JPH0310001A - Manufacture of super fine crystal alloy powder - Google Patents

Manufacture of super fine crystal alloy powder

Info

Publication number
JPH0310001A
JPH0310001A JP1143756A JP14375689A JPH0310001A JP H0310001 A JPH0310001 A JP H0310001A JP 1143756 A JP1143756 A JP 1143756A JP 14375689 A JP14375689 A JP 14375689A JP H0310001 A JPH0310001 A JP H0310001A
Authority
JP
Japan
Prior art keywords
alloy powder
alloy
producing
powder
fine crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1143756A
Other languages
Japanese (ja)
Inventor
Yoshio Bizen
嘉雄 備前
Katsuto Yoshizawa
克仁 吉沢
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1143756A priority Critical patent/JPH0310001A/en
Publication of JPH0310001A publication Critical patent/JPH0310001A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • H01F1/1535Preparation processes therefor by powder metallurgy, e.g. spark erosion

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture Fe base super fine crystal alloy powder having excellent soft magnetic characteristic by heating after making powder of alloy containing Fe as essential component and Cu and the other specific metals with mechanical alloying method. CONSTITUTION:The alloy in the wide composition range containing Fe as the essential component and at least one or more kinds among Cu and Nb, Ta, W, Zr, Hf, Ti, Mo, etc., is pulverized in organic solvent of methanol, acetone, etc., or inert gas of N2, etc., with the mechanical alloying method of mechanical grinding, etc., while preventing oxidization to manufacture the amorphous alloy powder. By heating this powder, e.g. at 505 deg.C, the Fe-base super fine crystal alloy composed of at least 50% of fine crystal in the structure and having excellent soft magnetic characteristic, is manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は圧粉磁心や磁気シールド材等の材料として用い
ることのできる軟磁気特性に優れたFe基超微結晶合金
粉末の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing Fe-based ultrafine crystal alloy powder that has excellent soft magnetic properties and can be used as a material for powder magnetic cores, magnetic shielding materials, etc. It is.

[従来の技術] 少なくとも組織の50%が微細な結晶粒からなるFe−
Cu (SL、B)−M系(MはNb、W。
[Prior art] At least 50% of the structure consists of fine crystal grains.
Cu (SL, B)-M system (M is Nb, W.

Ta等の元素)Fe基基磁磁性合金ヨーロッパ公開特許
番号0271657号公報に開示されている。
Elements such as Ta) Fe-based magnetic alloys are disclosed in European Patent Publication No. 0271657.

この合金はFe基であるにもかかわらず低磁歪で、しか
も軟磁気特性に優れているものである。
Although this alloy is Fe-based, it has low magnetostriction and excellent soft magnetic properties.

また、上記公報にはこのFe基基磁磁性合金同組成の非
晶質合金リボンを得た後、加熱処理することにより、超
微細な結晶粒からなる組織を得ることによって作製され
ることも開示されている。
The above publication also discloses that this Fe-based magnetomagnetic alloy can be produced by obtaining an amorphous alloy ribbon with the same composition and then heat-treating it to obtain a structure consisting of ultrafine crystal grains. has been done.

[本発明が解決しようとする課題] 前記した合金粉末の製造方法では、母合金作製のための
溶解工程および溶湯金属を超急冷する工程を含んでいる
0本発明に係る合金系において、Cuが多量に含まれる
と溶湯のFeと分離してしまうため、超急冷においても
強制固溶が不可能となりCuが析出し、その結果軟磁気
特性の劣化をもたらす。したがって磁気特性を考慮した
場合には、組成が大幅に限定されてしまう問題点があっ
た。さらに蒸気圧の高い元素やその他のFeと固溶しに
くい元素を添加して軟磁性特性の向上図る場合も、組成
制御や均一な組織を有する合金を製造することが難しい
という問題もある。
[Problems to be Solved by the Present Invention] The method for producing alloy powder described above includes a melting step for preparing a master alloy and a step of ultra-quenching molten metal.In the alloy system according to the present invention, Cu is If a large amount of Cu is contained, it will separate from Fe in the molten metal, making forced solid solution impossible even during ultra-rapid cooling, causing Cu to precipitate, resulting in deterioration of soft magnetic properties. Therefore, when magnetic properties are taken into consideration, there is a problem in that the composition is significantly limited. Furthermore, even when attempting to improve soft magnetic properties by adding elements with high vapor pressure or other elements that are difficult to form a solid solution with Fe, there are also problems in that it is difficult to control the composition and produce an alloy with a uniform structure.

本発明の目的は、広い組成範囲にわたって製造が容易な
Fe基超微結晶合金粉末の製造方法を提供することであ
る。
An object of the present invention is to provide a method for producing Fe-based ultrafine crystalline alloy powder that can be easily produced over a wide composition range.

[課題を解決するための手段] 本発明はメカニカルアロイングによりFe、 Cu、M
(但しMはNb、 W、 Ta、 Zr、 Hf。
[Means for solving the problem] The present invention provides Fe, Cu, M through mechanical alloying.
(However, M is Nb, W, Ta, Zr, Hf.

TiおよびMoの群から選ばれた少なくとも1種以上の
元素)を必須元素として含む非晶質合金粉末を作製する
工程と、前記非晶質合金を加熱することにより、組織の
少なくとも50%が微細な結晶粒からなる合金粉末を得
る工程からなることを特徴とするFe基超超微結晶台金
粉末製造方法である。
At least 50% of the structure is made fine by the process of producing an amorphous alloy powder containing as an essential element at least one element selected from the group of Ti and Mo, and by heating the amorphous alloy. This is a method for producing Fe-based ultra-ultrafine crystal base metal powder, which is characterized in that it consists of a step of obtaining an alloy powder consisting of crystal grains.

メカニカルアロイングとは振動ミル、転勤ミル、アトリ
ッシュミルの高エネルギーミルにより、各種金属単体粉
、又は一部分合金粉を調合し、機械的に混合粉砕とた合
金化する方法である。このメカニカルアロイングを上記
Fe−Cu−M系合金に使用し、混合粉砕の条件を代え
ることにより非晶質合金を得ることができる。さらに、
この非晶質合金を加熱することにより軟磁性特性に優れ
たFe基超超微結晶合金粉得ることができる。
Mechanical alloying is a method in which various single metal powders or partially alloyed powders are prepared using a high-energy mill such as a vibration mill, transfer mill, or Atlish mill, and are mechanically mixed, ground, and alloyed. An amorphous alloy can be obtained by applying this mechanical alloying to the Fe-Cu-M alloy and changing the mixing and pulverizing conditions. moreover,
By heating this amorphous alloy, it is possible to obtain Fe-based ultra-ultrafine crystalline alloy powder having excellent soft magnetic properties.

この時、非晶質合金化を促進するためにSi。At this time, Si is added to promote amorphous alloying.

B、P、C,Ge、Ga、Sb、  In等の元素を添
加する方が好ましい。
It is preferable to add elements such as B, P, C, Ge, Ga, Sb, and In.

また、メカニカルアロイングの際に混合粉砕条件を代え
ることによって直接軟磁気特性に優れたFe基超超微結
晶合金粉得ることができる。
Further, by changing the mixing and pulverizing conditions during mechanical alloying, it is possible to directly obtain Fe-based ultra-ultrafine crystal alloy powder with excellent soft magnetic properties.

メカニカルアロイングは有機溶媒中例えばメタノール又
はアセトン中で行うことにより合金の酸化の防止とボー
ルミル等の壁面に合金粉等が付着するのを防止できる。
Mechanical alloying can be carried out in an organic solvent such as methanol or acetone to prevent oxidation of the alloy and to prevent alloy powder etc. from adhering to the wall surface of a ball mill or the like.

また、メカニカルアロイングを不活性ガス雰囲気または
真空中で行うことにより、酸化による軟磁性特性の劣化
を防止することができる。
Furthermore, by performing mechanical alloying in an inert gas atmosphere or vacuum, deterioration of soft magnetic properties due to oxidation can be prevented.

上記メカニカルアロイングに変えてメカニカルグライン
ディングを使用しても同様の効果が得られる。ここでメ
カニカルグラインディングとはあらかじめ高周波溶媒炉
真空溶解炉等により作製した目的組成の合金を機械的に
微粉砕して非晶質粉末あるいは微結晶合金粉末を得る方
法である。
Similar effects can be obtained by using mechanical grinding instead of the mechanical alloying described above. Here, mechanical grinding is a method of obtaining an amorphous powder or a microcrystalline alloy powder by mechanically pulverizing an alloy having a desired composition, which has been prepared in advance in a high-frequency solvent furnace, vacuum melting furnace, or the like.

メカニカルグラインディングでは一旦合金化したものを
用いる。但し、全体が均一な組織を有する必要はない。
Mechanical grinding uses alloyed materials. However, it is not necessary to have a uniform structure throughout.

メカニカルアロイングおよびメカニカルグラインディン
グにより作製した合金粉末は磁場を印加しながら、ホッ
トプレスなどで圧粉体を作製することで粉末には誘導磁
気異方性が付けることができる。その他、回転磁場中で
熱処理することにより誘導磁気異方性を低減し、軟磁気
特性を改善することが可能である。
Alloy powder produced by mechanical alloying and mechanical grinding can be given induced magnetic anisotropy by producing a powder compact by hot pressing or the like while applying a magnetic field. In addition, heat treatment in a rotating magnetic field can reduce induced magnetic anisotropy and improve soft magnetic properties.

実旌肛 FebaQCu、Nb、Si、、、、B、の組成に純金
属のFe、Cu、Nb、SL、B粉末を調合後、窒素ガ
ス雰囲気中でボールミルにより20時間メカニカルアロ
イングした。得られた粉末は2〇−以ドの球状のものが
大部分であった。得られた粉中のXg回折パターンを測
定したところアモルファス合金特有のハローパターを示
した。結晶化温度は示差走査熱量計(D S C)によ
り10℃/a+inの昇進速度で測定した場合505℃
であった。次いでこの粉末を505℃に保った炉に1時
間入れ、50’C/n+inの冷却速度で室温まで冷却
した。
Pure metals Fe, Cu, Nb, SL, and B powders were mixed into the composition of FebaQCu, Nb, Si, . Most of the obtained powder was spherical with a diameter of 20° or smaller. When the Xg diffraction pattern of the obtained powder was measured, it showed a halo pattern peculiar to an amorphous alloy. The crystallization temperature is 505°C when measured by differential scanning calorimetry (DSC) at a rate of increase of 10°C/a+in.
Met. The powder was then placed in a furnace maintained at 505°C for 1 hour and cooled to room temperature at a cooling rate of 50'C/n+in.

得られた粉末のX線回折パターンを測定したところ結晶
のピークが認められた1次にこの粉末の組織を透過電子
顕微鏡により観察した。得られた結果を第1図に示す。
When the X-ray diffraction pattern of the obtained powder was measured, a crystal peak was observed.The structure of this powder was then observed using a transmission electron microscope. The results obtained are shown in FIG.

組織は大部分が400〜500人の粒径の微細な結晶粒
から成っており、X線回折および電子線回折の結果、こ
の結晶粒はB。
The structure consists mostly of fine crystal grains with a grain size of 400 to 500 grains, and as a result of X-ray diffraction and electron diffraction, this crystal grain is B.

81などを固溶したbcc構造のFe、固溶体であるこ
とが確認された。次に、この粉末の磁気特性を振動型磁
力計(VSM)により測定した。飽和磁束密度Bsは1
05kG、保磁力Heは0゜30eであり優れた軟磁気
特性を示した。
It was confirmed that this was a solid solution of Fe having a bcc structure in which 81 and the like were dissolved in solid solution. Next, the magnetic properties of this powder were measured using a vibrating magnetometer (VSM). The saturation magnetic flux density Bs is 1
05kG, coercive force He was 0°30e, and exhibited excellent soft magnetic properties.

来育鏝又 FebaQCu、、sNb+、sSi+s、sBsの組
成の合金を高周波溶解で製造後合金を粒径が100〜2
00.になるまで粗粉砕し窒素ガス雰囲気中でボールミ
ルにより25時間かけて、メカニカルブライディングし
た。得られた粉末の粒径は251以下の球状のものが大
部分であった。
After manufacturing alloys with the compositions of FebaQCu, sNb+, sSi+s, and sBs using high-frequency melting, the alloys have a grain size of 100 to 2.
00. The powder was coarsely pulverized until it became 25 hours and then mechanically brined using a ball mill in a nitrogen gas atmosphere for 25 hours. Most of the obtained powder was spherical with a particle size of 251 particles or less.

得られた粉末のX線回折パターンを測定したところ実施
例1と同様のハローパターンであった。
When the X-ray diffraction pattern of the obtained powder was measured, it was found to have a halo pattern similar to that of Example 1.

結晶化温度は示差走査熱量計(DSC)により10’C
/minの昇進速度で測定した場合512℃であった。
The crystallization temperature was determined to be 10'C by differential scanning calorimetry (DSC).
The temperature was 512° C. when measured at a promotion rate of /min.

次いでこの粉末なN8ガス雰囲気中で505℃に保った
炉に1時間入れ、50℃/minの冷却速度で室温まで
冷却した。
Next, it was placed in a furnace maintained at 505°C in this powdery N8 gas atmosphere for 1 hour, and cooled to room temperature at a cooling rate of 50°C/min.

得られた粉末のX線回折パターンを測定したところ実施
例1に示すような結晶のピークが認められた。透過電子
顕微鏡による観察の結果組織の大部分が300〜500
人の粒径の微細な結晶粒からなることが確認された。
When the X-ray diffraction pattern of the obtained powder was measured, crystal peaks as shown in Example 1 were observed. As a result of observation using a transmission electron microscope, most of the structure has a diameter of 300 to 500.
It was confirmed that it consists of fine crystal grains with the size of a human grain.

次にこの粉末の磁気特性を振動型磁力計(VSM)によ
り測定した。飽和磁束密度Bsは13゜5kG、保磁力
Hcは0,750eが得られた。
Next, the magnetic properties of this powder were measured using a vibrating magnetometer (VSM). A saturation magnetic flux density Bs of 13°5 kG and a coercive force Hc of 0,750e were obtained.

宋惠氾 第1表に、水アトマイズ法および本発明に係る製造法で
あるメカニカルアロイング法により作製されて、粒径約
50−以下の球状のアモルファス合金粉末を窒素雰囲気
中で熱処理して作製した。
Song Huifu Table 1 shows that spherical amorphous alloy powders with a particle size of about 50 mm or less were prepared by the water atomization method and the mechanical alloying method, which is a manufacturing method according to the present invention, and were heat-treated in a nitrogen atmosphere.

粒径が約300〜500人の超微結晶合金粉末の保磁力
Hcを各組成ごとに比較して示す。表から水アトマイズ
法で作製された合金粉末のHcはばらつきが大きいがメ
カニカルアロイングにより作製された合金粉末はHeの
ばらつきが小さく、その値も良好な軟磁気特性を示して
いる。これは、Cuを多量に含有している場合、水アト
マイズ法で作製された合金粉末にはCuがわずかに析出
して軟磁気特性を劣化させているが、メカニカルアロイ
ングにより作製された合金粉末はCuを多量に含有して
いるにもかかわらず、粒度および内部組織が非常に均一
であるためと考えられる。
The coercive force Hc of ultrafine crystalline alloy powder having a grain size of about 300 to 500 particles is shown in comparison for each composition. As can be seen from the table, the alloy powder produced by the water atomization method has a large variation in Hc, but the alloy powder produced by mechanical alloying has a small variation in He, and this value also shows good soft magnetic properties. This is because when alloy powders made by water atomization contain a large amount of Cu, a small amount of Cu precipitates and deteriorates the soft magnetic properties, whereas alloy powders made by mechanical alloying This is thought to be because the particle size and internal structure are very uniform despite containing a large amount of Cu.

以下余白 [発明の効果] 本発明によれば特性のばらつきが少ない、軟磁気特性の
優れた合金粉末が得られ、圧粉磁心、等の作製に有効で
ある。
Margins below [Effects of the Invention] According to the present invention, an alloy powder with excellent soft magnetic properties with little variation in properties can be obtained, and is effective for producing powder magnetic cores and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により得られた合金粉末の電子顕微鏡写
真をトレースした図である。 手続乎旧正書(自発)
FIG. 1 is a traced electron micrograph of an alloy powder obtained according to the present invention. Proceedings of the Old Orthodox Book (Spontaneous)

Claims (8)

【特許請求の範囲】[Claims] (1)メカニカルアロイングによりFe,Cu,M(但
しMはNb,W,Ta,Zr,Hf,TiおよびMoの
群から選ばれた少なくとも1種以上の元素)を必須元素
として含む非晶質合金粉末を作製する工程と、前記非晶
質合金を加熱することにより、組織の少なくとも50%
が微細な結晶粒からなる合金粉末を得る工程からなるこ
とを特徴とするFe基超微結晶合金粉末の製造方法。
(1) Amorphous material containing Fe, Cu, and M (where M is at least one element selected from the group of Nb, W, Ta, Zr, Hf, Ti, and Mo) as essential elements by mechanical alloying By preparing an alloy powder and heating the amorphous alloy, at least 50% of the structure is
1. A method for producing an Fe-based ultrafine crystalline alloy powder, comprising the step of obtaining an alloy powder consisting of fine crystal grains.
(2)メカニカルアロイングによりFe,Cu,M(但
しMはNb,W,Ta,Zr,Hf,TiおよびMoの
群から選ばれた少なくとも1種以上の元素)を必須元素
として含む組織の少なくとも50%が微細な結晶粒から
なる合金粉末を得る工程からなることを特徴とするFe
基超微結晶合金粉末の製造方法。
(2) At least one of the structures containing Fe, Cu, and M (where M is at least one element selected from the group of Nb, W, Ta, Zr, Hf, Ti, and Mo) as essential elements by mechanical alloying. Fe characterized by comprising a step of obtaining an alloy powder of which 50% consists of fine crystal grains.
A method for producing a base ultrafine crystalline alloy powder.
(3)メカニカルアロイングを有機溶媒中で行うことを
特徴とする請求項1又は2に記載のFe基超微結晶合金
粉末の製造方法。
(3) The method for producing Fe-based ultrafine crystal alloy powder according to claim 1 or 2, characterized in that the mechanical alloying is performed in an organic solvent.
(4)メカニカルアロイングを不活性ガス雰囲気中で行
うことを特徴とする請求項1又は2に記載のFe基超微
結晶合金粉末の製造方法。
(4) The method for producing Fe-based ultrafine crystal alloy powder according to claim 1 or 2, wherein the mechanical alloying is performed in an inert gas atmosphere.
(5)メカニカルグラインディングによりFe,Cu,
M(但しMはNb,W,Ta,Zr,Hf,Tiおよび
Moの群から選ばれた少なくとも1種以上の元素)を必
須元素として含む非晶質合金粉末を作製する工程と、前
記非晶質合金を加熱することにより、組織の少なくとも
50%が微細な結晶粒からなる合金粉末を得る工程から
なることを特徴とするFe基超微結晶合金粉末の製造方
法。
(5) Fe, Cu,
A step of producing an amorphous alloy powder containing M (where M is at least one element selected from the group of Nb, W, Ta, Zr, Hf, Ti, and Mo) as an essential element; 1. A method for producing Fe-based ultrafine-crystalline alloy powder, comprising the step of heating a fine alloy to obtain an alloy powder in which at least 50% of the structure consists of fine crystal grains.
(6)メカニカルグラインディングによりFe,Cu,
M(但しMはNb,W,Ta,Zr,Hf,Tiおよび
Moの群から選ばれた少なくとも1種以上の元素)を必
須元素として含む組織の少なくとも50%が微細な結晶
粒からなる合金粉末を得る工程からなることを特徴とす
るFe基超微結晶合金粉末の製造方法。
(6) Fe, Cu,
An alloy powder containing M (where M is at least one element selected from the group of Nb, W, Ta, Zr, Hf, Ti, and Mo) as an essential element, in which at least 50% of the structure is composed of fine crystal grains. A method for producing Fe-based ultrafine crystal alloy powder, comprising the steps of obtaining:
(7)メカニカルグラインデイングを有機溶媒中で行う
ことを特徴とする請求項5又は6に記載のFe基超微結
晶合金粉末の製造方法。
(7) The method for producing Fe-based ultrafine crystal alloy powder according to claim 5 or 6, characterized in that the mechanical grinding is performed in an organic solvent.
(8)メカニカルグラインデイングを不活性ガス雰囲気
中で行うことを特徴とする請求項5又は6に記載のFe
基超微結晶合金粉末の製造方法。
(8) The Fe according to claim 5 or 6, wherein the mechanical grinding is performed in an inert gas atmosphere.
A method for producing a base ultrafine crystalline alloy powder.
JP1143756A 1989-06-06 1989-06-06 Manufacture of super fine crystal alloy powder Pending JPH0310001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143756A JPH0310001A (en) 1989-06-06 1989-06-06 Manufacture of super fine crystal alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143756A JPH0310001A (en) 1989-06-06 1989-06-06 Manufacture of super fine crystal alloy powder

Publications (1)

Publication Number Publication Date
JPH0310001A true JPH0310001A (en) 1991-01-17

Family

ID=15346288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143756A Pending JPH0310001A (en) 1989-06-06 1989-06-06 Manufacture of super fine crystal alloy powder

Country Status (1)

Country Link
JP (1) JPH0310001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329844A (en) * 1991-04-26 1992-11-18 Agency Of Ind Science & Technol Manufacture of fine carbide dispersed alloy by using mechanical alloying method
JP2013231214A (en) * 2012-04-27 2013-11-14 Kyb Co Ltd Method for producing sliding member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04329844A (en) * 1991-04-26 1992-11-18 Agency Of Ind Science & Technol Manufacture of fine carbide dispersed alloy by using mechanical alloying method
JP2013231214A (en) * 2012-04-27 2013-11-14 Kyb Co Ltd Method for producing sliding member

Similar Documents

Publication Publication Date Title
JP2611994B2 (en) Fe-based alloy powder and method for producing the same
JP6460276B1 (en) Soft magnetic alloys and magnetic parts
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JP2713363B2 (en) Fe-based soft magnetic alloy compact and manufacturing method thereof
JP2016104900A (en) Metallic soft magnetic alloy, magnetic core, and production method of the same
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP2006040906A (en) Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density
JPH02125801A (en) Flat-state fe base soft magnetic alloy fine powder and manufacture thereof
JP2868121B2 (en) Method for producing Fe-based magnetic alloy core
JP7148876B2 (en) Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy dust core, and method for producing nanocrystalline alloy dust core
JP3623970B2 (en) Fe-based soft magnetic alloy and manufacturing method
JPH05335129A (en) Fe-based soft magnetic alloy particle and manufacturing method thereof
JPH0448005A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JP6744238B2 (en) Soft magnetic powder, magnetic parts and dust core
JPH0310001A (en) Manufacture of super fine crystal alloy powder
JPH0271506A (en) Manufacture of permanent magnet powder
JPH01149940A (en) Fe-base magnetic alloy
JPH0479302A (en) Dust core
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPH0368743A (en) Fe-base sintered magnetic core material and its production
JPH0448004A (en) Fe base soft magnetic alloy powder and manufacture thereof and powder compact magnetic core with the same
JPH06158239A (en) Fe base soft magnetic alloy and its production
JPS5961004A (en) Thin strip of permanent magnet and manufacture thereof
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPH04341544A (en) Fe base soft magnetic alloy