JPH0310020A - Production of grain-oriented silicon steel sheet excellent in magnetic property and surface characteristic - Google Patents
Production of grain-oriented silicon steel sheet excellent in magnetic property and surface characteristicInfo
- Publication number
- JPH0310020A JPH0310020A JP11364389A JP11364389A JPH0310020A JP H0310020 A JPH0310020 A JP H0310020A JP 11364389 A JP11364389 A JP 11364389A JP 11364389 A JP11364389 A JP 11364389A JP H0310020 A JPH0310020 A JP H0310020A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- silicon steel
- grain
- recrystallization
- pass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000005096 rolling process Methods 0.000 claims abstract description 76
- 238000000137 annealing Methods 0.000 claims abstract description 18
- 230000009467 reduction Effects 0.000 claims abstract description 16
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 238000005097 cold rolling Methods 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 17
- 238000005261 decarburization Methods 0.000 claims description 4
- 238000001953 recrystallisation Methods 0.000 abstract description 55
- 238000000034 method Methods 0.000 abstract description 21
- 239000000203 mixture Substances 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 4
- 239000003112 inhibitor Substances 0.000 description 14
- 229910000831 Steel Inorganic materials 0.000 description 11
- 238000005098 hot rolling Methods 0.000 description 11
- 239000010959 steel Substances 0.000 description 11
- 239000006104 solid solution Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 201000004384 Alopecia Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000003676 hair loss Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、圧延方向に優れた電(fi特性を(V4’る
ー・方向性珪素鋼板の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a grain-oriented silicon steel sheet having excellent electrical (fi) characteristics in the rolling direction.
〈従来の技術〉
方向性珪素鋼板は周知のごとく変圧器その他の電気機器
の鉄心材料として使用され、板面に(110)面、圧延
方向に<001>軸が揃った2次再結晶粒によっ゛ζ構
成されている。このようなれ+1重み値の2次再結晶粒
を発達さ−lるためにはインヒビターとよばれる微細な
MnS、 MnSc、 AIN等の析出物を鋼中に分散
させ、高温仕1:vt、鈍中に他の方位の結晶粒の成長
を効果的に作詞することが必要である。そのためのイン
ヒビター分散形態のコンI・ロールは熱間圧延に先立つ
スラブ加熱中にこれら析出物を一旦固溶させ、この後適
当な冷却パターンの熱間圧延を施すことにより行われる
。<Prior art> As is well known, grain-oriented silicon steel sheets are used as core materials for transformers and other electrical equipment, and have secondary recrystallized grains with (110) planes on the plate surface and <001> axes aligned in the rolling direction. Therefore, it is composed of ゛ζ. In order to develop such secondary recrystallized grains with a weight value of +1, fine precipitates such as MnS, MnSc, AIN, etc. called inhibitors are dispersed in the steel and subjected to high temperature treatment 1:vt, dulling. It is necessary to effectively capture the growth of grains in other orientations. The inhibitor-dispersed Con I roll for this purpose is produced by temporarily dissolving these precipitates into solid solution during slab heating prior to hot rolling, and then hot rolling with an appropriate cooling pattern.
ごごで、熱間圧延の役割はスラブ鋳造組繊を再結晶によ
り、微細化し2次再結晶に最適な集合組織を得ることを
目的としている。従来の技術はインヒビクー固溶あるい
は組織微細化を個々に達成しようとするもので、それに
関する特許はこれまでに多数公開されている。The purpose of hot rolling is to refine the slab-cast composite fibers by recrystallization and obtain an optimal texture for secondary recrystallization. Conventional techniques attempt to individually achieve inhibiting solid solution or microstructural refinement, and many patents related to this have been published so far.
例えば、インヒビター固溶に関しては特開昭63109
11号公報にて開示されているように、スラブ表面温度
が1420〜1495°Cの温度域に5〜60分保持す
るに際し、1320’C以上において、1420〜!4
95°Cの温度に達するまで8°C/分以上のIl′温
速変速度温することにより、表面欠陥が少なく特性良好
な一方向性珪素鋼板が得られるとしている。この方法に
より鏡かにインヒビターの完全固溶は達成でき、原理的
にはスラブ表面粒の粗大化も抑制され表面性状も改善で
きるが、しかしスラブのような重量物に対して均一にこ
のような条件を達成することは実際には困難であり、特
にスラブ全長にわたって結晶粒粗大化を完全に抑制する
ことは不可能で、&1IVsの均一性を保証するために
は熱間圧延時に何らかの結晶粒微細化の処置を加えるこ
とが必要である。For example, regarding inhibitor solid solution, JP-A-63109
As disclosed in Publication No. 11, when the slab surface temperature is held in a temperature range of 1420 to 1495°C for 5 to 60 minutes, at 1320°C or higher, 1420 to 1495°C! 4
It is stated that a unidirectional silicon steel sheet with few surface defects and good properties can be obtained by increasing the Il' temperature at a rate of 8°C/min or more until the temperature reaches 95°C. By this method, it is possible to achieve a complete solid solution of the inhibitor, and in principle, coarsening of the surface grains of the slab can be suppressed and the surface quality can also be improved. It is difficult in practice to achieve these conditions, especially since it is impossible to completely suppress grain coarsening over the entire length of the slab, and some grain refinement during hot rolling is necessary to ensure uniformity of &1IVs. It is necessary to take measures to reduce the
一方、組Ia微細化に関し°ζは、例えば特開昭54−
120214号公報で開示されたll90〜960°C
での再結晶高圧下圧延による方法、特開昭55−119
12G号公報で開示された1230〜960 ’Cで、
T相を3%以上含んだ状態での30%以上の高圧下圧延
による方法、特開昭57−11614号公報で開示され
た粗圧延開始温度を1250’C以下にする方法、特開
昭59−93828号公報で開示された1050〜12
00’cで歪速度15s−’以下、圧下率を!5%/パ
ス以上とする方法などが既に知られ°ζいる。これらは
いずれもI200°C付近の温度域で、高圧下圧延を行
って、組織微細化をはかるという点で共通している。ず
なわら、これらはいり“れも[鉄と鋼J 67 (19
81) S 1200に発表されζいる再結晶限界に関
する知見あるいはそれと同一の技術思想に基づいている
。第6図はこの知見を示すものである。この図の示すと
ごろは高温での圧延は再結晶には全く寄Ljせず、低温
での再結晶域での大きな歪付加のみが再結晶に寄与する
という点である。すなわち高温加熱したスラブでも再結
晶による組織@細化を狙うためには1250°C以下に
冷却後圧延することが必須であることを示している。こ
れらの技術ではいずれの場合も加熱に関しては、125
0°C以上としており上限は特に規定していない、長時
間炉内に保持することにより、インヒビクーを固溶して
、スラブ粒成長はある程度容認し、熱間圧延により精微
細化するという点が共通している。On the other hand, regarding the miniaturization of group Ia, °ζ is, for example,
1190-960°C disclosed in Publication No. 120214
Recrystallization method by high pressure rolling, JP-A-55-119
1230-960'C disclosed in Publication No. 12G,
A method of rolling with a high reduction of 30% or more in a state containing 3% or more of the T phase, a method of reducing the rough rolling start temperature to 1250'C or less disclosed in JP-A-57-11614, JP-A-59-1988 1050-12 disclosed in -93828 publication
00'c, strain rate 15s-' or less, reduction rate! There are already known methods for increasing the ratio to 5%/pass or more. All of these have in common that they are rolled at a high pressure in a temperature range around 200° C. to refine the structure. Zunawara, these are "remo [Tetsu to Hagane J 67 (19
81) It is based on the knowledge regarding the recrystallization limit published in S 1200 or the same technical idea. Figure 6 shows this finding. This figure shows that rolling at high temperatures does not contribute to recrystallization Lj at all, and only large strain addition in the recrystallization region at low temperatures contributes to recrystallization. In other words, even in a slab heated to a high temperature, it is essential to cool it to 1250° C. or lower and then roll it in order to achieve a finer structure due to recrystallization. In both of these techniques, the heating rate is 125
The temperature is set at 0°C or higher, and there is no upper limit specified.The point is that by keeping the slab in the furnace for a long time, the inhibitor is dissolved into solid solution, allowing slab grain growth to some extent, and refining by hot rolling. They have something in common.
しかしこれらの技術の実際を考えた場合、インヒビター
を完全固溶させるためにスラブを高温加熱するとホット
ストリップミル上に、冷却装置が必要であり、また低温
熱延のためにミルパワーが余計に必要となるなど、省エ
ネ、高生産性を目的とする、ホットストリップミルの思
想とも矛盾する。また低温圧延の効果に関しても必ずし
も明確でなかった。However, when considering the reality of these technologies, heating the slab at high temperatures to completely dissolve the inhibitor requires a cooling device on the hot strip mill, and additional mill power is required for low-temperature hot rolling. This contradicts the idea of a hot strip mill, which aims to save energy and increase productivity. Furthermore, the effects of low-temperature rolling were not always clear.
つまり、これらの方法を実工程に適用するにはその効果
が小さいねりには余りにも問題が多かった。In other words, there were too many problems to apply these methods to actual processes when the effect was small.
〈発明が解決しようとする課題〉
よって本発明の目的はホットストりンプミルの量産性と
い・うメリットを最大限に生かし、かつ、インヒビター
完全固溶及び表面性状改作に有利な高温加熱を適用した
条件下でも、完全微細均一な組機を確実に得゛ζ、均一
で優れた磁気特性及び表面性状を有する方向性珪素鋼板
の製造方法を提案するものである。<Problems to be Solved by the Invention> Therefore, the purpose of the present invention is to maximize the advantage of mass production of hot strip mills, and to develop conditions that apply high temperature heating that is advantageous for complete solid solution of the inhibitor and modification of surface properties. The present invention also proposes a method for producing a grain-oriented silicon steel sheet that reliably obtains a perfectly fine and uniform assembly machine and has uniform and excellent magnetic properties and surface texture.
く課題を解決するための手段〉
本発明は、垂計%で、c : o、ot〜0.08%、
Sl:2.5〜4.0%、 Mn : 0.03〜0.
10%を含み、さらにS、Se及び八!の1種以上をo
、ot 〜o、o6%含有づ゛る珪素鋼スラブを加熱後
、粗圧延に引き続き熱間仕上圧延し、次いで1回ないし
中間焼鈍を挟む2回の冷間圧延により最終板厚とし、脱
炭焼鈍ののち最終仕上焼鈍を施す一連の工程からなる方
向性珪素鋼板の製造方法におい°ζ、該粗圧延1パスめ
の圧延温度Tl(”C)を1280℃以上とし、かつ圧
下率R1(%)を
60≧R1(%)≧−0,5TI+670とし、次いで
次バスまでに30秒以上保持し、さらに該↑1.1圧延
最終パスにおける圧延温度Tt(’c)を1200°C
以上とし、かつ圧下率IZ2(%)を70≧R2(%)
≧−0.IT!+165とすることを特徴とする特許
優れた方向性珪素鋼板の製造方法である6く作 用〉
本発明者らは高温域での再結晶挙動について多くの研究
を行った結果、従来は雷同1ν域であるとして、全く興
味の対象とされなかった高温域でも、歪里が十分大きけ
れば再結晶がl−分に進行することを新たに見出した.
この点についてはこれ:rで全く報告はない.というの
は工業的には高温加熱がul常にデにしかったこと、そ
して実験室的に検討する場合でも、高温圧延するには高
温加熱する必要があるがスケール生成や実験炉の補修な
との問題があり非常な困難があったからである.また廿
通鋼については多数実験報告があるが、1200’c以
[一の高温域は動的復旧jl域であり回復または動的再
結晶が主であるとされ、それ以上の検討が十分なされて
いなかった.特に方向性珪素鋼の場合3%程度のSiを
含むのでほとんどがα相であり、α相は回復しゃずいと
されているので動的再結晶は起こらないであろうという
ことで全く興味の対象とされていなかった。Means for Solving the Problems〉 The present invention has a vertical % c: o, ot~0.08%,
Sl: 2.5-4.0%, Mn: 0.03-0.
Contains 10% and further contains S, Se and 8! one or more of the following
, ot ~ o, after heating a silicon steel slab containing 6% o, it is rough rolled and then hot finish rolled, then cold rolled once or twice with intermediate annealing to obtain the final plate thickness, and then decarburized. In a method for producing a grain-oriented silicon steel sheet consisting of a series of steps of final annealing after annealing, the rolling temperature Tl ("C) of the first pass of rough rolling is set to 1280°C or higher, and the rolling reduction R1 (% ) is set to 60≧R1(%)≧-0,5TI+670, then held for 30 seconds or more until the next bath, and further the rolling temperature Tt ('c) in the final rolling pass of ↑1.1 is set to 1200°C.
or more, and the rolling reduction rate IZ2 (%) is 70≧R2 (%)
≧−0. IT! +165 Patented method for manufacturing grain-oriented silicon steel sheet The present inventors have conducted extensive research on recrystallization behavior in high-temperature ranges. We have newly discovered that even in the high temperature range, which has not been of interest at all, if the strain is large enough, recrystallization can proceed in l-min.
Regarding this point, there is no report on this:r. This is because high-temperature heating has always been difficult in industry, and even in laboratory studies, high-temperature heating is necessary for high-temperature rolling, but there are problems such as scale formation and repair of experimental furnaces. This is because there were problems and great difficulties. In addition, there are many experimental reports on Nitong steel, but it is said that the first high temperature region after 1200'c is the dynamic recovery Jl region, where recovery or dynamic recrystallization is the main process, and further studies have not been conducted sufficiently. It wasn't. In particular, in the case of grain-oriented silicon steel, it contains about 3% Si, so most of it is α phase, and since the α phase is said to be unlikely to recover, dynamic recrystallization will not occur, so it is of interest at all. It was not considered.
しかし本発明−バらはこの通説に疑問をもら超高温加熱
が可能なスリ・−ルの影響の少ない高温炉を開発し、実
験を行い前述のような結果を初めて見出したのである。However, the inventors of the present invention questioned this common theory and developed a high-temperature furnace capable of ultra-high temperature heating with little influence from the thrall, conducted experiments, and found the above-mentioned results for the first time.
次に本発明に至った実験について説明ずる。重用%で、
C : 0.0.1%, Si :3.3G%, Mn
: 0.05%Sa : 0.022%を含み残部
実質的にFeからなる珪素鋼スラブをl350゜Cで3
0分間加熱し、所定の温11になったときに1パス圧延
してその後水冷し断面組織を観察し再結晶率を測定した
.圧延温度及び圧下率をいろいろ変更した.こうして得
られた結果を第1図に示す。Next, the experiments that led to the present invention will be explained. In heavy use%,
C: 0.0.1%, Si: 3.3G%, Mn
: 0.05% Sa: A silicon steel slab containing 0.022% and the remainder substantially Fe was heated at 350°C.
The material was heated for 0 minutes, and when the temperature reached a predetermined temperature of 11, it was rolled for one pass and then cooled with water to observe the cross-sectional structure and measure the recrystallization rate. Various changes were made to the rolling temperature and reduction rate. The results thus obtained are shown in FIG.
従来の知見では全く再結晶しないとされていた高温域−
例えばl350゜Cでも、30%以上の圧下率があれば
再結晶が進むことが見出された.しかも圧延後30秒以
上、より好ましくは60秒間以上等温保持することによ
り、さらに再結晶完了域が拡張づるごとも確認されたや
ごの現象は次のように理解される.まづ゛圧延後の未再
結晶粒内にはtIlいネッI・ノーク状の転位組織で構
成されるザブブレ・rンが形成されているのが観察され
た。したがって、回復は圧延後のかなり速い時点で終了
していると11[定される。しかも結晶粒間でこのネノ
ト▼ノークQ)illさJなわら転位密度が異なる。ぞ
ごCこの転位南瓜の差が再結晶の駆動力となると考えら
れる。A high temperature range where conventional knowledge suggests that there is no recrystallization at all.
For example, it was found that even at 1350°C, recrystallization progresses if the rolling reduction is 30% or more. Moreover, it was confirmed that the area where recrystallization is completed expands further by holding isothermally for 30 seconds or more, preferably 60 seconds or more after rolling.The Yago phenomenon can be understood as follows. First, it was observed that a zigzag ridge consisting of a tIl, net, and node-like dislocation structure was formed in the unrecrystallized grain after rolling. Therefore, it is determined that the recovery ends fairly quickly after rolling. Moreover, the straw dislocation density differs between crystal grains. It is thought that this difference in dislocations is the driving force for recrystallization.
高温では↑q界が熱活性化されてf>動V+f能となり
、その移動した粒界がある程度以」二の曲率をノ)つと
そ4I,は1■i結晶核となりi″′fる。ごうし7た
現象が起こり、UL来は動的再結晶を起ごずほど歪はた
まらないとされた高温域でも実は再結晶が可能であるこ
とを確認した。ただしこのili結晶挙動は上述したよ
)に未再結晶域の転IIγ密度が低いためその成長の駆
動力はjl常に小さい.しかし粒界の易動度が非常に大
きいとき、すなわち温度が高いとき(1280゜(:以
1−)には時間がある程度かかるが十分vト結晶11能
となるのである。At high temperatures, the ↑q field is thermally activated and becomes f>dynamic V+f, and when the moved grain boundary has a certain curvature of 2), 4I, becomes 1■i crystal nucleus i'''f. A similar phenomenon occurred, and we confirmed that recrystallization is actually possible even in the high temperature range where dynamic recrystallization does not occur and strain is unbearable in UL.However, this ili crystal behavior was described above.) However, when the mobility of grain boundaries is very large, that is, when the temperature is high (1280 Although it takes a certain amount of time, the crystal becomes fully functional.
この現象は従来のよく知られている静的再結晶とは様子
がかなり異なる。This phenomenon is quite different from the conventional well-known static recrystallization.
ごこまで述べた点は3%Si鋼で1300℃以」二の温
度域圧延の場合、ずなわらα相単相の状態での再結晶機
構であり、今回はじめて明らかになった点である.これ
に対して、3%珪素鋼で従来知られていた第6図に示す
再結晶限界曲線を与えるのは硬質のγ相が析出しその近
傍のみで再結晶が促進された場合である.つまり従来は
圧延実験でデータをだしてはいるが、その圧延前の熱処
理方法が省略され過ぎていたため、本発明の基となった
実験結果とは異なった結果が得られたものと占えられる
.すなわち高温で熔体化処理したサンプルを室温まで一
度冷却してから再加熱し゜ζ所定の圧延温度として圧延
に供していたのである.この場合tJIHN中には必ず
γ相が一部生成する.γ相はα粒の粒界付近に優先的に
生成し、そこでは再結晶が容易に進行する.しかしこの
場合でも、元の粒径がスラブ鋳造粒のように粗大な場合
には再結晶は完了しがたく、旧誼中心部にはどうしても
未再結高部が残りやすい、またγ相分率とその分11に
は温度のみならず、C,5tffiや歪■そして冷却速
度(保持時間)にも大きく依存する。したがって少しの
処理条1′1の変化でもその効果が大きく変化すること
が知られている。これが従来低温熱延による特徴細化効
果が安定して得られなかった大きな理由であったとf(
I定される。また一方で、Clを増すこと(i11大カ
ーバイトの増加)により、後工程で強い集積を持った圧
延集合組環が1Ntられにくくなるという欠点もある。The point I have mentioned so far is that when rolling 3% Si steel in a temperature range of 1300°C or higher, the recrystallization mechanism occurs in a single α-phase state, a point that has been clarified for the first time this time. .. On the other hand, the recrystallization limit curve shown in Figure 6, which is conventionally known for 3% silicon steel, is obtained when the hard γ phase precipitates and recrystallization is promoted only in its vicinity. In other words, in the past, data had been obtained from rolling experiments, but because the heat treatment method before rolling was omitted, it can be assumed that the results obtained were different from the experimental results that formed the basis of the present invention. In other words, samples that had been melted at high temperatures were cooled to room temperature and then reheated to a predetermined rolling temperature before being rolled. In this case, some γ phase is always generated during tJIHN. The γ phase preferentially forms near the grain boundaries of α grains, where recrystallization progresses easily. However, even in this case, if the original grain size is coarse like slab cast grains, recrystallization is difficult to complete, and unrecrystallized high areas tend to remain in the center of the former, and the γ phase fraction The amount 11 depends not only on the temperature but also on C, 5tffi, strain 2, and cooling rate (holding time). Therefore, it is known that even a slight change in the treatment strip 1'1 can greatly change the effect. This was a major reason why the feature refinement effect by low-temperature hot rolling could not be stably obtained in the past.
I is determined. On the other hand, there is also the drawback that increasing Cl (increasing i11 large carbide) makes it difficult to form a rolled set ring with strong accumulation by 1Nt in the subsequent process.
ところが今回本発明者らが見出した高温でのα単相の場
合の再結晶挙動は、従来の低温でのγ相存在下の再結晶
と異なり、γ相を再結晶核41−成4ノイドとじず、!
iに粒界が核生成サイトとなり、また再結晶粒径も比較
的大きくなりやすいので、未再結晶部が残存しにくく、
均一な再結晶粒m礒が得やすい。However, the recrystallization behavior of a single α phase at high temperatures that the present inventors discovered is different from conventional recrystallization in the presence of a γ phase at low temperatures, and the γ phase is separated by recrystallization nuclei 41-4 noids. figure,!
Since the grain boundaries become nucleation sites in i, and the recrystallized grain size tends to become relatively large, it is difficult for unrecrystallized parts to remain,
It is easy to obtain uniform recrystallized grains.
以上に述べたに’14での再結晶条件下では高温加熱ス
ラブをそのまま圧延しても、粗大粒を′IIIIll化
することが可能となる。また熱延途中で圧延待ちなどに
より低温化する必要もないので、ホットストリップミル
のメリッ]・を最大限利用できる。As described above, under the recrystallization conditions of '14, even if the high-temperature heated slab is rolled as it is, coarse grains can be converted to 'IIIll'. In addition, there is no need to lower the temperature during hot rolling by waiting for rolling, etc., so the advantages of a hot strip mill can be utilized to the fullest.
以上の基本的知見を基に本発明は構成されたものである
。The present invention has been constructed based on the above basic knowledge.
次に本発明の構成要件についてさらに詳述する。Next, the constituent elements of the present invention will be explained in more detail.
本発明では後で述べる成分組成からなる珪素鋼スラブを
加熱炉に装入し加熱するが、加熱温度および加熱時間は
インヒビターの種類やmによって異なり、インヒビター
の完全固溶を達成できる時間が41保されればよい、た
だし在炉があまり長すぎると多量のスケールが発生ずる
ので、表面性状に悪影響を及ぼさない程度の時間加熱す
る。こうして高温加熱され、インヒビクーが完全固溶状
態のスラブは粗圧延に供・[られる。In the present invention, a silicon steel slab having a composition described later is charged into a heating furnace and heated, but the heating temperature and heating time vary depending on the type and m of the inhibitor, and the time required to achieve complete solid solution of the inhibitor is 41 However, if the furnace remains in the furnace for too long, a large amount of scale will be generated, so the heating time is sufficient to avoid adversely affecting the surface properties. The slab, which is thus heated to a high temperature and in which the inhibitor is completely dissolved, is subjected to rough rolling.
粗圧延は通常5〜6バスで行われるが、今回の実験結果
により特に重要なのは第1バスとそれに続く保持および
最終パスであることを知見した。Rough rolling is usually performed in 5 to 6 passes, but the results of this experiment revealed that the first pass, subsequent holding and final pass are particularly important.
第1パス目終了後の保持中ずなわら第2パスロ直前では
、完全再結晶した組繊を得ることが重要である。工場で
の実験結果を第2図に示す、1ill常の圧延方法では
パス間時間は圧延機列により決まり、tillスタンド
と2スタンド間の時間は20秒程度である。したがって
圧延直後に95%以上の再結晶率を得ることは非常に困
難であるが、圧延後に30秒以上好ましくは60秒間以
上保持することにより、容易に95%以上の再結晶率を
得るこ七ができるようになることが判る。第3図に再結
晶進行状況を示す、また第1パス目は1280’C以上
で圧延されなければならない、このときの温度Tl(’
C)で再結晶に必要な圧下率R1(%)は、第2図に示
される結果等により、下式に示す条件を満足することが
必要である。During holding after the first pass and just before the second pass, it is important to obtain completely recrystallized braided fibers. The experimental results at the factory are shown in FIG. 2. In the one-ill rolling method, the time between passes is determined by the row of rolling mills, and the time between the till stand and the second stand is about 20 seconds. Therefore, it is very difficult to obtain a recrystallization rate of 95% or more immediately after rolling, but it is possible to easily obtain a recrystallization rate of 95% or more by holding the rolling for 30 seconds or more, preferably 60 seconds or more. It turns out that it becomes possible to do this. Figure 3 shows the progress of recrystallization, and the first pass must be rolled at 1280'C or higher, at which temperature Tl('
The rolling reduction ratio R1 (%) required for recrystallization in C) needs to satisfy the conditions shown in the following formula, based on the results shown in FIG.
60≧R,(%)≧−o、s T+ 4−s7゜さらに
、再結晶進行の時間を確保するため、30秒以上好まし
くは60秒以上の保持が必要である。60≧R, (%)≧−o, s T+ 4−s7° Furthermore, in order to ensure time for recrystallization to proceed, it is necessary to hold for 30 seconds or more, preferably 60 seconds or more.
第1パス目で完全に再結晶が完了すれば表層での熱間ワ
レに起因するヘゲ発生はかなり抑制されることも併せて
知見した。また未再結晶部の残存による最終焼鈍での2
次再結晶不良領域の抑制にも効果があることも判明した
。It was also found that if recrystallization is completely completed in the first pass, the occurrence of baldness due to hot cracking on the surface layer is considerably suppressed. In addition, due to the remaining unrecrystallized parts, 2
It was also found that it is effective in suppressing the defective region of subsequent recrystallization.
なお訂【圧延では再結晶組織を微細化するよりも未再結
晶部を残さない方が重要である。したがって粗圧延最終
パスもα単相域で再結晶さ仕ることが必要である。とい
うのは(α+r)2相域圧延ではγ粒の方が硬質である
ため歪は1粒近傍に集中してMJr1シ、γ粒近傍が優
先的に再結晶するが、T粒は主に旧α粒界に出現するの
で、どうしてもtu taは不均一になるからである。Note: In rolling, it is more important to avoid leaving unrecrystallized areas than to refine the recrystallized structure. Therefore, it is necessary to perform recrystallization in the α single phase region also in the final pass of rough rolling. This is because in (α+r) two-phase region rolling, the γ grains are harder, so the strain concentrates near one grain, and in MJr1, the vicinity of the γ grains preferentially recrystallizes, but the T grains mainly This is because tu ta inevitably becomes non-uniform since it appears at α grain boundaries.
fi1m柊バス直前ではそれまでの圧延の効果により結
晶粒は再結晶微細化されているので再結晶限界は工場で
の実験結果より第2図よりやや下方にシフトして第4図
のようになる。第4図にはγ相が出現する領域を斜線で
示しているが圧下率が高くなるにしたがっ°ζTζ重相
温度が高(なっている、これは歪誘起変態によるもので
ある。γ相が出現しないでα単相で圧下を加えるには1
200℃以上の圧延温度Tア(°C)が必要である。ま
た圧延直後に75%以上の再結晶率を安定して得るため
に必要な圧下率R1(%)は、第4図に示された結果等
より、下式に示す条件を満足することが必要である。Immediately before the fi1m Hiiragi bath, the crystal grains are recrystallized and refined due to the effect of rolling, so the recrystallization limit is shifted slightly downward from Fig. 2 based on the experimental results at the factory, and becomes as shown in Fig. 4. . In Figure 4, the region where the γ phase appears is indicated by diagonal lines, and as the rolling reduction rate increases, the °ζTζ superposition temperature increases (this is due to strain-induced transformation. To apply pressure in α single phase without appearing, 1
A rolling temperature T (°C) of 200°C or higher is required. In addition, the rolling reduction R1 (%) required to stably obtain a recrystallization rate of 75% or more immediately after rolling must satisfy the conditions shown in the formula below, based on the results shown in Figure 4. It is.
70≧1?2(%)≧−0,I Tz1165なおI1
1圧延での圧下率の上限は次パス以降の圧延において、
十分な圧下率を確保するために設けることが必要で、第
1パス60%、最終パス70%とした。70≧1?2(%)≧-0, I Tz1165 I1
The upper limit of the rolling reduction in one rolling is as follows:
It was necessary to provide this in order to ensure a sufficient rolling reduction ratio, and the first pass was 60% and the final pass was 70%.
この後の熱間仕上圧延条件は通常と特に変わるとごろは
ない、仕上圧延nQに均一な&I!m(未再結晶粒なし
)を得ていれば、仕上圧延前段において、(αトr)2
相域での再結晶が起こりIllll細微細化易に達成で
きる。仕上圧延された熱延鋼帯は必要に応じて焼鈍後酸
洗され、1回乃至中間焼鈍を扶む2回の冷延で0.15
〜0.50mm厚程度0最終板厚上なる。The hot finish rolling conditions after this are not much different from usual, and the finish rolling nQ is uniform &I! If m (no unrecrystallized grains) is obtained, (αtr)2 is obtained in the first stage of finish rolling.
Recrystallization occurs in the phase region, and Illllll refinement can be easily achieved. The finish-rolled hot-rolled steel strip is annealed and pickled if necessary, and cold-rolled once or twice with intermediate annealing to achieve a 0.15
~0.50mm thicker than the final plate thickness.
次に成分限定理由を以下説明する。Next, the reason for limiting the ingredients will be explained below.
Cの範囲を0.010−0.080重計%とじたのは熱
間圧延中に(αトγ)域を通過させることによって熱延
&(1織の改善をはかることを意図したもので、その適
性範囲として限定したものである。The reason why the range of C was limited to 0.010-0.080% by weight was intended to improve the hot rolling & (1 weave) by passing through the (α and γ) regions during hot rolling. , which is limited to its appropriate range.
Siは鋼板の比抵抗を高め鉄1貝の低減に仔効であるが
、4.0垂■%を上回ると冷延性が川な:bれ、2.5
重量%を下回ると鉄tn低減効果が弱まること及び2次
再結晶と純化のため行われる最終高温仕上焼鈍において
α−γ変態によって結晶方位のランダム化を生じ十分な
特性を得られないごとによる。Si is effective in increasing the resistivity of the steel sheet and reducing the iron oxide, but if it exceeds 4.0%, the cold rollability deteriorates.
If it is less than % by weight, the effect of reducing iron tn is weakened, and in the final high-temperature finish annealing performed for secondary recrystallization and purification, randomization of crystal orientation occurs due to α-γ transformation, making it impossible to obtain sufficient properties.
Mnlは熱間脆性による割れを生じない下限の同として
0.03重世%が必要であり、上限はMnSやMnSe
の解離固溶温度を高めないため、及びスラブ抽出からね
圧延に至る時間規制の過程でインヒビターの粗大化を起
こさせないため0.lOm攪%に制限される。Mnl needs to be 0.03% as the lower limit that does not cause cracking due to hot embrittlement, and the upper limit is MnS and MnSe.
In order not to increase the dissociation temperature of the solid solution, and to prevent the inhibitor from becoming coarse in the time-controlled process from slab extraction to rolling. Limited to lOm stirring %.
S、 Se、 AIはMnS、 MnSe、AINの形
で鋼中に微細に分+1k L、インヒビターとして作用
するものでこレラの&Htの下限o、otomi%はイ
ンヒビターとして機能する最低の■であり、上限の0.
10重1%はMnの場合と同様インヒビターの解離固溶
をしやずくすることと熱延中の粗大化防止の点から決め
た。なおAlをインヒビター成分とし°ζ用いる場合、
これにバランスするNlが必要になるのは言うまでもな
い、Nの好適量は0.001〜0.065 mff1%
である。S, Se, and AI are microscopically present in the steel in the form of MnS, MnSe, and AIN, and act as inhibitors. Upper limit of 0.
As in the case of Mn, 1% by weight was determined from the viewpoints of suppressing the dissociation and solid solution of the inhibitor and preventing coarsening during hot rolling. Note that when Al is used as an inhibitor component,
It goes without saying that Nl is needed to balance this, and the preferred amount of N is 0.001 to 0.065 mff1%
It is.
・インヒビターとしては上記元素の他にsbやSn。- In addition to the above elements, sb and Sn can be used as inhibitors.
As、 r’b、旧、 Cu、 Mo、 B等の粒界
偏析元素が知られており、これらを併用することも可能
である。Grain boundary segregation elements such as As, r'b, Cu, Mo, and B are known, and it is also possible to use these in combination.
なお」二記本発明を工場で効率的かつ効果的に達成する
ためには通常ある5〜6台の粗圧延機を全スタン1′使
用するのではなく、3〜4スタンドとすることが効果的
であり、望ましい。特に第1スタンドでの1バス圧延後
の第2スタンド圧延省略、第3スタンドでの2パス圧延
後の第4スタン1′圧延省略等の圧延方法が適切である
。Note that in order to efficiently and effectively achieve the present invention in a factory, it is effective to use 3 to 4 rough rolling mills instead of the usual 5 to 6 rough rolling mills for each stand. desirable. Particularly suitable are rolling methods such as omitting the rolling on the second stand after one-pass rolling on the first stand and omitting rolling on the fourth stand 1' after two-pass rolling on the third stand.
〈実施例〉
実施例1
C: 0.04+1重量%、 Si : 3.30重重
量、 Mn : 0.054重f%、 Se : 0
.022ffiffi%、及びsb: 0.024重
層%を含有し、残部実質的にFeよりなる連鋳スラブを
加熱炉に装入し、N2雰囲気中で均熱保持し、均熱終了
後直らに粗圧延に供した。なおこれらの条件は表1に示
した。粗圧延終了後は30+w厚のシートバーとし、以
後は仕上タンデムミルで2.0ffi厚の熱延g坂とし
た。この熱延鋼板を酸洗後1次冷延、中間VF、錬の後
、2次冷延で0.23m厚の製品厚に仕上げた。この後
脱炭焼鈍を行いngoを塗布した後、2次再結晶、純化
を目的とする最終仕上焼鈍工程を経て最終製品とした。<Example> Example 1 C: 0.04+1% by weight, Si: 3.30% by weight, Mn: 0.054% by weight, Se: 0
.. A continuously cast slab containing 0.022ffiffi% and sb: 0.024 double layer%, with the remainder substantially consisting of Fe, was charged into a heating furnace, kept soaked in a N2 atmosphere, and rough rolled immediately after the soaking was completed. Served. Note that these conditions are shown in Table 1. After the rough rolling was completed, the sheet bar was made into a sheet bar with a thickness of 30+W, and thereafter, it was made into a hot-rolled g slope with a thickness of 2.0ffi using a finishing tandem mill. This hot rolled steel sheet was pickled, first cold rolled, intermediate VF, tempered, and then second cold rolled to a product thickness of 0.23 m. After this, decarburization annealing was performed and NGO was applied, followed by secondary recrystallization and a final finish annealing process for purification to obtain a final product.
製品の特性は表1に併記した。また表面性状や2次再結
晶不良部の幅方向での比率も併せて示した。長手方向特
性のデータは第5図に示した。The characteristics of the product are also listed in Table 1. The surface properties and the ratio of defective secondary recrystallization areas in the width direction are also shown. Data on longitudinal properties are shown in FIG.
表1及び第5図から明らかなように素圧延を高温入圧F
で行い保持したものが、磁気特性、表面性状、幅方向で
の均一な2次再結晶の進行、長手方向における磁気特性
の均一性といった点で優れていることがわかる。As is clear from Table 1 and Figure 5, raw rolling is carried out under high temperature input pressure F.
It can be seen that the specimens which were maintained in the same manner as above are superior in terms of magnetic properties, surface texture, uniform progression of secondary recrystallization in the width direction, and uniformity of magnetic properties in the longitudinal direction.
実施例2
C: 0.035重最%、 Si : 2.98mm%
、 Mn : [1,072重喰%、 s : o
、ots重■%を含有し残部実質的にFOよりなる連鋳
スラブを加熱炉に装入し、l¥囲気中で均熱保持し、均
熱終了後直ちに粗圧延に供したが、その条件は表2に示
した。粗圧延終了後は35nml¥のシートバーとし、
以後は仕上タンデムミルで2.4鋪厚の熱延鋼板とした
。この熱延鋼板を酸洗後1次冷延、中間焼鈍の後、2次
冷延で0.35mm厚の製品厚に仕上げた。この後脱炭
焼鈍を行いMgOを塗布乾燥後、2次再結晶と純化を目
的とする最終仕上焼鈍工程を経て最終製品とした。Example 2 C: 0.035% by weight, Si: 2.98mm%
, Mn: [1,072% weight loss, s: o
A continuous cast slab containing 0.5% by weight and the remainder substantially consisting of FO was charged into a heating furnace, kept soaked in an atmosphere of 1 yen, and immediately subjected to rough rolling after soaking, but the conditions were not met. are shown in Table 2. After rough rolling, it becomes a sheet bar of 35nml¥,
Thereafter, a hot rolled steel plate with a thickness of 2.4 mm was produced using a finishing tandem mill. This hot rolled steel sheet was pickled, first cold rolled, intermediate annealed, and then second cold rolled to a product thickness of 0.35 mm. After this, decarburization annealing was performed, MgO was applied and dried, and a final finish annealing process was performed for the purpose of secondary recrystallization and purification to obtain a final product.
製品の特性は表2に併記した。また表面性状や2次再結
晶不良部の幅方向比率も併せて示した0表2から明らか
なように粗圧延を高温大圧下で行い保持したものが磁気
特性、表面性状、幅方向での均一な2次再結晶の進行状
況といった点で優れ′ζいることがわかる。The characteristics of the product are also listed in Table 2. In addition, as is clear from Table 2, which also shows the surface texture and the ratio of secondary recrystallization defective areas in the width direction, those that are rough rolled at high temperatures and under large pressure have uniform magnetic properties, surface texture, and uniformity in the width direction. It can be seen that the progress of secondary recrystallization is excellent.
実施例3
C: 0.050重量%、 Si + 3.10重量%
、 Mn : 0.078重ffi%、 S : 0.
024重ffi%、 Al O,032![t1%。Example 3 C: 0.050% by weight, Si + 3.10% by weight
, Mn: 0.078 ffi%, S: 0.
024 heavy ffi%, Al O,032! [t1%.
及びN j O,006重量%を含有し、残部実質的
にr’eより成る連鋳スラブを加熱炉に装入し、h雰囲
気中で均熱保持し、均熱終了後スラブは直ちに粗圧延に
供したが、その条件は表3に示した。in圧延終了後は
3〇−厚のシートバーとし、以後は仕上クンデムミルで
2.3−厚の熱延鋼板とした。この熱延鋼板を酸洗後1
次冷延し中間焼鈍、その後2次冷延で0.23■厚の製
品厚に仕上げた。さらに脱炭焼鈍しMgOを塗布した後
、2次再結晶と純化を目的とする最終仕上焼鈍工程を経
て最終製品とした。A continuously cast slab containing 0.06% by weight of N j O, and the remainder consisting essentially of r'e was charged into a heating furnace and kept soaked in an atmosphere of h. After soaking, the slab was immediately rough rolled. The conditions are shown in Table 3. After the in-rolling was completed, it was made into a 30-thick sheet bar, and after that, it was made into a 2.3-thick hot rolled steel plate using a finishing Kundem mill. After pickling this hot rolled steel plate 1
The product was then cold-rolled, intermediately annealed, and then subjected to secondary cold-rolling to a product thickness of 0.23mm. After decarburization annealing and coating with MgO, a final annealing process for the purpose of secondary recrystallization and purification was performed to obtain a final product.
製品の特性は表3に併記した。また表面性状や長手方向
特性のデータも併せて示した0表3から明かなよう−に
粗圧延を高温大圧下で行い保持したものが磁気特性、表
面性状、幅方向での均一な2次再結晶の進行状況といっ
た点で優れていることがわかる。The characteristics of the product are also listed in Table 3. In addition, as is clear from Table 3, which also shows data on surface texture and longitudinal properties, those that are rough rolled at high temperatures and large reductions have uniform secondary regeneration in magnetic properties, surface texture, and width direction. It can be seen that it is excellent in terms of the progress of crystallization.
〈発明の効果〉
本発明の方法により、ホットストリップミルのメリット
を最大限に生かし、かつ、安定的に磁気特性及び表面性
状の優れた方向性珪素*iが有利に製造できる。<Effects of the Invention> The method of the present invention makes it possible to take full advantage of the advantages of a hot strip mill and to advantageously produce oriented silicon*i with excellent magnetic properties and surface properties in a stable manner.
第1図はα単相での再結晶限界(再結晶率95%以上)
の実験結果を示すグラフ、第2図は粗圧延第1パス後の
α単相での再結晶限界を示すグラフ、第3図は再結晶率
の圧延後時間による進行状況を示すグラフ、第4図は粗
圧延複数バス後のα単相での再結晶限界を示すグラフ、
第5図は本発明と比較例での長手方向の特性変化を示す
グラフ、第6図は(α+γ)2相域での再結晶限界を示
すグラフである。Figure 1 shows the recrystallization limit in α single phase (recrystallization rate 95% or more)
Figure 2 is a graph showing the recrystallization limit in the α single phase after the first pass of rough rolling, Figure 3 is a graph showing the progress of the recrystallization rate over time after rolling, Figure 4 is a graph showing the experimental results of The figure is a graph showing the recrystallization limit in the α single phase after multiple rough rolling passes.
FIG. 5 is a graph showing changes in properties in the longitudinal direction between the present invention and a comparative example, and FIG. 6 is a graph showing the recrystallization limit in the (α+γ) two-phase region.
Claims (1)
4.0%、Mn:0.03〜0.10%を含み、さらに
S、Se及びAlの1種以を0.01〜0.06%含有
する珪素鋼スラブを加熱後、粗圧延に引き続き熱間仕上
圧延し、次いで1回乃至中間焼鈍を挟む2回の冷間圧延
により最終板厚とし、脱炭焼鈍ののち最終仕上焼鈍を施
す一連の工程からなる方向性珪素鋼板の製造方法におい
て、該粗圧延1パスめの圧延温度T_1(℃)を128
0℃以上とし、かつ圧下率R_1(%)を60≧R_1
(%)≧−0.5T_1+670とし、次いで次パスま
でに30秒以上保持し、さらに該粗圧延最終パスにおけ
る圧延温度T_2(℃)を1200℃以とし、かつ圧下
率R_2(%)を70≧R_2(%)≧−0.1T_2
+165とすることを特徴とする磁気特性及び表面性状
の優れた方向性珪素鋼板の製造方法。In weight%, C: 0.01~0.08%, Si: 2.5~
After heating a silicon steel slab containing Mn: 4.0%, Mn: 0.03 to 0.10%, and further containing 0.01 to 0.06% of one or more of S, Se, and Al, subsequent to rough rolling. In a method for producing a grain-oriented silicon steel sheet, which comprises a series of steps of hot finish rolling, then cold rolling once or twice with intermediate annealing to achieve the final thickness, decarburization annealing, and final finish annealing. The rolling temperature T_1 (℃) of the first pass of rough rolling is 128
The temperature is 0°C or higher, and the rolling reduction rate R_1 (%) is 60≧R_1
(%)≧-0.5T_1+670, then hold for 30 seconds or more before the next pass, further set the rolling temperature T_2 (℃) in the final pass of rough rolling to 1200℃ or less, and set the rolling reduction R_2 (%) to 70≧ R_2 (%) ≧ -0.1T_2
+165. A method for producing a grain-oriented silicon steel sheet with excellent magnetic properties and surface properties.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11364389A JPH0310020A (en) | 1989-05-08 | 1989-05-08 | Production of grain-oriented silicon steel sheet excellent in magnetic property and surface characteristic |
KR1019910700022A KR0169734B1 (en) | 1989-05-08 | 1990-05-08 | Process for manufacturing unidirectional steel sheet excellent in magnetic properties |
US07/925,310 US5296050A (en) | 1989-05-08 | 1990-05-08 | Method of producing grain oriented silicon steel sheets having improved magnetic properties |
CA002032502A CA2032502C (en) | 1989-05-08 | 1990-05-08 | Method of producing grain oriented silicon steel sheets having improved magnetic properties |
PCT/JP1990/000586 WO1990013673A1 (en) | 1989-05-08 | 1990-05-08 | Process for manufacturing unidirectional silicon steel sheet excellent in magnetic properties |
JP2506701A JP2872404B2 (en) | 1989-05-08 | 1990-05-08 | Method for producing unidirectional silicon steel sheet with excellent magnetic properties |
DE69032553T DE69032553T2 (en) | 1989-05-08 | 1990-05-08 | METHOD FOR PRODUCING RECTIFIED SILICON SHEETS WITH EXCELLENT MAGNETIC PROPERTIES |
EP90907406A EP0426869B1 (en) | 1989-05-08 | 1990-05-08 | Process for manufacturing unidirectional silicon steel sheet excellent in magnetic properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11364389A JPH0310020A (en) | 1989-05-08 | 1989-05-08 | Production of grain-oriented silicon steel sheet excellent in magnetic property and surface characteristic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0310020A true JPH0310020A (en) | 1991-01-17 |
Family
ID=14617441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11364389A Pending JPH0310020A (en) | 1989-05-08 | 1989-05-08 | Production of grain-oriented silicon steel sheet excellent in magnetic property and surface characteristic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0310020A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08277731A (en) * | 1995-04-06 | 1996-10-22 | Nissan Motor Co Ltd | Idling control method for vehicular electric power supply and controller used for it |
WO2013145784A1 (en) | 2012-03-29 | 2013-10-03 | Jfeスチール株式会社 | Method for manufacturing oriented magnetic steel sheet |
JPWO2022255259A1 (en) * | 2021-05-31 | 2022-12-08 | ||
WO2022255258A1 (en) * | 2021-05-31 | 2022-12-08 | Jfeスチール株式会社 | Method for producing grain-oriented electromagnetic steel sheet |
EP4276204A1 (en) * | 2021-03-04 | 2023-11-15 | JFE Steel Corporation | Method for manufacturing directional electromagnetic steel sheet, and hot-rolled steel sheet for directional electromagnetic steel sheet |
EP4276205A4 (en) * | 2021-03-04 | 2024-05-22 | JFE Steel Corporation | Method for producing grain-oriented electrical steel sheet |
-
1989
- 1989-05-08 JP JP11364389A patent/JPH0310020A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08277731A (en) * | 1995-04-06 | 1996-10-22 | Nissan Motor Co Ltd | Idling control method for vehicular electric power supply and controller used for it |
WO2013145784A1 (en) | 2012-03-29 | 2013-10-03 | Jfeスチール株式会社 | Method for manufacturing oriented magnetic steel sheet |
KR20140141688A (en) | 2012-03-29 | 2014-12-10 | 제이에프이 스틸 가부시키가이샤 | Method for manufacturing grain oriented electrical steel sheet |
US9761360B2 (en) | 2012-03-29 | 2017-09-12 | Jfe Steel Corporation | Method of manufacturing grain oriented electrical steel sheet |
EP4276204A1 (en) * | 2021-03-04 | 2023-11-15 | JFE Steel Corporation | Method for manufacturing directional electromagnetic steel sheet, and hot-rolled steel sheet for directional electromagnetic steel sheet |
EP4276205A4 (en) * | 2021-03-04 | 2024-05-22 | JFE Steel Corporation | Method for producing grain-oriented electrical steel sheet |
EP4276204A4 (en) * | 2021-03-04 | 2024-05-22 | JFE Steel Corporation | Method for manufacturing directional electromagnetic steel sheet, and hot-rolled steel sheet for directional electromagnetic steel sheet |
JPWO2022255259A1 (en) * | 2021-05-31 | 2022-12-08 | ||
WO2022255258A1 (en) * | 2021-05-31 | 2022-12-08 | Jfeスチール株式会社 | Method for producing grain-oriented electromagnetic steel sheet |
JPWO2022255258A1 (en) * | 2021-05-31 | 2022-12-08 | ||
WO2022255259A1 (en) * | 2021-05-31 | 2022-12-08 | Jfeスチール株式会社 | Method for manufacturing oriented electrical steel sheet |
EP4335939A4 (en) * | 2021-05-31 | 2024-10-16 | Jfe Steel Corp | Method for manufacturing oriented electrical steel sheet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0753885B2 (en) | Method for producing unidirectional electrical steel sheet with excellent magnetic properties | |
JP2004526862A5 (en) | ||
JPS5813606B2 (en) | It's hard to tell what's going on. | |
KR20210138072A (en) | Method for manufacturing grain-oriented electrical steel sheet | |
JP3160281B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent magnetic properties | |
JPH0310020A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property and surface characteristic | |
US7192492B2 (en) | Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips | |
KR0169734B1 (en) | Process for manufacturing unidirectional steel sheet excellent in magnetic properties | |
JP2804381B2 (en) | Method for producing grain-oriented silicon steel sheet having uniform longitudinal magnetic properties | |
JP3849146B2 (en) | Method for producing unidirectional silicon steel sheet | |
JP2612074B2 (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties and surface properties | |
JP2612075B2 (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties and surface properties | |
JP2726295B2 (en) | Method for producing oriented silicon steel sheet with excellent magnetic properties and surface properties | |
JPH02263923A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP2872404B2 (en) | Method for producing unidirectional silicon steel sheet with excellent magnetic properties | |
JPH01165722A (en) | Production of grain oriented silicon steel sheet having excellent iron loss | |
JPH0353022A (en) | Manufacture of low core loss-high magnetic flux density nonoriented silicon steel sheet | |
JPH0369967B2 (en) | ||
JPS592725B2 (en) | Method for producing thermosetting high-strength cold-rolled steel sheet for deep drawing | |
JPH04297524A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP2818290B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent magnetic properties | |
JPH03115525A (en) | Production of grain-oriented silicon steel sheet excellent in magnetic property | |
JP3885240B2 (en) | Method for producing unidirectional silicon steel sheet | |
JPH08311557A (en) | Production of ferritic stainless steel sheet free from ridging | |
JP2574583B2 (en) | Method for manufacturing oriented silicon steel sheet with good iron loss |