬度との関係を示す下記式(5)の値が、0より大きいことが好ましく、5以上であることがより好ましい。下記式(5)の値が、0より大きいということは、硬度及び曲げ角度がともに大きいことを示す。 The quenched member has a relationship between a bending angle obtained by converting a displacement at the maximum load obtained by a bending test in a T-direction bending according to a VDA standard (VDA238-100) defined by the German Automobile Manufacturers Association and the hardness. The value of the following formula (5) showing is preferably larger than 0, more preferably 5 or more. The value of the following formula (5) being greater than 0 indicates that both the hardness and the bending angle are large.
  曲げ角度-(-0.6×硬度+376) (5)
 一般に、強度と曲げ性とは相反する傾向にあり、高強度になればなるほど曲げ性は低下するが、前記焼入れ部材は、このように強度も曲げ性も高い。
Bending angle-(-0.6 x hardness + 376) (5)
In general, strength and bendability tend to conflict with each other, and the higher the strength, the lower the bendability, but the quenched member has high strength and bendability in this way.
 次に、焼入れ部材の製造方法について説明する。 Next, a method for manufacturing a quenched member will be described.
 例えば、本実施形態に係る焼入れ用鋼板を熱間プレス成形に適用する場合における焼入れ部材の製造方法は、特に限定されず、ダイクエンチ法等の公知の方法を用いることができる。詳しくは、焼入れ用鋼板をオーステナイト単相となる温度に加熱して強度を低下させて、成形を容易にした状態で、金型にてプレス成形を行う方法等が挙げられる。より具体的には、本実施形態に係る焼入れ用鋼板を、下記式(3)で規定されるAc点以上の温度に加熱した後、金型により前記鋼板のプレス成形を開始し、プレス成形の開始後、下記式(4)で規定されるMs点の範囲までを、前記金型内で20~300℃/sの平均冷却速度を確保しつつ冷却する方法が挙げられる。 For example, the manufacturing method of the quenching member in the case where the steel plate for quenching according to the present embodiment is applied to hot press forming is not particularly limited, and a known method such as a die quench method can be used. Specifically, there is a method in which the steel sheet for quenching is heated to a temperature at which it becomes an austenite single phase to reduce the strength and press forming with a mold in a state where forming is facilitated. More specifically, the steel sheet for quenching according to the present embodiment is heated to a temperature equal to or higher than the Ac 3 point defined by the following formula (3), and then press forming of the steel sheet is started by a mold. After the start of the above, there is a method of cooling up to the range of the Ms point defined by the following formula (4) while securing an average cooling rate of 20 to 300 ° C./s in the mold.
 Ac(℃)=910-203×[C]1/2+44.7×[Si]-30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]-11×[Cr]+31.5×[Mo]-20×[Cu]-15.2×[Ni] (3)
 Ms(℃)=550-361×[C]-39×[Mn]-10×[Cu]-17×[Ni]-20×[Cr]-5×[Mo]+30×[Al] (4)
Ac 3 (° C.) = 910−203 × [C] 1/2 + 44.7 × [Si] −30 × [Mn] + 700 × [P] + 400 × [Al] + 400 × [Ti] + 104 × [V] − 11 × [Cr] + 31.5 × [Mo] −20 × [Cu] −15.2 × [Ni] (3)
Ms (° C.) = 550-361 × [C] −39 × [Mn] −10 × [Cu] −17 × [Ni] −20 × [Cr] −5 × [Mo] + 30 × [Al] (4)
 なお、熱間プレス成形に適用する場合の焼入れ部材の製造方法は、515HV以上の硬度を満たす限り、上記手法に特に限定されず、例えば、オーステナイト単相となる温度に加熱し、熱間プレス成形を行った後、空冷等の冷却を行ってもよい。 In addition, the manufacturing method of the quenching member in the case of applying to hot press molding is not particularly limited as long as it satisfies the hardness of 515 HV or higher. After performing, cooling such as air cooling may be performed.
 あるいは、本実施形態に係る焼入れ用鋼板を、熱間プレス以外のプレス成形に適用した後、焼入れを行なって焼入れ部材とすることもできる。例えば、本実施形態に係る焼入れ用鋼板を温間プレス成形に適用する場合、おおむね200~700℃の温度に加熱して温間プレスを行なった後、硬度が必要な部分のみ高周波等で焼入れを行い、焼入れ部材を製造することができる。また、本実施形態に係る焼入れ用鋼板を冷間プレス成形に適用する場合、冷間プレスを行なった後、硬度が必要な部分のみ高周波等で焼入れを行い、焼入れ部材を製造することができる。 Alternatively, the steel sheet for quenching according to the present embodiment can be applied to press forming other than hot pressing, and then quenched to form a quenched member. For example, when the steel sheet for quenching according to the present embodiment is applied to warm press forming, after performing warm press by heating to a temperature of approximately 200 to 700 ° C., only a portion requiring hardness is quenched with high frequency or the like. And a hardened member can be manufactured. Moreover, when applying the steel plate for hardening which concerns on this embodiment to cold press molding, after performing cold press, only the part which requires hardness can be hardened with a high frequency etc., and a hardened member can be manufactured.
 本明細書は、上述したように、様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面は、成分組成が、質量%で、C:0.2%超0.4%以下、Si:0.8%以上1.4%以下、Mn:1%以上3%以下、P:0%超0.02%以下、S:0%超0.002%以下、sol.Al:0.02%以上0.06%以下、N:0%超0.01%以下、O:0%超0.01%以下、B:0.0005%以上0.005%以下、及びTi:0.005%以上0.1%以下を満たし、残部が鉄及び不可避的不純物からなり、かつ、Mn濃度が下記式(1)を満たすことを特徴とする焼入れ用鋼板である。 In one aspect of the present invention, the component composition is mass%, C: more than 0.2% and 0.4% or less, Si: 0.8% or more and 1.4% or less, Mn: 1% or more and 3% or less, P: more than 0% and 0.02% or less, S: more than 0% and 0.002% or less, sol. Al: 0.02% to 0.06%, N: more than 0% to 0.01%, O: more than 0% to 0.01%, B: 0.0005% to 0.005%, and Ti : A steel sheet for quenching characterized by satisfying 0.005% or more and 0.1% or less, the balance being iron and inevitable impurities, and Mn concentration satisfying the following formula (1).
  S1+S2 < -10×[Mn]+44  (1)
 [Mn]:誘導結合プラズマ発光分光法で分析した鋼板のMn濃度(質量%)
 S1:鋼板の板厚1/4位置の組織において、電子線マイクロプローブ分析計で分析したMn濃度が前記[Mn]の2倍以上である領域の面積%
 S2:鋼板の板厚1/4位置の組織において、電子線マイクロプローブ分析計で分析したMn濃度が前記[Mn]の0.5倍以下である領域の面積%
S1 + S2 <−10 × [Mn] +44 (1)
[Mn]: Mn concentration (% by mass) of the steel sheet analyzed by inductively coupled plasma emission spectroscopy
S1: Area% of the region where the Mn concentration analyzed by the electron microprobe analyzer is more than twice the above [Mn] in the structure of the steel plate at the thickness 1/4 position.
S2: Area% of a region in which the Mn concentration analyzed by an electron beam microprobe analyzer is 0.5 times or less of the above [Mn] in the structure of the steel plate with a thickness of 1/4.
 前記焼入れ用鋼板は、鋼板の板厚1/4位置におけるフェライトの面積率が0%以上50%以下であることが好ましい。 It is preferable that the quenching steel sheet has a ferrite area ratio of 0% or more and 50% or less at a ¼ thickness position of the steel sheet.
 前記焼入れ用鋼板は、成分組成が、質量%で、B:0.001%以上0.005%以下を満たすことが好ましい。 The quenching steel plate preferably has a composition of mass% and satisfies B: 0.001% or more and 0.005% or less.
 前記焼入れ用鋼板は、更に他の元素として、質量%で、Cr:0%超3%以下、Mo:0%超3%以下、Nb:0%超0.1%以下、及びV:0%超0.1%以下よりなる群から選択される少なくとも一種を含有することが好ましい。 The quenching steel plate further contains, as other elements, mass%, Cr: more than 0% and 3% or less, Mo: more than 0% and 3% or less, Nb: more than 0% and 0.1% or less, and V: 0%. It is preferable to contain at least one selected from the group consisting of more than 0.1%.
 また、本発明の他の一局面は、前記焼入れ用鋼板を使用して製造された焼入れ部材であって、硬度が515HV以上であることを特徴とするT方向曲げ性に優れた焼入れ部材である。 Another aspect of the present invention is a quenched member manufactured using the steel sheet for quenching, which has a hardness of 515 HV or more and has excellent T-direction bendability. .
 本発明の他の一局面は、前記焼入れ用鋼板を製造するための方法であって、オーステナイト域で仕上げ圧延を行った後、下記式(2)を満たす工程を有することを特徴とする焼入れ用鋼板の製造方法である。 Another aspect of the present invention is a method for producing the steel sheet for quenching, which includes a step of satisfying the following formula (2) after performing finish rolling in the austenite region. It is a manufacturing method of a steel plate.
  6.0<2×10×(ln[R]+10)/((ln[t]+70)×[T]) (2)
 [R]:「仕上げ圧延温度」から「巻取温度」までの平均冷却速度(℃/s)
 [t]:「巻取温度」から「巻取温度-50℃」までの温度で保持した時間(h)
 [T]:「巻取温度」(℃)
6.0 <2 × 10 4 × (ln [R] +10) / ((ln [t] +70) × [T]) (2)
[R]: Average cooling rate from “finish rolling temperature” to “coiling temperature” (° C./s)
[T]: Time (h) held at a temperature from “winding temperature” to “winding temperature −50 ° C.”
[T]: “Taking-up temperature” (° C.)
 また、前記焼入れ用鋼板の製造方法において、前記平均冷却速度Rが、10℃/s以上200℃/s以下であることが好ましい。 In the method for manufacturing a steel sheet for quenching, the average cooling rate R is preferably 10 ° C./s or more and 200 ° C./s or less.
 また、前記焼入れ用鋼板の製造方法において、前記保持した時間tが、0.25時間以上15時間以下であることが好ましい。 In the method for manufacturing a steel sheet for quenching, it is preferable that the held time t is 0.25 hours or more and 15 hours or less.
 また、前記焼入れ用鋼板の製造方法において、前記巻取温度Tが、320℃以上650℃以下であることが好ましい。 In the method for manufacturing a steel sheet for quenching, the winding temperature T is preferably 320 ° C. or higher and 650 ° C. or lower.
 本発明によれば、前記焼入れ用鋼板を用いることによって、焼入れ後の硬度が515HV以上の高強度領域であっても、T方向曲げ性に優れた焼入れ部材を提供することができる。 According to the present invention, by using the quenching steel plate, it is possible to provide a quenching member having excellent T-direction bendability even in a high strength region where the hardness after quenching is 515 HV or higher.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、もとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples, and appropriate modifications are made within a range that can meet the purpose described above and below. Of course, it is also possible to implement them, and they are all included in the technical scope of the present invention.
 [実験No.1]
 下記表1に示す成分組成の鋼(残部は鉄及び不可避的不純物、表1において空欄は元素を添加していないことを意味する)を溶製し、下記に記載の熱間圧延を行い、熱延鋼板を得た。その後、表面を研削し、厚さ1.4mmの焼入れ用鋼板を得た。
[Experiment No. 1]
Steel with the component composition shown in Table 1 below (the balance is iron and inevitable impurities, and the blank in Table 1 means that no element is added) is melted and subjected to hot rolling as described below, A rolled steel sheet was obtained. Then, the surface was ground and the steel plate for hardening of thickness 1.4mm was obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [熱間圧延]
 スラブを1250℃まで加熱し、圧下率90%にて、表2に示す「仕上げ圧延温度(℃)」となるように板厚2.3mmまで熱間圧延した。その後、この温度から表2に示す「平均冷却速度(℃/s)」で表2に示す「巻取温度(℃)」まで冷却して巻取った後、表2に示す「保持時間(h)」の間、「巻取温度-50(℃)」以上「巻取温度(℃)」以下の温度で保持した。続いて、室温まで空冷して熱延鋼板を製造した。
[Hot rolling]
The slab was heated to 1250 ° C. and hot-rolled at a reduction rate of 90% to a plate thickness of 2.3 mm so as to have a “finish rolling temperature (° C.)” shown in Table 2. After cooling from this temperature to the “winding temperature (° C.)” shown in Table 2 at the “average cooling rate (° C./s)” shown in Table 2, the “holding time (h ) ”Was held at a temperature of“ winding temperature−50 (° C.) ”or more and“ winding temperature (° C.) ”or less. Subsequently, the hot-rolled steel sheet was manufactured by air cooling to room temperature.
 [実験No.6、11、17、22]
 成分組成、仕上げ圧延温度、平均冷却速度、巻取温度、及び保持時間を表1及び表2に記載の条件に変更した以外は、実験No.1と同様の製造方法で焼入れ用鋼板を得た。
[Experiment No. 6, 11, 17, 22]
Except for changing the component composition, finish rolling temperature, average cooling rate, winding temperature, and holding time to the conditions shown in Tables 1 and 2, Experiment No. A steel plate for quenching was obtained by the same production method as in No. 1.
 [実験No.2~5、7~10、12~16、18~21、23~26]
 成分組成、仕上げ圧延温度、平均冷却速度、巻取温度、及び保持時間を表1及び表2に記載の条件に変更して熱延鋼板を製造した以外は、実験No.1と同様の製造方法で熱延鋼板を製造した。その後、得られた上記熱延鋼板を酸洗して表面のスケールを除去した後、冷間圧延を行い、板厚1.4mmの冷延鋼板を製造して、焼入れ用鋼板を得た。
[Experiment No. 2-5, 7-10, 12-16, 18-21, 23-26]
Except that the hot rolled steel sheet was manufactured by changing the component composition, finish rolling temperature, average cooling rate, coiling temperature, and holding time to the conditions shown in Tables 1 and 2, Experiment No. A hot-rolled steel sheet was manufactured by the same manufacturing method as in No. 1. Thereafter, the obtained hot-rolled steel sheet was pickled to remove scale on the surface, and then cold-rolled to produce a cold-rolled steel sheet having a thickness of 1.4 mm to obtain a quenched steel sheet.
 実験No.1~26の焼入れ用鋼板について、下記に詳述する通り、金属組織及びMn濃度の測定を行った。さらに、実験No.1~26の焼入れ用鋼板を後述の焼入れ試験によって得られた焼入れ部材について、下記に詳述する通り、各種機械的特性の評価を行い、表2に示した。 Experiment No. With respect to the steel plates for quenching 1 to 26, the metal structure and Mn concentration were measured as described in detail below. Furthermore, Experiment No. As shown in detail below, various mechanical properties of the quenched members obtained by quenching steel plates for quenching 1 to 26 obtained by the quenching test described below were evaluated and are shown in Table 2.
 [フェライトの面積率]
 焼入れ用鋼板のL方向(圧延方向と平行)断面を研磨した後に、ナイタールで腐食させた。その後、光学顕微鏡を用いて、板厚の1/4位置を倍率1000倍で3視野(100μm×100μmサイズ/視野)観察し、格子間隔5μm、格子点数20×20の点算法にてフェライトの面積率を測定し、3視野の平均値を算出した。
[Ferrite area ratio]
After polishing the cross section in the L direction (parallel to the rolling direction) of the steel sheet for quenching, it was corroded with nital. Then, using an optical microscope, three fields of view (100 μm × 100 μm size / field of view) were observed at a 1/4 position of the plate thickness at a magnification of 1000 times, and the area of the ferrite was determined by a point calculation method with a lattice spacing of 5 μm and a lattice number of 20 × 20. The rate was measured, and the average value of 3 fields of view was calculated.
 [Mnの濃度分布]
 以下の式(1)を用いて、Mnの濃度分布を下記基準で評価して、A評価を合格、B評価を不合格とした。なお、[Mn]の測定方法、S1+S2の算出方法は、以下のとおりである。
[Mn concentration distribution]
Using the following formula (1), the concentration distribution of Mn was evaluated according to the following criteria, and A evaluation was passed and B evaluation was rejected. In addition, the measurement method of [Mn] and the calculation method of S1 + S2 are as follows.
  S1+S2<-10×[Mn]+44 (1)
 [Mn]:誘導結合プラズマ発光分光法で分析した鋼板のMn濃度(質量%)
 S1:鋼板の板厚1/4位置の組織において、電子線マイクロプローブ分析計で分析したMn濃度が前記[Mn]の2倍以上である領域の面積%
 S2:鋼板の板厚1/4位置の組織において、電子線マイクロプローブ分析計で分析したMn濃度が前記[Mn]の0.5倍以下である領域の面積%
S1 + S2 <−10 × [Mn] +44 (1)
[Mn]: Mn concentration (% by mass) of the steel sheet analyzed by inductively coupled plasma emission spectroscopy
S1: Area% of the region where the Mn concentration analyzed by the electron microprobe analyzer is more than twice the above [Mn] in the structure of the steel plate at the thickness 1/4 position.
S2: Area% of a region in which the Mn concentration analyzed by an electron beam microprobe analyzer is 0.5 times or less of the above [Mn] in the structure of the steel plate with a thickness of 1/4.
 (評価基準)
 A:式(1)を満たす(S1+S2の値が-10×[Mn]+44の値より小さい)
 B:式(1)を満たさない(S1+S2の値が-10×[Mn]+44以上の値である)
(Evaluation criteria)
A: satisfies the formula (1) (the value of S1 + S2 is smaller than the value of −10 × [Mn] +44)
B: Formula (1) is not satisfied (the value of S1 + S2 is a value of −10 × [Mn] +44 or more)
 ([Mn]の測定方法)
 焼入れ用鋼板の幅方向中部から、30mm×100mmサイズの試料を切り出した。切り出した試料を粉末にして、この粉末を塩酸と硝酸との混酸溶液にて溶解させた後、この溶液を、誘導結合プラズマ発光分光分析装置(島津製作所社製 ICPV-1017)を用いて、結合プラズマ発光分光法で化学分析することによって、[Mn]を得た。
(Measuring method of [Mn])
A sample having a size of 30 mm × 100 mm was cut out from the center in the width direction of the steel plate for quenching. The cut sample is made into a powder, this powder is dissolved in a mixed acid solution of hydrochloric acid and nitric acid, and this solution is then bonded using an inductively coupled plasma emission spectrometer (ICPV-1017 manufactured by Shimadzu Corporation). [Mn] was obtained by chemical analysis by plasma emission spectroscopy.
 (S1+S2の算出方法)
 焼入れ用鋼板をL方向の横断面で切断し、樹脂に埋め込み、上記横断面を研磨した。その後、鋼板の板厚1/4位置において、約120μm×95μmの範囲を、電子線マイクロプローブ分析計(Electron Probe Micro Analyzer:EPMA、日本電子社製JXA-8100シリーズ)を用い、ビーム径約5μmの条件でMn濃度を測定した。なお、当該EPMA装置での具体的設定は、以下の通りとした。
(Calculation method of S1 + S2)
The steel plate for quenching was cut along a cross section in the L direction, embedded in resin, and the cross section was polished. Thereafter, at a position of 1/4 of the plate thickness of the steel sheet, a range of about 120 μm × 95 μm was measured using an electron probe microprobe analyzer (Electron Probe Micro Analyzer: EPMA, JXA-8100 series manufactured by JEOL Ltd.) and a beam diameter of about 5 μm. The Mn concentration was measured under the following conditions. The specific setting in the EPMA apparatus was as follows.
  測定エリア X:300ポイント Y:240ポイント
  送り:0.4μm
  ビーム径設定:ゼロ
  取り込み時間:20msec/ポイント
  電子ビーム加速電圧:15kV
  照射電流:1×10-6A(1μA)
 次に、上記条件で測定した各ポイントにおけるMn濃度を[Mn]で除して、Mn濃度が[Mn]の2倍以上であるポイント数及びMn濃度が[Mn]の0.5倍以下であるポイント数を求めた。さらに、Mn濃度が[Mn]の2倍以上であるポイント数とMn濃度が[Mn]の0.5倍以下であるポイント数との合計値を、トータルの測定ポイント数(300×240ポイント)で除することにより、S1+S2(面積%)を算出した。
Measurement area X: 300 points Y: 240 points Feed: 0.4 μm
Beam diameter setting: Zero Acquisition time: 20 msec / point Electron beam acceleration voltage: 15 kV
Irradiation current: 1 × 10 −6 A (1 μA)
Next, the Mn concentration at each point measured under the above conditions is divided by [Mn], the number of points at which the Mn concentration is 2 times or more of [Mn], and the Mn concentration is 0.5 times or less of [Mn]. A certain number of points was obtained. Furthermore, the total value of the number of points where the Mn concentration is 2 times or more of [Mn] and the number of points where the Mn concentration is 0.5 times or less of [Mn] is the total number of measurement points (300 × 240 points). Then, S1 + S2 (area%) was calculated.
 [焼入れ試験]
 焼入れ試験は、金型を模擬したダイクエンチ方法を用い、以下の条件で行った。
[Quenching test]
The quenching test was performed under the following conditions using a die quench method simulating a mold.
  焼入れ用鋼板の板温:900℃
  加熱時間:100秒
  放冷時間:約15秒
  ダイクエンチ開始温度:700℃
  ダイクエンチ荷重:2000kgf
  成形下死点保持時間:30秒
Plate temperature of steel plate for quenching: 900 ° C
Heating time: 100 seconds Cooling time: about 15 seconds Die quench start temperature: 700 ° C
Die quench load: 2000kgf
Molded bottom dead center retention time: 30 seconds
 [スケール密着性の評価]
 上記焼入れ試験後の成形品(焼入れ部材)を金型退避させた状態で自然放冷し常温まで冷却して、焼入れ部材の表面を目視で観察し、スケール剥離の有無を調べた。本実施例では、焼入れ部材の表面積に対するスケールの剥離部分の割合を算出し、下記基準で評価した。
[Evaluation of scale adhesion]
The molded product (quenched member) after the quenching test was naturally allowed to cool in a state in which the mold was retracted, cooled to room temperature, and the surface of the quenched member was visually observed to examine the presence or absence of scale peeling. In this example, the ratio of the scale peeling portion relative to the surface area of the quenched member was calculated and evaluated according to the following criteria.
 (評価基準)
 合格(〇):スケールの剥離部分が焼入れ部材の表面積の15%未満
 不合格(×):スケールの剥離部分が焼入れ部材の表面積の15%以上
(Evaluation criteria)
Pass (◯): Scale peeling part is less than 15% of the surface area of the quenching member Fail (x): Scale peeling part is 15% or more of the surface area of the quenching member
 [硬度]
 焼入れ部材のビッカーズ硬度(HV)については、JIS Z 2244に記載の方法により測定した。
[hardness]
The Vickers hardness (HV) of the quenched member was measured by the method described in JIS Z 2244.
 [硬度を考慮したT方向曲げ性の評価]
 焼入れ部材のT方向曲げ性は、ドイツ自動車工業会で規定されたVDA基準(VDA238-100)に基づいて、以下の測定条件で評価を行った。本実施例では、曲げ試験で得られる最大荷重時の変位をVDA基準で角度に変換し、曲げ角度を求めた。また、一般的に焼入れ部材の硬度が高いほど、曲げ角度は低くなるという相関性を有することから、焼入れ部材の硬度に対する曲げ角度の大きさに基づき、T方向曲げ性を評価した。具体的には、下記式(5)の値によりT方向曲げ性を下記基準で評価して、A評価を合格(○)、B評価を不合格(×)とした。また、各焼入れ部材の硬度[焼入れ後硬度(HV)]と曲げ角度[焼入れ後曲げ角度(°)]との関係を図1に示した。
[Evaluation of bendability in T direction considering hardness]
The T-direction bendability of the quenched member was evaluated under the following measurement conditions based on the VDA standard (VDA238-100) defined by the German Automobile Manufacturers Association. In this example, the displacement at the maximum load obtained in the bending test was converted into an angle based on the VDA, and the bending angle was obtained. Further, since the correlation is generally such that the higher the hardness of the quenched member, the lower the bending angle, the T-direction bendability was evaluated based on the magnitude of the bending angle with respect to the hardness of the quenched member. Specifically, the T-direction bendability was evaluated according to the following criteria based on the value of the following formula (5), and A evaluation was determined to be acceptable (◯), and B evaluation was determined to be unacceptable (x). Moreover, the relationship between the hardness [hardness after quenching (HV)] and the bending angle [bending angle after quenching (°)] of each quenched member is shown in FIG.
  曲げ角度-(-0.6×硬度+376) (5) Bending angle-(-0.6 x hardness + 376) (5)
 (評価基準)
 A:式(5)の値が0より大きい(曲げ角度の値が-0.6×硬度+376の値よりも大きい)
 B:式(5)の値が0以下である(曲げ角度の値が-0.6×硬度+376の値以下である)
(Evaluation criteria)
A: The value of the formula (5) is larger than 0 (the value of the bending angle is larger than the value of −0.6 × hardness + 376).
B: The value of the formula (5) is 0 or less (the value of the bending angle is -0.6 × hardness + 376 or less)
 (測定条件)
  試験方法:ロール支持、ポンチ押し込み
  ロール径:φ30mm
  ポンチ形状:先端R=0.4mm
  ロール間距離:3.5mm
  押し込み速度:20mm/min
  試験片寸法:60mm×60mm
  曲げ方向:圧延直角方向
  試験機:島津製作所社製のAUTOGRAPH 20kN
(Measurement condition)
Test method: roll support, punch push-in roll diameter: φ30mm
Punch shape: Tip R = 0.4mm
Distance between rolls: 3.5mm
Pushing speed: 20mm / min
Specimen size: 60mm x 60mm
Bending direction: rolling perpendicular direction Testing machine: AUTOGRAPH 20kN made by Shimadzu Corporation
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2より、以下のように考察することができる。 From Table 1 and Table 2, it can be considered as follows.
 本発明の成分組成を満たす表1の鋼種A1~A7、B1~B4を用いて、上記式(2)を満たす製造条件にて製造された表2の各実験(実験No.1、4、6、8、9、11、14、15、17、18、及び23~26)は、上記式(1)を満たしており、焼入れ部材は、515HV以上の高強度でありながら、T方向曲げ性に優れており、さらに、スケール密着性に優れていた。 Each experiment in Table 2 (Experiment Nos. 1, 4 and 6) produced under the production conditions satisfying the above formula (2) using the steel types A1 to A7 and B1 to B4 in Table 1 satisfying the composition of the present invention. , 8, 9, 11, 14, 15, 17, 18, and 23 to 26) satisfy the above formula (1), and the quenched member has a high strength of 515 HV or more and has a bendability in the T direction. Excellent, and also excellent in scale adhesion.
 これに対し、上記以外の鋼板は、下記に詳述する通り、本発明で規定する成分組成又は製造条件を満たさず、所望の特性が得られなかった。 On the other hand, as described in detail below, the steel sheets other than the above did not satisfy the component composition or manufacturing conditions defined in the present invention, and the desired characteristics could not be obtained.
 上記式(2)を満たさない製造条件にて製造した実験No.2、3、5、7、10、12、13、及び16は、上記式(1)を満たしておらず、焼入れ部材のT方向曲げ性が悪かった。 Experiment No. manufactured under manufacturing conditions not satisfying the above formula (2). 2, 3, 5, 7, 10, 12, 13, and 16 did not satisfy the above formula (1), and the T-direction bendability of the quenched member was poor.
 表1の鋼種A8及びA9は、Si含有量が本発明で規定した下限値(0.8%)を下回っているため、実験No.19~22は、焼入れ部材の硬度が不足しており、焼入れ部材のT方向曲げ性及びスケール密着性も悪かった。 Since the steel types A8 and A9 in Table 1 are below the lower limit (0.8%) defined in the present invention, the test No. In Nos. 19 to 22, the hardness of the quenched member was insufficient, and the T-direction bendability and scale adhesion of the quenched member were also poor.
 この出願は、2016年2月29日に出願された日本国特許出願特願2016-037635及び2016年10月24日に出願された日本国特許出願特願2016-207673を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application Japanese Patent Application No. 2016-037635 filed on February 29, 2016 and Japanese Patent Application Japanese Patent Application No. 2016-207673 filed on October 24, 2016. The contents thereof are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更及び/又は改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not limited to the scope of the claims. To be construed as inclusive.
 本発明によれば、前記焼入れ用鋼板を用いることによって、焼入れ後の硬度が515HV以上の高強度領域であっても、T方向曲げ性に優れた焼入れ部材が提供される。 According to the present invention, by using the steel plate for quenching, a quenching member having excellent T-direction bendability is provided even in a high strength region where the hardness after quenching is 515 HV or higher.

Claims (9)

  1.  成分組成が、質量%で、
    C:0.2%超0.4%以下、
    Si:0.8%以上1.4%以下、
    Mn:1%以上3%以下、
    P:0%超0.02%以下、
    S:0%超0.002%以下、
    sol.Al:0.02%以上0.06%以下、
    N:0%超0.01%以下、
    O:0%超0.01%以下、
    B:0.0005%以上0.005%以下、及び
    Ti:0.005%以上0.1%以下
    を満たし、残部が鉄及び不可避的不純物からなり、かつ、Mn濃度が下記式(1)を満たすことを特徴とする焼入れ用鋼板。
      S1+S2<-10×[Mn]+44 (1)
     [Mn]:誘導結合プラズマ発光分光法で分析した鋼板のMn濃度(質量%)
     S1:鋼板の板厚1/4位置の組織において、電子線マイクロプローブ分析計で分析したMn濃度が前記[Mn]の2倍以上である領域の面積%
     S2:鋼板の板厚1/4位置の組織において、電子線マイクロプローブ分析計で分析したMn濃度が前記[Mn]の0.5倍以下である領域の面積%
    Ingredient composition is mass%,
    C: more than 0.2% and 0.4% or less,
    Si: 0.8% or more and 1.4% or less,
    Mn: 1% or more and 3% or less,
    P: more than 0% and 0.02% or less,
    S: more than 0% and 0.002% or less,
    sol. Al: 0.02% to 0.06%,
    N: more than 0% and 0.01% or less,
    O: more than 0% and 0.01% or less,
    B: 0.0005% or more and 0.005% or less, and Ti: 0.005% or more and 0.1% or less, the balance is made of iron and inevitable impurities, and the Mn concentration is expressed by the following formula (1) A steel sheet for quenching characterized by filling.
    S1 + S2 <−10 × [Mn] +44 (1)
    [Mn]: Mn concentration (% by mass) of the steel sheet analyzed by inductively coupled plasma emission spectroscopy
    S1: Area% of the region where the Mn concentration analyzed by the electron microprobe analyzer is more than twice the above [Mn] in the structure of the steel plate at the thickness 1/4 position.
    S2: Area% of a region in which the Mn concentration analyzed by an electron beam microprobe analyzer is 0.5 times or less of the above [Mn] in the structure of the steel plate with a thickness of 1/4.
  2.  鋼板の板厚1/4位置におけるフェライトの面積率が0%以上50%以下である請求項1に記載の焼入れ用鋼板。 The steel sheet for quenching according to claim 1, wherein the area ratio of ferrite at a position of 1/4 of the steel sheet thickness is 0% or more and 50% or less.
  3.  前記成分組成が、質量%で、
    B:0.001%以上0.005%以下を満たす請求項1に記載の焼入れ用鋼板。
    The component composition is mass%,
    B: The steel plate for quenching according to claim 1, which satisfies 0.001% or more and 0.005% or less.
  4.  前記成分組成は、更に他の元素として、質量%で、
    Cr:0%超3%以下、
    Mo:0%超3%以下、
    Nb:0%超0.1%以下、及び
    V:0%超0.1%以下
    よりなる群から選択される少なくとも一種を含有する請求項1に記載の焼入れ用鋼板。
    The component composition is, as another element, in mass%,
    Cr: more than 0% and 3% or less,
    Mo: more than 0% and 3% or less,
    The steel sheet for quenching according to claim 1, comprising at least one selected from the group consisting of Nb: more than 0% and 0.1% or less and V: more than 0% and 0.1% or less.
  5.  請求項1~4のいずれか1項に記載の焼入れ用鋼板を使用して製造された焼入れ部材であって、
     硬度が515HV以上であることを特徴とするT方向曲げ性に優れた焼入れ部材。
    A quenched member manufactured using the steel sheet for quenching according to any one of claims 1 to 4,
    A hardened member excellent in T-direction bendability, characterized by having a hardness of 515 HV or higher.
  6.  請求項1~4のいずれか1項に記載の焼入れ用鋼板を製造するための方法であって、
     オーステナイト域で仕上げ圧延を行った後、下記式(2)を満たす工程を有することを特徴とする焼入れ用鋼板の製造方法。
      6.0<2×10×(ln[R]+10)/((ln[t]+70)×[T]) (2)
     [R]:「仕上げ圧延温度」から「巻取温度」までの平均冷却速度(℃/s)
     [t]:「巻取温度」から「巻取温度-50℃」までの温度で保持した時間(h)
     [T]:「巻取温度」(℃)
    A method for producing the steel sheet for quenching according to any one of claims 1 to 4,
    A method for producing a steel sheet for quenching, comprising a step of satisfying the following formula (2) after finish rolling in an austenite region.
    6.0 <2 × 10 4 × (ln [R] +10) / ((ln [t] +70) × [T]) (2)
    [R]: Average cooling rate from “finish rolling temperature” to “coiling temperature” (° C./s)
    [T]: Time (h) held at a temperature from “winding temperature” to “winding temperature −50 ° C.”
    [T]: “Taking-up temperature” (° C.)
  7.  前記平均冷却速度が、10℃/s以上200℃/s以下である請求項6に記載の焼入れ用鋼板の製造方法。 The method for producing a steel sheet for quenching according to claim 6, wherein the average cooling rate is 10 ° C / s or more and 200 ° C / s or less.
  8.  前記保持した時間が、0.25時間以上15時間以下である請求項6に記載の焼入れ用鋼板の製造方法。 The method for producing a steel sheet for quenching according to claim 6, wherein the held time is 0.25 hours or more and 15 hours or less.
  9.  前記巻取温度が、320℃以上650℃以下である請求項6に記載の焼入れ用鋼板の製造方法。 The method for producing a steel sheet for quenching according to claim 6, wherein the coiling temperature is 320 ° C or higher and 650 ° C or lower.
PCT/JP2017/002186 2016-02-29 2017-01-23 Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening WO2017149999A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020187026939A KR20180117127A (en) 2016-02-29 2017-01-23 A method for manufacturing a quenching steel plate, a quenching member, and a quenching steel plate
CN201780013823.XA CN108779527A (en) 2016-02-29 2017-01-23 The manufacturing method of quenching steel plate, quenching component and quenching steel plate
EP17759471.0A EP3421631A4 (en) 2016-02-29 2017-01-23 Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening
CA3015966A CA3015966A1 (en) 2016-02-29 2017-01-23 Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening
MX2018010347A MX2018010347A (en) 2016-02-29 2017-01-23 Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening.
BR112018067894A BR112018067894A2 (en) 2016-02-29 2017-01-23 hardening steel sheet, hardened element and method for manufacturing hardening steel sheet
US16/080,566 US20190017142A1 (en) 2016-02-29 2017-01-23 Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-037635 2016-02-29
JP2016037635 2016-02-29
JP2016207673A JP2017155329A (en) 2016-02-29 2016-10-24 Steel sheet for hardening and manufacturing method therefor
JP2016-207673 2016-10-24

Publications (1)

Publication Number Publication Date
WO2017149999A1 true WO2017149999A1 (en) 2017-09-08

Family

ID=59743797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002186 WO2017149999A1 (en) 2016-02-29 2017-01-23 Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening

Country Status (1)

Country Link
WO (1) WO2017149999A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169475A (en) * 2006-12-11 2008-07-24 Kobe Steel Ltd High-strength steel sheet
JP2009263685A (en) * 2008-04-22 2009-11-12 Nippon Steel Corp High strength steel sheet having reduced deterioration in characteristic after cutting, and method for producing the same
JP2011195958A (en) 2010-02-26 2011-10-06 Sumitomo Metal Ind Ltd Steel material to be hot-pressed, hot-pressed steel material, and method for producing hot-pressed steel material
JP2013151708A (en) * 2010-12-27 2013-08-08 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot stamped body having small variation in hardness, and the hot stamped body
JP2013185247A (en) * 2012-03-09 2013-09-19 Kobe Steel Ltd Steel sheet for hot pressing, press-molded product and method for manufacturing the press-molded product
JP2013185243A (en) * 2012-03-09 2013-09-19 Kobe Steel Ltd Steel sheet for hot pressing, press-molded product and method for manufacturing the press-molded product
JP2014015638A (en) 2012-07-06 2014-01-30 Nippon Steel & Sumitomo Metal Hot press steel sheet member, method for producing the same and steel sheet for hot press
WO2016021194A1 (en) * 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169475A (en) * 2006-12-11 2008-07-24 Kobe Steel Ltd High-strength steel sheet
JP2009263685A (en) * 2008-04-22 2009-11-12 Nippon Steel Corp High strength steel sheet having reduced deterioration in characteristic after cutting, and method for producing the same
JP2011195958A (en) 2010-02-26 2011-10-06 Sumitomo Metal Ind Ltd Steel material to be hot-pressed, hot-pressed steel material, and method for producing hot-pressed steel material
JP2013151708A (en) * 2010-12-27 2013-08-08 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot stamped body having small variation in hardness, and the hot stamped body
JP2013185247A (en) * 2012-03-09 2013-09-19 Kobe Steel Ltd Steel sheet for hot pressing, press-molded product and method for manufacturing the press-molded product
JP2013185243A (en) * 2012-03-09 2013-09-19 Kobe Steel Ltd Steel sheet for hot pressing, press-molded product and method for manufacturing the press-molded product
JP2014015638A (en) 2012-07-06 2014-01-30 Nippon Steel & Sumitomo Metal Hot press steel sheet member, method for producing the same and steel sheet for hot press
WO2016021194A1 (en) * 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Toshihiro Tsuchiyama, Physical Meaning of Tempering Parameter and Its Application for Continuous Heating or Cooling Heat Treatment Process", JOURNAL OF THE JAPAN SOCIETY FOR HEAT TREATMENT, vol. 42, no. 3, pages 163

Similar Documents

Publication Publication Date Title
CN107532266B (en) Plated steel sheet
US20210140006A1 (en) Plated steel sheet for hot press forming having excellent impact property, hot press formed part, and manufacturing method thereof
KR101814949B1 (en) Hot-formed steel sheet member, and method for producing same
US10711322B2 (en) Hot-pressed steel sheet member, method of manufacturing the same, and steel sheet for hot pressing
KR101913530B1 (en) High-strength galvanized steel sheets and methods for manufacturing the same
EP2557193B1 (en) High-strength steel sheet having excellent hot rolling workability, and process for production thereof
EP3187607B1 (en) High-strength galvanized steel sheet excellent in stretch-flange formability, in-plane stability of stretch-flange formability, and bendability, and method for producing same
KR101479391B1 (en) Cold rolled steel sheet having excellent shape fixability and method for manufacturing the same
EP3239338B1 (en) Hot press formed parts having excellent bending properties and method for manufacturing same
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
CN108603264B (en) High-strength galvanized steel sheet, high-strength member, and method for producing high-strength galvanized steel sheet
CN110337505B (en) High-strength steel sheet and method for producing same
EP3447159A1 (en) Steel plate, plated steel plate, and production method therefor
EP4105343A1 (en) Hot stamp molded article
CN115003841A (en) Steel sheet, member, and method for producing same
KR102404647B1 (en) Hot-stamped article and steel sheet for hot-stamping, and manufacturing method thereof
JP2017155329A (en) Steel sheet for hardening and manufacturing method therefor
WO2018199328A1 (en) High strength steel sheet and method for manufacturing same
EP4198149A1 (en) High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these
CN107429376B (en) Post-annealed high tensile strength coated steel sheet with improved yield strength and hole expansion
WO2017149999A1 (en) Steel sheet for hardening, hardened member, and method for manufacturing steel sheet for hardening
KR20220091572A (en) hot stamped body
KR20210124324A (en) Hot stamped products and steel sheets for hot stamping, and manufacturing method thereof
KR20240075851A (en) Galvanized steel sheets and members, and their manufacturing methods

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/010347

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 3015966

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187026939

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026939

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017759471

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759471

Country of ref document: EP

Effective date: 20180927

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018067894

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018067894

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180905