JPH03104567A - Grinding wheel and grinding method - Google Patents

Grinding wheel and grinding method

Info

Publication number
JPH03104567A
JPH03104567A JP24185589A JP24185589A JPH03104567A JP H03104567 A JPH03104567 A JP H03104567A JP 24185589 A JP24185589 A JP 24185589A JP 24185589 A JP24185589 A JP 24185589A JP H03104567 A JPH03104567 A JP H03104567A
Authority
JP
Japan
Prior art keywords
grinding
axis
workpiece
base metal
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24185589A
Other languages
Japanese (ja)
Inventor
Togo Suzuki
鈴木 東吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24185589A priority Critical patent/JPH03104567A/en
Publication of JPH03104567A publication Critical patent/JPH03104567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To unify wheel spindles and miniaturize a grinding machine by integrally providing a rough grinding part and a finish grinding part on one base metal part. CONSTITUTION:The back surface 12 of a wafer W is ground with diamond by a rough grinding part 2 to remove an oxide film adhered thereon. After the completion of removal of the oxide film on the back surface 12, a wheel spindle S is once raised, and the rotations of a rotating shaft 15 and the wheel spindle S are stopped. A vacuum chuck 13 is moved to situate one of grind-stone pieces 10... on the axial line 15a of the rotating shaft 15. Hence, all the grindstone pieces 10 pass the axial line 15a in accordance with the rotation of the wheel spindle S. The rotating shaft 15 and the wheel spindle S are then rotated, and the wheel spindle S is lowered. The wafer W held by the vacuum chuck 13 is pressed onto a finish grinding part 3, and finish grinding is started.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、シリコン(8i)ウェーハの裏面研削に好適
する被加工物及び研削力法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a workpiece and a grinding force method suitable for backside grinding of silicon (8i) wafers.

(従来の技術) 一般に、半導体装置は、Si  ウエーハより製造され
るが、デバイス工程を経たSi  ウェーハは、裏面に
酸化膜(SiO■)が形或されている。このような酸化
膜が付着したSi  ウェーハの裏面は、次工程にて、
研削加工される。この研削加工は、粗研削と仕上げ研削
の2工程で行うので、酸化膜(8i02)の影響を受け
ることはほとんどなかった。
(Prior Art) Semiconductor devices are generally manufactured from Si wafers, and the Si wafers that have gone through the device process have an oxide film (SiO2) formed on the back surface. The back side of the Si wafer with such an oxide film attached will be treated in the next step.
Grinding is done. This grinding process was performed in two steps: rough grinding and finish grinding, so it was hardly affected by the oxide film (8i02).

(発明が解決しようとする課題) しかしながら、従来のSi  ウエーハ用の裏面研削盤
は、大型で高M量であるため、インライン化できないと
いう難点がある。そこで、近時、裏面研削盤の小型化へ
の要求が高まってきた。裏面研削盤を小型化するには、
砥石軸の削減、すなわち1軸化が必須の条件であり、そ
のためには、粗研削と仕上げ研削とに兼用できるととも
に、酸化M (S’Os)とシリコン(Si)のいずれ
の研削も可能な被加工物が必要となる。
(Problems to be Solved by the Invention) However, conventional back grinders for Si wafers are large and have a high M content, and therefore have the disadvantage that they cannot be made in-line. Therefore, recently there has been an increasing demand for downsizing of back grinders. To downsize the back grinder,
Reducing the number of grinding wheel axes, that is, making it uniaxial, is an essential condition, and for this purpose, a grinding wheel that can be used for both rough grinding and finish grinding, and can also grind both oxidized M (S'Os) and silicon (Si). A workpiece is required.

ところで、l軸の被加工物は、ウエーハの被加工面の粗
さの要求から、細粒のダイヤモンド砥粒でなければなら
ない。しかし、細粒のダイヤモンド砥石では、Jll滅
が早く、目詰まりしゃすく、砥石寿命が著しく短くなる
欠点をもっており、加工コスト及び加工能率の点で採用
することかできなかった。
By the way, the workpiece for the l-axis must be fine-grained diamond abrasive grains due to the requirement for roughness of the surface to be processed of the wafer. However, fine-grained diamond whetstones have drawbacks such as rapid deterioration, clogging, and significantly shortened whetstone life, so they could not be used due to processing costs and processing efficiency.

本発明は、上記事情を参酌してなされたもので、高寿命
かつ高能率研削が可能な被加工物及び研削方法を提供す
ることを目的とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide a workpiece and a grinding method that can be grinded with a long life and high efficiency.

〔発明の構或〕[Structure of the invention]

(線題を解決するための手段と作用) この発明は、1個の台金部に、粗研削部と仕上げ研削部
を一体的に設けたもので、1個の被加工物で粗研削と仕
上げ研削とを行うことができるので、研削盤の小型化と
自動化プロセスへのインライン化が可能となる。
(Means and effects for solving the line problem) This invention provides a rough grinding section and a finish grinding section integrally in one base metal part, and performs rough grinding and finishing on one workpiece. Since finishing grinding can be performed, it is possible to downsize the grinding machine and inline it into an automated process.

(実施例) 以下、本発明の一実施例を図面を参照して詳述する。(Example) Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図及び第2図は、本発明の一実施例の被加工物(G
)を示している。この被加工物(G)は、円盤状の台金
部(1)と、この台金部(1)の周縁部を除いた下端面
に敷設された粗研削部(2)と、この粗研削部(2)を
囲繞して台金部(1)の周縁部に同軸に植立されたリン
グ状の仕上げ研削部(3)とから構或されている。しか
して、台金部(1)の下端部には、周縁部を残して例え
ば深さfwmの円形の凹部(4)が設けられている。こ
の凹部(4)の内径は、後述するように、ウェーハ(W
)の直径よりも大きく設けられている。
FIGS. 1 and 2 show a workpiece (G
) is shown. This workpiece (G) includes a disk-shaped base metal part (1), a rough grinding part (2) laid on the lower end surface of the base metal part (1) excluding the peripheral edge, and It is composed of a ring-shaped finish grinding part (3) surrounding the part (2) and coaxially planted on the peripheral edge of the base metal part (1). Thus, a circular recess (4) having a depth fwm, for example, is provided at the lower end of the base metal part (1), leaving the peripheral edge. The inner diameter of this recess (4) is determined by the diameter of the wafer (W), as described later.
) is provided larger than the diameter of the

さらに、この凹部{4}の外周部は、凹部(4)の底面
(5)に対してリング状に突出していて、支持壁(6)
となっている。また、台金部(1}には、一端が台金部
(1)の上端面に開口し、他端が凹部(4)の底面(5
)に開口する貫通孔(7)が穿設されている。また、底
面(51の支持壁(6)と隣接する部位には、リング状
溝(8)が刻設されている。また、底面(5)には、リ
ング状# (8)と、貫通孔(7)に連通ずる放射状溝
(9)・・・が刻設されている。なお、貫通孔(7)の
開口部近傍の溝部は拡大していて、周速0の部分の砥石
の異常摩耗を防止するようになっている。そうして、底
面(5)のリング状溝(8)と放射状溝(9)・・・を
除いた部分には、前紀粗研削部(2》が敷設されている
。この粗研削部(2)# は、メッシーサイズが 150又は#23oのダイヤモ
ンド砥粒をニッケル(Ni)電着させたものである。
Furthermore, the outer circumference of this recess {4} protrudes in a ring shape with respect to the bottom surface (5) of the recess (4), and the supporting wall (6)
It becomes. Moreover, the base metal part (1} has one end opening at the upper end surface of the base metal part (1), and the other end opening at the bottom surface (5) of the recessed part (4).
) is provided with a through hole (7) that opens into the hole (7). In addition, a ring-shaped groove (8) is carved in a portion of the bottom surface (51 adjacent to the support wall (6)).In addition, a ring-shaped groove (8) and a through hole are formed in the bottom surface (5). A radial groove (9)... is carved that communicates with the through hole (7).The groove near the opening of the through hole (7) is enlarged, and abnormal wear of the grindstone occurs in the portion where the circumferential speed is 0. This is to prevent the rough grinding part (2) from forming on the bottom surface (5) except for the ring groove (8) and the radial groove (9). This rough grinding part (2) # is made by electro-depositing diamond abrasive grains with a mesh size of 150 or #23o using nickel (Ni).

そうして、粗研削部(2)の厚さは、例えばJ飄であっ
て、凹部(4)の深さよりも小さく設けられている。
The thickness of the roughly ground portion (2) is, for example, J-shaped, and is smaller than the depth of the recessed portion (4).

一方、仕上げ研削部(3)は、支持壁(6)のリング状
の端面に一定間隔となるよう等配してセグメント状に植
立された砥石片αQ・・・からなっていて、これにより
被加工物(G)は、セグメント形のカップ砥石となって
いる。そして、これら砥石片凹・・・間は、円周方向の
幅が例えばjI1mlの空隙0υ・・・となっている。
On the other hand, the finishing grinding part (3) is made up of grindstone pieces αQ set up in segments at regular intervals on the ring-shaped end face of the support wall (6). The workpiece (G) is a segment-shaped cup grindstone. And, between these grindstone piece recesses, there is a gap 0υ whose width in the circumferential direction is, for example, jI1 ml.

また、これらの砥石片01・・・は、メッシュサイズが
”1500又は”2000のダイヤモンド砥粒をビトリ
ファイドボンドにより結合させ、セグメント状に成形し
たものであって、厚さが例えば3m並びに高さが例えば
5■となっている。しかして、粗研削部(2)の研削作
用面(2a)と仕上げ研削部(3)の研削作用面(3a
)とは、それぞれ台金部(1)のil11線( la)
に直交するように設けられている。この場合、研削作用
面(2a), (3a)の間隔は、8gm程度である。
In addition, these grindstone pieces 01... are made by bonding diamond abrasive grains with a mesh size of 1500 or 2000 using vitrified bond and forming them into segments, and the thickness is, for example, 3 m and the height is For example, it is 5■. Therefore, the grinding surface (2a) of the rough grinding section (2) and the grinding surface (3a) of the finish grinding section (3)
) is the il11 line (la) of the base metal part (1), respectively.
It is set perpendicular to. In this case, the distance between the grinding surfaces (2a) and (3a) is about 8 gm.

なお、砥石片Ql・・・の支持壁\6)への植立固定は
、接着剤により行われている。
Incidentally, the grindstone pieces Ql... are fixed to the supporting wall \6) using an adhesive.

つぎに、上記構成の被加工物(G)を用いて本実施例の
研削方法について述べる。
Next, the grinding method of this example will be described using the workpiece (G) having the above structure.

まず、第3図及び第4図に示すように、l軸の裏面研削
装t (M)の砥石軸(S)に被加工物(G)を同軸と
なるように取り付ける。つぎに、シリコン(Si) H
CI) ウェ−ハ(W) G酸化g (8’Oz)カ形
g サtLた裏面α4を上にして、真空チャック(14
上にウエーハ(イ)の表面に扱着されている保験テーブ
(14を介して、真空ナヤック0の回転軸(自)と同軸
に吸着・保持させる。ついで、第3図に示すように、砥
石軸(S)と回転軸四とが同軸となるように、つまり砥
石軸(5)の軸fm (St)と回転軸(自)の軸線(
lsa)とが一致するように、真空チャクク0を移動さ
せる。
First, as shown in FIGS. 3 and 4, the workpiece (G) is attached coaxially to the grindstone shaft (S) of the l-axis back grinding device t (M). Next, silicon (Si) H
CI) Wafer (W) G oxidized (8'Oz)
The wafer (a) is adsorbed and held coaxially with the rotation axis (self) of the vacuum Nayak 0 through the maintenance table (14) which is attached to the surface of the wafer (a).Next, as shown in Fig. 3, The axis fm (St) of the grinding wheel shaft (5) and the axis of the rotating shaft (self) (
Move the vacuum chuck 0 so that it matches lsa).

ついで、回転軸四を例えば毎分.!;00回転.並びに
、砥石@(S)を例えば毎分41)0回転で対して相対
的に、砥石軸(S)を矢印囲方向に下降(又は、回転軸
cL!l1を矢印αD方向に上昇)させる。すると、真
空チャックα諌に保持されているウェーハ(W)は、被
加工物(G)の凹部(4)に遊挿され、さらに、その裏
面α′jJを粗研削部(2)に当接し、徂研削が開始さ
れる。このとき、研削部位には、砥石軸(F)に設けら
れた給液孔(図示せず。)から貫通孔(7)を介して研
削液(IIが給液される。その結果、ウェーハ(W)の
裏面贈は、粗研削部(2)によりダイヤモンド研削され
付着している酸化換は除去される。このとき生じた研削
屑は、放射状#(97・・・及びリング状溝(8)を経
て外部に排出される。しかして、裏面(14の酸化膜の
除去が完了すると、いったん、砥石軸<S)を矢印(I
n方向に上昇(又は、回転軸α9を矢印四方向に下降ノ
させるとともに、回転軸αつと砥石軸(S)との回転を
停止させる。そうして、第4図Jこ示ずように、回転軸
(l!1の軸線( 15a)上に、砥石片ul・・・の
一つが位置するように、真空チャノク帖を移動させる。
Then, the rotation axis 4 is rotated, for example, every minute. ! ;00 rotations. In addition, the grindstone shaft (S) is lowered in the direction of the arrow (or the rotating shaft cL!l1 is raised in the direction of the arrow αD) relative to the grindstone @(S) at 0 revolutions per minute, for example. Then, the wafer (W) held by the vacuum chuck α is loosely inserted into the recess (4) of the workpiece (G), and its back surface α′jJ is brought into contact with the rough grinding part (2). , the grinding begins. At this time, the grinding fluid (II) is supplied to the grinding area from the fluid supply hole (not shown) provided in the grinding wheel shaft (F) through the through hole (7).As a result, the wafer ( The back surface of W) is diamond ground by the rough grinding part (2) to remove the adhering oxidation.The grinding debris generated at this time is removed from the radial # (97... After the removal of the oxide film on the back side (14) is completed, the grinding wheel axis < S is turned to the arrow (I).
As shown in FIG. The vacuum grinder is moved so that one of the grindstone pieces ul... is positioned on the axis (15a) of the rotation axis (l!1).

これにより、砥石軸(8)の回転にともない砥石片(I
I・・・のすべてが軸線(l5a)を通過することに吃
る。つぎに、回転軸Q’9を例えば毎分900回転,並
びに、砥石軸(S)を例えば毎分400回転で対して相
対的に、砥石軸(8)を矢印叫方向に下降(又は、回転
軸四を矢印Uη方向に上昇)させる。
As a result, as the grinding wheel shaft (8) rotates, the grinding wheel piece (I
It stutters that all of I... pass through the axis (l5a). Next, the whetstone shaft (8) is lowered (or rotated) in the direction of the arrow, relative to the rotating shaft Q'9 at, for example, 900 revolutions per minute and the whetstone shaft (S) at, for example, 400 revolutions per minute. 4) in the direction of arrow Uη.

すると、真空チャックαJに保持されてぃるウ工−ハ(
旬は、仕上げ研削部(3)に当接し、仕上げ研削が開#
iされる。このとさ、研削部位には、ノズルQ1から研
削赦Hか給液される。その結果、ウェーハ(W)の裏面
u3は、砥石片oト・・にょりRmaxrp屏程度+こ
まで仕上げ研削される。しかして、この仕上げ研削が完
了すると、砥石軸(S)を矢印同方向に上昇(又は、回
転軸α場を矢印四方向に下降)させ、真空チャックα4
によるウェーハ(W)のafJを解除する。
Then, the workpiece held by the vacuum chuck αJ (
The blade contacts the finish grinding part (3) and finish grinding is opened.
I will be treated. At this time, the grinding liquid H is supplied from the nozzle Q1 to the part to be ground. As a result, the back surface u3 of the wafer (W) is finish-ground to the extent of Rmaxrp+ the grindstone. When this finish grinding is completed, the grinding wheel shaft (S) is raised in the same direction as the arrow (or the rotation axis α field is lowered in the four directions of the arrow), and the vacuum chuck α4
The afJ of the wafer (W) is released.

このように、この実施例においては、1個の台金部(1
)に、粗研削部(2)と仕上げ研削部(3)を一体的に
設けているので、1個の被加工物(G)で粗研削並びに
仕上げ研削を行うことができる。そのため、砥石軸(8
)の一本化が可能となる結果、裏面研削盤の小型化を実
現でき、半導体プロセスへのインライン化が可能となる
。しかも、酸化Bx(stow)の除去を大粒径のダイ
ヤモンド砥粒により行い、しかるのち、小粒径のダイヤ
モンド砥粒により仕上げ研削を行うようにしているので
、砥粒の摩滅が遅くなり、しかも、目詰まりしにくくな
るので、砥石寿命が著しく長くなる。よって、加工コス
ト及び加工能率の点で、半導体プロセスへ適用した場合
、飛躍的な成果を上げることができる。
In this way, in this embodiment, one base metal part (one
), the rough grinding section (2) and the finish grinding section (3) are integrally provided, so that rough grinding and finish grinding can be performed on one workpiece (G). Therefore, the grinding wheel shaft (8
) As a result, the back grinder can be downsized and can be integrated in-line with the semiconductor process. Moreover, since the removal of oxidized Bx (stow) is performed using large-diameter diamond abrasive grains, and then final grinding is performed using small-diameter diamond abrasive grains, the wear of the abrasive grains is delayed. Since clogging becomes less likely, the life of the grinding wheel is significantly extended. Therefore, when applied to semiconductor processes, dramatic results can be achieved in terms of processing costs and processing efficiency.

なお、上記実施例においては、粗研削部(2)Iこは、
リンク状溝(8)と放射状溝(9)・・・が設けられて
いるが、周速0の部分を含むということと、研削液の案
内婢となるという二つの条件を満たすことを前提にして
、例えば基盤目状,網目状などの溝を設けてもよい。さ
らに、粗研削部を直接X着せず、別の場所にて成形した
のち、接着剤,ねじ等により締結してもよい。さらに、
粗研削部(2》をビトリファイドを結合剤とするダイヤ
モンド砥石としてもよい。さらにまた、粗研削部及び仕
上げ研削部の砥粒を例えばCBN(立方晶窒化硼素)=
 8iaN4(窒化珪素)等他の超砥粒を用いてもよい
。さらにまた、上記実施例においては、シリコンウエー
ノ翫の艮面研削を例示しているが、用途をこれに限定す
ることはム<、かつ、砥粒についても、A系,W人系,
C系等を用いてもよい。
In addition, in the above embodiment, the rough grinding part (2) I is
Link-shaped grooves (8) and radial grooves (9)... are provided, but it is assumed that two conditions are met: they include a section with a circumferential speed of 0, and they serve as guides for the grinding fluid. For example, grooves in the shape of a base mesh or a mesh may be provided. Furthermore, the roughly ground portion may not be directly attached to the X-shape, but may be formed at another location and then fastened with adhesive, screws, or the like. moreover,
The rough grinding part (2) may be a diamond grindstone using vitrified as a binder.Furthermore, the abrasive grains of the rough grinding part and the finish grinding part may be, for example, CBN (cubic boron nitride) =
Other superabrasives such as 8iaN4 (silicon nitride) may also be used. Furthermore, in the above embodiment, the surface grinding of a silicon wafer is exemplified, but the application is not limited to this, and the abrasive grains may be A-based, W-based,
C type etc. may be used.

〔発明の効果〕〔Effect of the invention〕

この発明においては、1個の台金部に、粗研削部と仕上
げ研削部を一体的に設けているりで、1個の被加工物で
粗研削並びに仕上げ研削を行うことができる。その結果
、砥石軸の一本化が可能となるので、研削盤の小型化と
、これにともなう自動化プロセスへのインライン化が可
能となる。
In this invention, by integrally providing a rough grinding section and a finish grinding section in one base metal part, it is possible to perform rough grinding and finish grinding on one workpiece. As a result, it becomes possible to use a single grinding wheel axis, which makes it possible to downsize the grinding machine and to inline the automated process accordingly.

さらに、粗研削から仕上げ研削へと順次に加工するよう
にしているので、砥粒の摩滅が少なくムリ、しかも、目
詰まりしにくくなるので、砥石としての寿命が長くなる
。よって、加工コストの低減及び加工能率の向上に寄与
するところ大である。
Furthermore, since the grinding process is carried out sequentially from rough grinding to finish grinding, the abrasive grains are less likely to wear out and are less prone to clogging, resulting in a longer life as a grindstone. Therefore, it greatly contributes to reducing machining costs and improving machining efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の被加工物の縦断正面図,第
2図は同じく下面図.@3図及び第4図は本発明の一実
施例の研削方法の説明図である。 (G)・・・被加工物,(l》・・・台金部,(2》・
・・粗研削部.   (3)・・・仕上げ研削部,(ト
)・・・ウェーハ(被加工物), α3・・・裏面(被加工面), (B)・・・真空チャンク(保持手段)。
Fig. 1 is a longitudinal sectional front view of a workpiece according to an embodiment of the present invention, and Fig. 2 is a bottom view of the same. @ Figures 3 and 4 are explanatory diagrams of a grinding method according to an embodiment of the present invention. (G)... Workpiece, (l)... Base metal part, (2)
...Rough grinding section. (3)...Final grinding section, (g)...Wafer (workpiece), α3...back surface (workpiece surface), (B)...vacuum chunk (holding means).

Claims (2)

【特許請求の範囲】[Claims] (1)軸線のまわりに回転駆動される台金部と、上記台
金部に設けられかつ平面をなす第1の研削作用面が上記
軸線に直交して形成された粗研削部と、上記台金に同軸
かつ上記粗研削部を囲繞してカップ状に設けられている
とともに平面をなす第2の研削作用面が上記第1の研削
作用面に対して平行に形成された仕上げ研削部とを具備
し、上記第2の研削作用面は上記第1の研削作用面より
上記台金から離間した位置に設けられていることを特徴
とする研削砥石。
(1) a base metal portion that is rotationally driven around an axis; a rough grinding portion that is provided on the base metal portion and has a flat first grinding surface that is perpendicular to the axis; a finish grinding part that is coaxial with the gold and is provided in a cup shape surrounding the rough grinding part, and has a flat second grinding surface parallel to the first grinding surface; A grinding wheel, characterized in that the second grinding surface is provided at a position farther from the base metal than the first grinding surface.
(2)第1の軸線のまわりに回転駆動される台金部と、
上記台金部に設けられかつ平面をなす第1の研削作用面
が上記第1の軸線に直交して形成された粗研削部と、上
記台金に同軸かつ上記粗研削部を囲繞してカップ状に設
けられているとともに平面をなす第2の研削作用面が上
記第1の研削作用面に対して平行に形成された仕上げ研
削部とを有し、上記第2の研削作用面は上記第1の研削
作用面より上記台金から離間した位置に設けられている
研削砥石を用いて被加工面が上記仕上げ研削部に遊挿さ
れる大きさの被加工物の平面研削を行う研削方法におい
て、上記第2の軸線のまわりに回転駆動される保持手段
に上記被加工物をその被加工面を上記第2の軸線に直交
させて保持する第1工程と、この第1工程後に上記被加
工物を上記研削砥石に対して相対的に移動させ上記第1
の軸線と上記第2の軸線とを一致させる第2工程と、こ
の第2工程後に上記研削砥石を上記第1の軸線のまわり
に回転させるとともに上記被加工物を上記第2の軸線の
まわりに回転させながら上記被加工物を上記第2の軸線
に沿って上記研削砥石に対して相対的に移動させ上記第
1の研削作用面により上記被加工面を粗研削する第3工
程と、この第3工程後に上記被加工物を上記研削砥石に
対して相対的に移動させ上記第2の軸線を上記第2の研
削作用面に直交させる第4工程と、この第4工程後に上
記研削砥石を上記第1の軸線のまわりに回転させるとと
もに上記被加工物を上記第2の軸線のまわりに回転させ
ながら上記第2の軸線に沿って上記研削砥石に対して相
対的に移動させ上記第2の研削作用面により上記被加工
面を仕上げ研削する第5工程とを具備することを特徴と
する研削方法。
(2) a base metal part that is rotationally driven around a first axis;
A rough grinding part provided on the base metal part and having a flat first grinding surface perpendicular to the first axis, and a cup that is coaxial with the base metal and surrounding the rough grinding part. A second grinding surface is provided in the shape of a plane and has a finish grinding portion formed parallel to the first grinding surface, and the second grinding surface is parallel to the first grinding surface. In a grinding method for surface grinding a workpiece having a size such that the workpiece surface is loosely inserted into the finish grinding part using a grinding wheel provided at a position spaced apart from the base metal from the grinding surface of No. 1, a first step of holding the workpiece in a holding means rotationally driven around the second axis with the workpiece surface orthogonal to the second axis; The first grinding wheel is moved relative to the grinding wheel.
a second step of aligning the axis of the and the second axis; and after this second step, rotating the grinding wheel around the first axis and rotating the workpiece around the second axis. a third step of roughly grinding the workpiece surface with the first grinding surface by moving the workpiece relatively to the grinding wheel along the second axis while rotating; After the third step, a fourth step in which the workpiece is moved relative to the grinding wheel to make the second axis perpendicular to the second grinding surface; The second grinding process is performed by rotating the workpiece around the first axis and moving the workpiece along the second axis relative to the grinding wheel while rotating the workpiece around the second axis. A grinding method comprising: a fifth step of finish-grinding the surface to be machined using a working surface.
JP24185589A 1989-09-20 1989-09-20 Grinding wheel and grinding method Pending JPH03104567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24185589A JPH03104567A (en) 1989-09-20 1989-09-20 Grinding wheel and grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24185589A JPH03104567A (en) 1989-09-20 1989-09-20 Grinding wheel and grinding method

Publications (1)

Publication Number Publication Date
JPH03104567A true JPH03104567A (en) 1991-05-01

Family

ID=17080515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24185589A Pending JPH03104567A (en) 1989-09-20 1989-09-20 Grinding wheel and grinding method

Country Status (1)

Country Link
JP (1) JPH03104567A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006540A (en) * 2006-06-29 2008-01-17 Disco Abrasive Syst Ltd Polishing method
JP2009255186A (en) * 2008-04-11 2009-11-05 Jtekt Corp Grinder and grinding method
JP2010280041A (en) * 2009-06-05 2010-12-16 Disco Abrasive Syst Ltd Grinding wheel
JP2011031359A (en) * 2009-08-04 2011-02-17 Disco Abrasive Syst Ltd Polishing tool, polishing device, and polishing machining method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008006540A (en) * 2006-06-29 2008-01-17 Disco Abrasive Syst Ltd Polishing method
JP2009255186A (en) * 2008-04-11 2009-11-05 Jtekt Corp Grinder and grinding method
JP2010280041A (en) * 2009-06-05 2010-12-16 Disco Abrasive Syst Ltd Grinding wheel
JP2011031359A (en) * 2009-08-04 2011-02-17 Disco Abrasive Syst Ltd Polishing tool, polishing device, and polishing machining method

Similar Documents

Publication Publication Date Title
CN100553876C (en) The method that is used for the material removal process of semiconductor crystal wafer
CN110605629B (en) Grinding device
JPH09168947A (en) Work periphery grinding method by ultrasonic micro vibration
US6537139B2 (en) Apparatus and method for ELID grinding a large-diameter workpiece to produce a mirror surface finish
JPH09168953A (en) Semiconductor wafer edge polishing method and device
JP3207787B2 (en) Wafer processing method, surface grinder and work support member
JPH03104567A (en) Grinding wheel and grinding method
JPH05285807A (en) Super precision processing
JP2001191238A (en) Chamfering method for disc-like work, grinding wheel for chamfering and chamfering device
JP2014159049A (en) Sapphire wafer grinding method
JP2001150356A (en) Mirror finish grinding wheel for grinder and mirror finish grinding method
JP2001007064A (en) Grinding method of semiconductor wafer
JPH11285973A (en) Machining method and device for semiconductor wafer
JPH07100737A (en) Method for polishing semiconductor wafer
JP2003291069A (en) Grinding wheel for grinder and grinding method using grinding wheel
JPS6322259A (en) Semiconductor wafer grinding method and device thereof
JP4122800B2 (en) Semiconductor wafer polishing method
JP3445237B2 (en) Polishing method and polishing apparatus for outer periphery of work
JP2000190199A (en) Plane correcting method for surface plate
JPH05269671A (en) Diamond wheel
JPH0523959A (en) Mirror grinding method and device of work edge
JPS6171972A (en) Grinding wheel
JPH02185359A (en) Method and device for grinding
TW202330169A (en) Grinding method
JP2004202656A (en) Truing method of polisher for polishing