JP3133868B2 - Heating method of directional silicon steel slab - Google Patents

Heating method of directional silicon steel slab

Info

Publication number
JP3133868B2
JP3133868B2 JP05180206A JP18020693A JP3133868B2 JP 3133868 B2 JP3133868 B2 JP 3133868B2 JP 05180206 A JP05180206 A JP 05180206A JP 18020693 A JP18020693 A JP 18020693A JP 3133868 B2 JP3133868 B2 JP 3133868B2
Authority
JP
Japan
Prior art keywords
slab
temperature
heating
silicon steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05180206A
Other languages
Japanese (ja)
Other versions
JPH0732093A (en
Inventor
峰男 村木
芳宏 尾崎
俊人 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP05180206A priority Critical patent/JP3133868B2/en
Publication of JPH0732093A publication Critical patent/JPH0732093A/en
Application granted granted Critical
Publication of JP3133868B2 publication Critical patent/JP3133868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、方向性けい素鋼スラ
ブの加熱方法に関し、特にスラブ加熱時におけるふくれ
欠陥の発生を効果的に抑制して、結果として磁気特性を
初めとする製品品質の向上を図ろうとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heating directional silicon steel slabs, and more particularly to a method for effectively suppressing the occurrence of blistering defects during slab heating, and consequently improving product quality including magnetic properties. The goal is to improve it.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、主として変圧器そ
の他の電気機器の鉄心材料として使用され、磁束密度及
び鉄損等の磁気特性に優れることが基本的に要求され
る。かような方向性けい素鋼板を製造するに当たって、
特に重要なことは、いわゆる仕上げ焼鈍工程で一次再結
晶粒を{110}<001>方位の結晶粒に優先的に二
次再結晶させることである。
2. Description of the Related Art Grain-oriented silicon steel sheets are mainly used as iron core materials for transformers and other electric equipment, and are basically required to have excellent magnetic properties such as magnetic flux density and iron loss. In producing such oriented silicon steel sheet,
It is particularly important that the primary recrystallized grains are preferentially recrystallized into crystal grains of the {110} <001> orientation in a so-called finish annealing step.

【0003】このような二次再結晶を効果的に促進させ
るためには、まず一次再結晶粒の正常成長を抑制するイ
ンヒビターと呼ばれる分散相を、均一かつ適正なサイズ
に分散させることが重要である。かかるインヒビターと
して代表的なものは、MnS,MnSe, AlN及びVNのよう
な硫化物や窒化物等で、鋼中への溶解度が極めて小さい
物質が用いられている。このため従来、熱間圧延前にス
ラブを高温に加熱してインヒビター成分を完全に固溶さ
せる方法が採られ、熱間圧延工程以降、二次再結晶工程
までの間の析出状態を制御している。なお、インヒビタ
ーとしては、上記したものの他、Sb, Sn, As, Pb, Ce,
Cu及びMo等の粒界偏析型元素も利用されている。
In order to effectively promote such secondary recrystallization, it is important to first disperse a dispersed phase called an inhibitor, which suppresses the normal growth of primary recrystallized grains, into a uniform and appropriate size. is there. Representative examples of such inhibitors include sulfides and nitrides such as MnS, MnSe, AlN, and VN, and substances having extremely low solubility in steel are used. For this reason, conventionally, a method of heating the slab to a high temperature before hot rolling and completely dissolving the inhibitor component has been adopted, and after the hot rolling step, controlling the precipitation state during the secondary recrystallization step. I have. In addition, as the inhibitors, in addition to those described above, Sb, Sn, As, Pb, Ce,
Grain boundary segregation elements such as Cu and Mo have also been utilized.

【0004】従来、方向性けい素鋼板を製造するには、
厚さ 100〜300 mm程度のスラブを、1250℃以上の温度に
長時間にわたって加熱し、インヒビター成分を完全に固
溶させた後、熱間圧延し、ついでこの熱延板を1回又は
中間焼鈍を挟む2回以上の冷間圧延によって最終板厚と
したのち、脱炭焼鈍後、焼鈍分離剤を塗布してから、二
次再結晶及び純化を目的とした最終仕上げ焼鈍を行うの
が一般的である。
Conventionally, to produce a grain-oriented silicon steel sheet,
A slab having a thickness of about 100 to 300 mm is heated to a temperature of 1250 ° C or higher for a long time to completely dissolve the inhibitor component, and then hot-rolled. Then, the hot-rolled sheet is subjected to once or intermediate annealing. After the decarburization annealing, apply an annealing separating agent, and then perform the final finish annealing for the purpose of secondary recrystallization and purification after making the final sheet thickness by cold rolling two or more times. It is.

【0005】しかし、このようなスラブ加熱を長時間施
した場合には、加熱終了後の結晶粒の粗大化が著しい。
スラブ中の粗大結晶粒は、その後の熱間圧延で再結晶し
にくく、未再結晶粒内の亜粒界や転位が析出サイトとし
て働くため、一旦固溶させたインヒビター成分が粗大に
析出し、製品の磁気特性の劣化原因となっていた。
[0005] However, when such slab heating is performed for a long time, the crystal grains after completion of the heating are remarkably coarsened.
Coarse crystal grains in the slab are difficult to recrystallize in the subsequent hot rolling, and subgrain boundaries and dislocations in unrecrystallized grains serve as precipitation sites, so that the inhibitor component once dissolved is coarsely precipitated, This was a cause of deterioration of the magnetic properties of the product.

【0006】ところで近年、技術の進歩によって、スラ
ブ加熱に電磁誘導加熱炉や抵抗加熱炉等の電気式加熱炉
が使用されるようになった。これによって、より高温で
の加熱が可能となり、インヒビター成分の溶体化が短時
間で済むようになった。また、加熱時間の短縮によっ
て、スラブ粒の粗大成長も抑制されるため、粗大成長に
起因した二次再結晶不良に伴う磁気特性の劣化も大幅に
改善されるようになった。
In recent years, with the progress of technology, electric heating furnaces such as an electromagnetic induction heating furnace and a resistance heating furnace have been used for slab heating. As a result, heating at a higher temperature became possible, and the solution of the inhibitor component was completed in a short time. Also, the shortening of the heating time also suppresses the coarse growth of the slab grains, so that the deterioration of the magnetic properties due to the secondary recrystallization failure caused by the coarse growth has been greatly improved.

【0007】しかしながら、スラブに上記のような高温
加熱を施した場合、スラブにふくれ欠陥が発生するとい
う新たな問題が生起した。このふくれ欠陥がひどい場合
には、熱間圧延が不可能になるのは勿論であるが、軽度
の場合でも二枚板や板切れ、穴あき等の重大な欠陥の要
因となる。特に、内部温度が表面温度よりも高くなる電
気式加熱炉では、厚み方向の均一加熱が難しく、このト
ラブルに適切に対処することは極めて困難であった。
However, when the slab is subjected to the high-temperature heating as described above, a new problem arises in that the slab has blistering defects. When the blistering defect is severe, it is of course impossible to perform hot rolling. However, even if the blistering defect is slight, it causes a serious defect such as a double plate, a broken plate or a hole. Particularly, in an electric heating furnace in which the internal temperature is higher than the surface temperature, uniform heating in the thickness direction is difficult, and it is extremely difficult to appropriately cope with this trouble.

【0008】なお、方向性けい素鋼スラブを連続鋳造す
る際、溶鋼の電磁攪拌を行うことによって磁気特性が向
上することが知られている(例えば特公昭57-41526号公
報)が、このような電磁攪拌を採用した場合には、磁気
特性は向上するものの、一方でふくれ欠陥の発生が顕著
になる傾向があり、重大な問題となっていた。
[0008] It is known that, when continuously casting a directional silicon steel slab, magnetic properties are improved by performing electromagnetic stirring of molten steel (for example, Japanese Patent Publication No. 57-41526). In the case where a suitable magnetic stirring is employed, the magnetic properties are improved, but on the other hand, the occurrence of blistering defects tends to be remarkable, which has been a serious problem.

【0009】ところで従来、けい素鋼板におけるふくれ
状の欠陥としては、ブリスターが知られている。ここに
ブリスターとは、薄板を熱処理した際、鋼中に含有され
ているガスが膨張することにより生じた薄板表面のふく
れ状欠陥を指し、かかるブリスターの防止策としては、
以下に述べるような種々の方法が提案されている。たと
えば、特公昭49-42208号公報には、けい素鋼中のAl、
H、N量を制御することにより、最終製品にブリスター
が発生しない条件が開示されている。また、特公昭49-4
2211号公報には、上記の3成分に加えO濃度も制御する
ことによりブリスターが発生しない条件が開示されてい
る。
Conventionally, blisters have been known as blister-like defects in silicon steel sheets. Here, the blister refers to a blister-like defect on the surface of the thin plate caused by expansion of the gas contained in the steel when the thin plate is heat-treated, and as a measure for preventing such blister,
Various methods have been proposed as described below. For example, Japanese Patent Publication No. 49-42208 discloses that Al in silicon steel,
A condition that blisters do not occur in the final product by controlling the amounts of H and N is disclosed. In addition, Tokiko Sho 49-4
Japanese Patent No. 2211 discloses a condition in which blisters are not generated by controlling the O concentration in addition to the above three components.

【0010】さらに、特開平2−259016号公報には、冷
間圧延時のロール直径を 150mm以上とすることによって
表面ふくれ欠陥を低減した方向性けい素鋼板の製造法が
開示されている。またさらに、特開平5−1324号公報に
は、予備加熱後の温度差と電気加熱炉の昇温速度を制御
することにより、スラブ内部開口を起因とする製品表面
のふくれ状欠陥を抑止する技術が開示されている。
Further, Japanese Patent Application Laid-Open No. 2-259016 discloses a method for producing a grain-oriented silicon steel sheet in which the roll diameter during cold rolling is set to 150 mm or more to reduce surface blister defects. Further, Japanese Patent Application Laid-Open No. 5-1324 discloses a technique for suppressing a blister-like defect on a product surface caused by an opening inside a slab by controlling a temperature difference after preheating and a heating rate of an electric heating furnace. Is disclosed.

【0011】上記の改善技術はいずれも、薄板で高温焼
鈍を行う際に生じる製品表面の欠陥を防止する技術であ
るが、薄板焼鈍工程で発生するブリスターとこの発明で
問題とするスラブ段階でのふくれでは、その発生機構が
全く異なり、従って上記技術によってスラブふくれの発
生を防止することはできなかった。
[0011] All of the above-mentioned improvement techniques are techniques for preventing defects on the product surface which occur when high-temperature annealing is performed on a thin plate. The blisters have a completely different mechanism of occurrence, and therefore, the above-described technique cannot prevent the occurrence of slab blisters.

【0012】[0012]

【発明が解決しようとする課題】以上述べたように、現
在までのところ、インヒビターを完全に溶体化するため
にスラブを高温に加熱した場合に、ふくれの発生を完全
に防止できる技術はまだ知られてなく、その開発が望ま
れていた。この発明は、上記の要請に有利に応えるもの
で、高温加熱時におけるスラブふくれの発生を効果的に
防止し、ひいては良好な磁気特性及び表面外観の製品と
なるスラブを与える、方向性けい素鋼スラブの加熱方法
について提案することを目的とする。
As described above, up to now, there is still no known technology capable of completely preventing blistering when a slab is heated to a high temperature in order to completely form a solution of an inhibitor. The development was desired. The present invention satisfies the above-mentioned demands advantageously, and effectively prevents the occurrence of slab swelling during high-temperature heating, and thus provides a slab which is a product having good magnetic properties and surface appearance, and is a directional silicon steel. The purpose is to propose a method of heating a slab.

【0013】[0013]

【課題を解決するための手段】まず、この発明の解明経
緯について説明する。さて、発明者らは、上記の目的を
達成すべく、成分条件や鋳造偏析、スラブ加熱条件等が
ふくれの発生に及ぼす影響について綿密な検討を加えた
結果、加熱によって、添加成分元素の偏析部(結晶粒
界)がその固相線温度以上に保持されると、結晶粒界が
部分的に溶融し、加熱の継続によりこの液相部に窒素を
初めとする溶質成分の濃化を生じ、その後冷却過程にお
ける再凝固時に固溶成分が過飽和となってガス化し、か
くして生じた窒素ガス等の内圧によって粒界部が割れ、
これがふくれの起点となることの知見を得た。
First, the details of the invention will be described. By the way, the present inventors have conducted a thorough study on the effects of component conditions, casting segregation, slab heating conditions, and the like on the occurrence of blisters in order to achieve the above object. When the (grain boundary) is maintained at or above its solidus temperature, the crystal grain boundary is partially melted, and continuation of heating causes concentration of solute components including nitrogen in the liquid phase portion, After that, during the re-solidification in the cooling process, the solid solution component becomes supersaturated and gasifies, and the internal pressure of the nitrogen gas thus generated breaks the grain boundary,
We have learned that this is the starting point of blistering.

【0014】以下、このスラブふくれの成因について詳
細に説明する。誘導式電気加熱炉周辺での観察及び同様
な条件下での確認試験、さらには詳細な成分分析の結
果、スラブふくれは最大濃度偏析帯を中心に発生するこ
とが判明した。この時、最大濃厚偏析位置は、通常知ら
れている中心偏析位置とは限らず、連続鋳造の際、電磁
溶鋼攪拌を付加したものでは、中心厚み以外の位置に最
大濃厚偏析帯が現れることも併せて知見した。またふく
れは高温加熱後の冷却過程で現れることも確認された。
Hereinafter, the cause of the slab swelling will be described in detail. As a result of observations around the induction heating furnace, confirmation tests under similar conditions, and detailed component analysis, it was found that slab blisters occurred mainly in the maximum concentration segregation zone. At this time, the maximum concentrated segregation position is not limited to the commonly known center segregation position.In continuous casting, with the addition of electromagnetic molten steel stirring, the maximum concentrated segregation zone may appear at a position other than the center thickness. We also found out. It was also confirmed that blisters appeared during the cooling process after high-temperature heating.

【0015】引き続き、スラブふくれ部周辺の組織を詳
細に観察した結果、結晶粒界に一旦溶融した部分が観察
され、またこの元溶融部では、けい素、炭素、その他の
成分元素が著しく濃化していることが明らかとなった。
一方、粒界部分と接する粒周辺部分では、窒素、炭素、
その他の成分元素が減少している層が観察された。そし
て、この欠乏層幅は高温での保持時間に比例して増加す
る傾向を示した。これらのことから、上述したふくれの
成因が明らかとなったのである。
Subsequently, as a result of closely observing the structure around the slab bulge portion, a portion once melted at the crystal grain boundary was observed, and silicon, carbon, and other component elements were significantly concentrated in the original melted portion. It became clear that.
On the other hand, nitrogen, carbon,
A layer in which other component elements were reduced was observed. The width of the deficient layer tended to increase in proportion to the holding time at a high temperature. From these facts, the cause of the above-mentioned blister has been clarified.

【0016】BOF Steel Making Vol.II Iron & Steel S
oc. AIME (1975) 等に示されるように、鉄及びけい素鉄
中の融点直下での大気圧の窒素の溶解度は0.01%前後で
あり、一方これと平衡する溶鉄中では約4倍程度の溶解
度を有する。以上のことから粒界の部分溶融状態が一定
時間継続すると、粒界近傍の固相中から溶融相中に成分
元素が移動し、これは拡散により律速されるため、時間
の経過とともに移動量が増加する。引き続く凝固過程に
おいて、液相中に濃縮されたガス成分である窒素の濃度
が約0.01wt%以上であると過飽和となり、この結果スラ
ブふくれの発生につながるものと考えられる。この際、
放出されるガス量は、粒界溶融状態が継続された時間、
スラブ加熱最終段階での粒界密度及び冷却速度によって
変化することも詳細な検討の結果明らかとなった。以上
の結果から、スラブ内の凝固偏析の低減及び加熱温度の
ばらつきの低減が粒界溶融の発生を抑え、スラブふくれ
の抑止に有効であること、さらには最大濃厚偏析帯位置
での温度制御が重要であり、具体的には、連続鋳造スラ
ブにおける凝固条件を制御することにより、スラブふく
れの発生を効果的に抑止できることが判明した。
BOF Steel Making Vol.II Iron & Steel S
As shown in oc. AIME (1975) and others, the solubility of nitrogen at atmospheric pressure just below the melting point in iron and silicon iron is around 0.01%, while that in molten iron that is in equilibrium with it is about 4 times. Has solubility. From the above, when the partial melting state of the grain boundary continues for a certain period of time, the component elements move from the solid phase near the grain boundary to the molten phase, and this is controlled by diffusion. To increase. In the subsequent coagulation process, if the concentration of nitrogen, which is a gas component concentrated in the liquid phase, is about 0.01 wt% or more, supersaturation will occur, and as a result, it is considered that slab blistering will occur. On this occasion,
The amount of gas released is the time during which the grain boundary melting state is maintained,
The detailed examination revealed that the temperature changes depending on the grain boundary density and the cooling rate in the final stage of slab heating. From the above results, it is clear that the reduction of solidification segregation in the slab and the reduction of the variation in heating temperature are effective in suppressing the occurrence of grain boundary melting and the suppression of slab swelling. It is important, and more specifically, it has been found that by controlling the solidification conditions in the continuous casting slab, the occurrence of slab bulging can be effectively suppressed.

【0017】この発明は、上記知見に立脚して開発され
たもので、含けい素鋼スラブの高温加熱時に発生が懸念
されるスラブふくれを効果的に防止して、ひいては良好
な磁気特性及び表面外観の製品を得ることができる方向
性けい素鋼スラブの加熱方法である。
The present invention has been developed on the basis of the above findings, and effectively prevents slab bulging which may occur during high-temperature heating of a silicon-containing steel slab, and thus has good magnetic properties and surface properties. This is a method for heating a directional silicon steel slab that can obtain a product having an appearance.

【0018】すなわちこの発明は、N:0.0025wt%(以
下単に%で示す)以上を含有する含けい素鋼スラブを、
電磁溶鋼攪拌の下に連続鋳造し、次いでスラブを電気式
加熱炉で表面温度1350℃以上に加熱するに当たり、連続
鋳造工程における溶鋼の温度を、液相線温度よりも25℃
以上高い温度域とすることを特徴とする方向性けい素鋼
スラブの加熱方法である。
That is, the present invention provides a silicon-containing steel slab containing N: 0.0025 wt% (hereinafter simply referred to as%) or more,
Continuous casting under electromagnetic molten steel stirring, and then heating the slab to a surface temperature of 1350 ° C or more in an electric heating furnace, the temperature of the molten steel in the continuous casting process is set at 25 ° C above the liquidus temperature.
This is a method for heating a directional silicon steel slab characterized by having a high temperature range as described above.

【0019】この発明に従えば、素材スラブとして、磁
気特性の向上を目指して電磁溶鋼攪拌を付与した連続鋳
造スラブを用いた場合であっても、スラブふくれを生じ
ることなしに、電気式加熱炉を用いて高温短時間加熱を
行うことができる。ここでスラブ加熱温度は、より好適
にはスラブ内部の測温を行うことによって制御できるも
のと考えられるが、表面温度の制御によっても充分に所
定の目的を達成できることが確かめられたので、この発
明では測温の容易な表面温度で規定することにした。
According to the present invention, even when a continuous cast slab to which electromagnetic molten steel is agitated for the purpose of improving magnetic properties is used as the material slab, the electric heating furnace can be used without slab bulging. Can be used to perform high-temperature short-time heating. Here, it is considered that the slab heating temperature can be more preferably controlled by measuring the temperature inside the slab. However, it has been confirmed that the predetermined object can be sufficiently achieved by controlling the surface temperature. Then, it was decided that the surface temperature would be easy to measure.

【0020】[0020]

【作用】以下、素材の成分組成範囲について説明する。
この発明の素材である含けい素鋼としては、N以外の成
分については従来公知のものいずれもが適合する。な
お、この発明で特にN含有量を規定したのは、この発明
で解決しようとするスラブのふくれ欠陥の発生原因は偏
析部における部分溶融であり、それによって生じた液相
へのH,N等のガス成分とくにNの濃化である。従っ
て、鋼中N濃度が少ない場合には偏析部が部分溶融をき
たしても、ふくれ欠陥を生じるだけのNの濃化が起こら
ない。従って、この発明では、鋼中にNを0.0025%以上
含有するもののみを対象としたのである。
The following is a description of the component composition range of the material.
As the silicon-containing steel which is the material of the present invention, any conventionally known components can be used for components other than N. In the present invention, the N content is particularly defined because the cause of the slab blistering defect to be solved by the present invention is partial melting in the segregated portion, and the H, N, etc. in the liquid phase generated thereby. Is a gas component, especially N concentration. Therefore, when the N concentration in the steel is low, even if the segregated portion partially melts, the N concentration does not occur enough to cause blister defects. Therefore, in the present invention, only steels containing 0.0025% or more of N are targeted.

【0021】参考のために、他成分の好適組成範囲を掲
げると、次のとおりである。 C:0.01〜0.10% Cは、熱間圧延及び冷間圧延中における組織の均一微細
化だけでなく、ゴス方位の発達に有用な元素であり、少
なくとも0.01%含有することが好ましい。しかしなが
ら、0.10%を超えて含有した場合には脱炭が困難とな
り、かえってゴス方位に乱れが生じるので、上限は0.10
%とすることが好ましい。
For reference, preferred composition ranges of other components are as follows. C: 0.01 to 0.10% C is an element useful for not only making the structure uniform and fine during hot rolling and cold rolling, but also for developing the Goss orientation, and is preferably contained at least 0.01%. However, if the content exceeds 0.10%, decarburization becomes difficult, and the Goss orientation is rather disturbed. Therefore, the upper limit is 0.10%.
% Is preferable.

【0022】Si:2.5 〜4.5 % Siは、鋼板の比抵抗を高め鉄損の低減に寄与するが、含
有量が 4.5%を上回ると冷延性が損なわれ、一方 2.5%
に満たないと比抵抗が低下するだけでなく、二次再結晶
及び純化のために行われる最終焼鈍中にα−γ変態によ
って結晶方位のランダム化を生じ、十分な鉄損改善効果
が得られないので、Siは 2.5〜4.5 %程度とするのが好
ましい。
Si: 2.5 to 4.5% Si increases the specific resistance of the steel sheet and contributes to a reduction in iron loss. However, when the content exceeds 4.5%, the cold rolling property is impaired.
Not only lowers the specific resistance, but also randomizes the crystal orientation by α-γ transformation during the final annealing performed for secondary recrystallization and purification, and a sufficient iron loss improvement effect is obtained. Therefore, the content of Si is preferably about 2.5 to 4.5%.

【0023】Mn:0.02〜0.12% Mnは、熱間脆化を防止するためには少なくとも0.02%程
度を必要とするが、あまり多すぎると磁気特性を劣化さ
せるので、上限は0.12%程度とするのが好ましい。
Mn: 0.02 to 0.12% Mn requires at least about 0.02% to prevent hot embrittlement, but too much Mn deteriorates magnetic properties. Therefore, the upper limit is about 0.12%. Is preferred.

【0024】イヒビターとしては、いわゆるMnS, MnSe
系とAlN系とがある。 MnS, MnSe系の場合 S, Seのうちから選ばれる少なくとも一種:0.005 〜0.
06% S, Seはいずれも、方向性けい素鋼板の二次再結晶を制
御するインヒビターとして有力な元素である。抑制力の
観点からは、少なくとも 0.005%程度を必要とするが0.
06%を超えるとその効果が損なわれる。従って、その上
限、下限はそれぞれ 0.005%、0.06%程度とするのが好
ましい。 AlN系の場合 Al:0.005〜0.10% Alの範囲についても、上述のMnS, MnSe系の場合と同様
の理由から上記の範囲に定めた。また、上述のMnS, Mn
Se系及びAlN系はそれぞれ併用が可能である。さらに、
インヒビター成分としては、上記したS, Se, Alの他、
Cu, Sn, Sb,Mo, Te及びBi等も有利に作用するのでそれ
ぞれ少量併せて含有させることもできる。これらの成分
の好適添加範囲はそれぞれ、Cu, Sn:0.01〜0.15%、S
b, Mo,Te, Bi:0.005 〜0.1 %であり、これらの各イン
ヒビター成分についても、単独使用及び複合使用のいず
れもが可能である。
As inhibitors, so-called MnS, MnSe
System and AlN system. MnS, MnSe system At least one selected from S and Se: 0.005 to 0.
06% S and Se are both effective elements as inhibitors for controlling secondary recrystallization of grain-oriented silicon steel sheets. From the viewpoint of suppressing power, at least about 0.005% is required,
If it exceeds 06%, the effect will be lost. Therefore, the upper and lower limits are preferably set to about 0.005% and 0.06%, respectively. AlN-based Al: 0.005 to 0.10% The range of Al is also set to the above range for the same reason as in the case of the above-mentioned MnS and MnSe-based. In addition, the above-mentioned MnS, Mn
Se-based and AlN-based can be used in combination. further,
As the inhibitor component, in addition to S, Se, and Al described above,
Cu, Sn, Sb, Mo, Te, Bi and the like also act advantageously, so that they can be contained together in small amounts. The preferred addition ranges of these components are respectively Cu, Sn: 0.01 to 0.15%, S
b, Mo, Te, Bi: 0.005 to 0.1%, and each of these inhibitor components can be used alone or in combination.

【0025】なお、スラブは、連続鋳造により製造され
たものを対象とするが、連続鋳造後に分塊再圧されたス
ラブも対象に含まれることはいうまでもない。そして、
この発明では、連続鋳造工程での溶鋼の加熱温度を規制
すること、具体的には、液相線温度よりも25℃以上高い
温度域に設定することによって、特に電磁誘導攪拌を付
加した連続鋳造において顕著である、中心偏析以外の偏
析を十分に低減して、スラブふくれの発生を防止するの
である。
Although the slab is intended to be manufactured by continuous casting, it is needless to say that a slab which has been subjected to re-bulking after continuous casting is also included. And
In the present invention, by controlling the heating temperature of the molten steel in the continuous casting step, specifically, by setting the temperature in a temperature range higher than the liquidus temperature by 25 ° C. or more, the continuous casting with electromagnetic induction stirring added. The segregation other than the center segregation, which is remarkable in the above, is sufficiently reduced to prevent slab bulging.

【0026】ここで、溶鋼の加熱温度を所定範囲に規制
することによって、ふくれの原因となる上記偏析が消滅
される原因は明確ではないが、電磁攪拌によって移動す
る結晶核の生成が遅れるか、または高温加熱によって結
晶核が再溶解するためと考えられる。なお、溶鋼の加熱
温度があまり高過ぎると、鋳込み速度の低下など操業上
不利であるので、特に上限は設けないが50℃以下程度と
するのが適当である。
Here, it is not clear why the above-mentioned segregation, which causes blistering, disappears by regulating the heating temperature of the molten steel to a predetermined range. However, generation of crystal nuclei moving by electromagnetic stirring is delayed. Alternatively, it is considered that the crystal nuclei are redissolved by heating at a high temperature. If the heating temperature of the molten steel is too high, there is a disadvantage in operation such as a decrease in the casting speed. Therefore, there is no particular upper limit, but it is appropriate to set the temperature to about 50 ° C. or less.

【0027】かくして得られたスラブは、通常そのま
ま、又は仮置き後加熱炉に装入、加熱、あるいは徐冷却
後、表面手入れ等を施した後、加熱炉に装入、加熱され
る。スラブ加熱は、上述のように、スラブ表面の温度を
基準に行い、その温度が1350℃未満では、ふくれの発生
は極めて少ない上、インヒビター成分の溶体化時間の短
縮効果が期待できないため、1350℃以上とする。ここ
に、電気式加熱炉としては、電磁誘導加熱や抵抗加熱等
が好適である。
The slab thus obtained is usually charged as it is, or after being temporarily placed, charged into a heating furnace, heated, or gradually cooled, and then subjected to surface treatment and the like, and then charged into the heating furnace and heated. As described above, the slab heating is performed based on the temperature of the slab surface.If the temperature is less than 1350 ° C, the occurrence of blistering is extremely small, and the effect of shortening the solution solution time of the inhibitor component cannot be expected. Above. Here, as the electric heating furnace, electromagnetic induction heating, resistance heating, or the like is preferable.

【0028】上記のようにしてスラブを加熱したのち、
熱間圧延によって 1.4〜3.5 mm厚の熱延鋼帯とする。こ
の熱延鋼帯の酸洗工程、その後の1回又は中間焼鈍を挟
む2回以上の冷間圧延工程、それに続く脱炭焼鈍、焼鈍
分離剤塗布及び最終仕上げ焼鈍工程は、それぞれ公知の
手段を用いることができる。
After heating the slab as described above,
Hot-rolled steel strip with a thickness of 1.4 to 3.5 mm is formed by hot rolling. The pickling step of this hot-rolled steel strip, the subsequent one or two or more cold rolling steps sandwiching intermediate annealing, the subsequent decarburizing annealing, the application of an annealing separator, and the final finishing annealing step are performed by known means, respectively. Can be used.

【0029】[0029]

【実施例】【Example】

実施例1 C:0.08%, Si:3.1 %, Mn:0.07%, Se:0.02%, A
l:0.028 %及びN:0.008 %を含有し、残部は実質的
にFeの組成になる溶鋼を(液相線温度+32℃)に加熱
し、電磁溶鋼攪拌を施しつつ連続鋳造してスラブとし
た。このスラブを、熱間圧延工程において、表面温度:
1410℃で35分間加熱したのち、粗圧延に供したが、スラ
ブにふくれの発生はなかった。
Example 1 C: 0.08%, Si: 3.1%, Mn: 0.07%, Se: 0.02%, A
l: 0.028% and N: 0.008%, with the balance being substantially Fe, the molten steel was heated to (liquidus temperature + 32 ° C) and continuously cast to form a slab while stirring with electromagnetic molten steel. . This slab is subjected to a surface temperature in a hot rolling step:
After being heated at 1410 ° C. for 35 minutes, it was subjected to rough rolling, but no swelling occurred in the slab.

【0030】また、比較として、上記と同様の溶鋼を
(液相線温度+15℃)及び(液相線温度+22℃)に加熱
し、それぞれ電磁溶鋼攪拌を施しつつ連続鋳造してスラ
ブとした。このスラブを、上記と同様に熱間圧延に供し
たところ、スラブにふくれの発生が認められた。
For comparison, the same molten steel as above was heated to (liquidus temperature + 15 ° C.) and (liquidus temperature + 22 ° C.), and continuously cast into a slab with electromagnetic molten steel stirring. When this slab was subjected to hot rolling in the same manner as described above, occurrence of swelling was observed in the slab.

【0031】実施例2 C:0.09%, Si:3.5 %, Mn:0.05%, S:0.02%及び
N:0.003 %を含有し、残部は実質的にFeの組成になる
溶鋼を(液相線温度+27℃)に加熱し、電磁溶鋼攪拌を
施しつつ連続鋳造してスラブとした。このスラブを、熱
間圧延工程において、表面温度:1380℃で40分間加熱し
たのち、粗圧延に供したが、スラブにふくれの発生はな
かった。
Example 2 Molten steel containing 0.09% of C, 3.5% of Si, 0.05% of Mn, 0.02% of S, and 0.003% of N, and the balance substantially consisting of Fe (liquidus line) (Temperature + 27 ° C.), and continuously cast into a slab while stirring magnetic steel. This slab was heated at a surface temperature of 1380 ° C. for 40 minutes in a hot rolling step, and then subjected to rough rolling, but no swelling occurred in the slab.

【0032】また、比較として、上記と同様の溶鋼を
(液相線温度+18℃)及び(液相線温度+24℃)に加熱
し、それぞれ電磁溶鋼攪拌を施しつつ連続鋳造してスラ
ブとした。このスラブを、上記と同様に熱間圧延に供し
たところ、スラブにふくれの発生が認められた。
For comparison, the same molten steel as described above was heated to (liquidus temperature + 18 ° C.) and (liquidus temperature + 24 ° C.), and continuously cast into a slab while being subjected to electromagnetic molten steel stirring. When this slab was subjected to hot rolling in the same manner as described above, occurrence of swelling was observed in the slab.

【0033】[0033]

【発明の効果】かくしてこの発明によれば、磁気特性の
向上を目的して電磁溶鋼攪拌を付与した場合であって
も、スラブ加熱時におけるふくれ欠陥の発生を完全に防
止でき、ひいては良好な磁気特性及び表面外観を有する
方向性けい素鋼板の安定製造に寄与し得る。
Thus, according to the present invention, even when electromagnetic molten steel is agitated for the purpose of improving magnetic properties, it is possible to completely prevent the occurrence of blistering defects during slab heating and, consequently, to obtain good magnetic properties. It can contribute to stable production of grain-oriented silicon steel sheets having characteristics and surface appearance.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−19913(JP,A) 特開 昭63−119949(JP,A) 特開 平2−263922(JP,A) 特開 平5−1324(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/00,11/115 C21D 8/12 H01F 1/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-19193 (JP, A) JP-A-63-119949 (JP, A) JP-A-2-263922 (JP, A) JP-A-5-1991 1324 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B22D 11/00, 11/115 C21D 8/12 H01F 1/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】N:0.0025wt%以上を含有する含けい素鋼
スラブを、電磁溶鋼攪拌の下に連続鋳造し、次いでスラ
ブを電気式加熱炉で表面温度1350℃以上に加熱するに当
たり、連続鋳造工程における溶鋼の温度を、液相線温度
よりも25℃以上高い温度域とすることを特徴とする方向
性けい素鋼スラブの加熱方法。
1. A silicon steel slab containing N: 0.0025 wt% or more is continuously cast under electromagnetic molten steel stirring. Then, when the slab is heated to a surface temperature of 1350 ° C. or more in an electric heating furnace, the slab is continuously cast. A method for heating a directional silicon steel slab, wherein the temperature of molten steel in the casting step is set to a temperature range higher than the liquidus temperature by at least 25 ° C.
JP05180206A 1993-07-21 1993-07-21 Heating method of directional silicon steel slab Expired - Fee Related JP3133868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05180206A JP3133868B2 (en) 1993-07-21 1993-07-21 Heating method of directional silicon steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05180206A JP3133868B2 (en) 1993-07-21 1993-07-21 Heating method of directional silicon steel slab

Publications (2)

Publication Number Publication Date
JPH0732093A JPH0732093A (en) 1995-02-03
JP3133868B2 true JP3133868B2 (en) 2001-02-13

Family

ID=16079259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05180206A Expired - Fee Related JP3133868B2 (en) 1993-07-21 1993-07-21 Heating method of directional silicon steel slab

Country Status (1)

Country Link
JP (1) JP3133868B2 (en)

Also Published As

Publication number Publication date
JPH0732093A (en) 1995-02-03

Similar Documents

Publication Publication Date Title
KR100566597B1 (en) Method for producing a magnetic grain oriented steel sheet with low level loss by magnetic reversal and high polarisation
WO2006132095A1 (en) Grain-oriented magnetic steel sheet with extremely high magnetic property and process for producing the same
JP4203238B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3488181B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
JP2002212639A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP3133868B2 (en) Heating method of directional silicon steel slab
JP3340754B2 (en) Method for producing unidirectional silicon steel sheet having uniform magnetic properties in the sheet width direction
JP3538855B2 (en) Manufacturing method of grain-oriented silicon steel sheet
JP3612717B2 (en) Method for producing grain-oriented silicon steel sheet
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JP3538852B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JP3133855B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JP3295008B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
KR100490999B1 (en) Method For Manufacturing Grain-Oriented Silicon Steel Containing High Silicon By Strip Casting Process
JPH0726156B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and surface properties
JPH07118746A (en) Stable production of grain-oriented silicon steel sheet excellent in magnetic property
JPH08269553A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP4200526B2 (en) Method for producing unidirectional silicon steel sheet
JP3536306B2 (en) Method for producing oriented silicon steel sheet excellent in magnetic properties with few steel sheet flaws
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JP3536303B2 (en) Manufacturing method of grain-oriented electrical steel sheet with uniform magnetic properties in the width direction
JPH07138641A (en) Production of grain-oriented electrical steel sheet excellent in magnetic property
JPH0754045A (en) Manufacture of grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees