JPH0290649A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0290649A
JPH0290649A JP24281688A JP24281688A JPH0290649A JP H0290649 A JPH0290649 A JP H0290649A JP 24281688 A JP24281688 A JP 24281688A JP 24281688 A JP24281688 A JP 24281688A JP H0290649 A JPH0290649 A JP H0290649A
Authority
JP
Japan
Prior art keywords
wiring layer
basic cells
potential
wiring layers
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24281688A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oguchi
泰弘 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP24281688A priority Critical patent/JPH0290649A/en
Publication of JPH0290649A publication Critical patent/JPH0290649A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to make large the widths of main powersupply wiring layers and to supply stably a potential to basic cells in a master slice system of a gate array, in which the basic cells are arranged in a configuration that transistors oppose to one another, by a method wherein the main power-supply wiring layers are arranged between the basic cells. CONSTITUTION:101 to 104 are P-channel transistors, 105 to 108 are N-channel transistors, 109 is a wiring layer to supply the potential of a VSS, 110 are wiring layers (the wiring layer to correspond to the 109 is a main power-supply wiring layer and the wiring layers to correspond to the 110 are branch power-supply wiring layers) to supply the potential of the VSS to a diffused region constituting the N-channel transistors through vias, 111 is a main power-supply wiring layer of a VDD and 112 are branch power-supply wiring layers of the VDD. The main power-supply wiring layers are arranged between basic cells and a potential can be supplied to the diffused region constituting the transistors in the basic cells by the branch power-supply wiring layers and the vias. In case the main power supply wiring layers are arranged between the basic cells, there is no need to consider wiring regions in the cells and the potential can be supplied stably because the widths (W1) of the wiring layers are decided by the distance between the basic cells.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、半導体集積回路装置に係わり、マスタスライ
ス方式ゲートアレイに使用する基本セルへの電源供給方
式に関するものである。
[Industrial Field of Application] The present invention relates to a semiconductor integrated circuit device, and more particularly to a method for supplying power to basic cells used in a master slice gate array.

【従来の技術] 現在、配線工程を変更することにより専用の論理を実現
するマスタスライス方式のゲートアレイに於いて、基本
セルへの電源供給に伴う電源配線層は、論理回路をイン
バータ、NAND、N0R1により構成することから、
PchトランジスタにvDD、NchトランジスタにV
SSの電位を供給することを目的とし、VDDの電位を
供給する配線が基本セル内のPchトランジスタの構成
要素となる拡散領域の上をトランジスタのゲート電極に
対して垂直に位置し、同様に、vSSの電位を供給する
配線がNchトランジスタ゛の拡散領域上をゲート電極
に垂直に位置し、基本セル内に2本の電源配線層が存在
する。 【発明が解決しようとする課題) 従来のように基本セル内に其基本セルのトランジスタへ
の電源配線層を2本有する場合、基本セルで論理素子を
構成するのに必要とする基本セル内配線領域を大きくす
る目的から電源配線層の幅の距離は限定される。また、
論理素子を構成する基本セル内配線層に対して電源配線
層が障害になる可能性がある。従って、電源配線層の幅
の距離を長くして、チップ蜆模の大きな半導体集積回路
に対してチップ全体の基本セルに電位を均一に安定して
供給することは従来の電源供給方式では困難である。 本発明は、前記の問題点を解決するもので、マスタスラ
イス方式ゲートアレイに於いて、論理素子を構成する基
本セル内配線層に障害とならず、基本セルに安定して電
位を供給する電源供給方式を提供することが目的である
。 〔課題を解決するための手段〕 本発明の半導体集積回路装置は、PChトランジスタと
Nchトランジスタにより構成される基本セルが規則的
に配置されるマスタスライス方式のゲートアレイに於い
て、1個の基本セルに対して其基本セル内のゲート電極
に平行方向に他の基本セルが基本セルを構成するPCh
トランジスタとPchトランジスタが相対する形状、N
chトランジスタとNch)ランジスクが相対する形状
で位置し、かつ、基本セル内のゲート電極に平行方向に
其基本セルのNchトランジスタ側に隣接する基本セル
がNchトランジスタへ電位を供給する配線層を共有し
、Pchトランジスタ側に隣接する基本セルがPchト
ランジスタべ電位を供給する配線層を共有することを特
徴とする。 【実 施 例】 第1図に、本発明における基本セルと電源配線層の配置
構造図を示す0図中の番号、101か6104はPch
トランジスタ、105から108はNchトランジスタ
、109はvSSの電位を供給する配線層、110はV
SSの電位をビアを介してNch)ランジスクを構成す
る拡散領域に供給する配線層(以下、109に相当する
配線層を主電源配線層、110に相当する配線層を主電
源配線層と記す、)で、111はVDDの主電源配線層
、112はVDDの主電源配線層である。 従来、電位を供給する配線がトランジスタの拡散領域上
に位置し基本セル内に2本の電源配線層が存在したがP
chトランジスタとPchトランジスタ、Nchトラン
ジスタとNchトランジスタが相対する形状で基本セル
が配置されている場合、本発明に示したごとく主電源配
線層を基本セル間に配置し主電源配線層とビアにより基
本セル内のトランジスタを構成する拡散領域に電位を供
給することができる。主電源配線層を基本セル間に配置
した場合、配線層の幅(Wl)は基本セル間の距離によ
り決定されるため従来のようにセル内配線領域を考慮す
る必要がなく電位を安定して供給できるように大きく設
定することが可能である。また、基本セル内に電源配線
層が位置する場合、113か6118に示した位置にセ
ル内配線層を設定することが不可能であるが第1図の実
施例では主電源配線層を除く領域に設定可能である。 第2図に基本セル間の距離が小さい場合における基本セ
ルと電源配線層の配置構造図を示す、第2図では従来と
同様に主電源配線層から直接ビアな介して基本セル内の
トランジスタを構成する拡散領域に電位を供給している
ため、図中の211上を基本セル内のゲート電極に対し
て垂直に通過位置にセル内配線層を設定することが不可
能であるが、この実施例に於いても主電源配線層の幅(
W2)は大きく設定することが可能であり電位を安定し
て供給することができる。 [発明の効果] 以上記したように本発明によれば、Pchトランジスタ
とPchトランジスタ、NchトランジスタとNchト
ランジスタが相対する形状で基本セルが配置されている
マスタスライス方式のゲートアレイに於て、基本セル間
に主電源配線層を配置した電源供給方式により主電源配
線層の幅を大きくすることが可能であり基本セルに対し
て電位を安定して供給することができ、主電源配線層を
設定することにより基本セル内配線領域を大きくするこ
とができるという効果を有する。
[Prior Art] Currently, in master slice type gate arrays that realize dedicated logic by changing the wiring process, the power supply wiring layer accompanying the power supply to the basic cells connects the logic circuits to inverters, NANDs, Since it is configured by N0R1,
VDD to Pch transistor, V to Nch transistor
The wiring for supplying the potential of VDD, which is intended to supply the potential of SS, is located perpendicularly to the gate electrode of the transistor over the diffusion region that is a component of the Pch transistor in the basic cell, and similarly, The wiring for supplying the potential of vSS is located perpendicular to the gate electrode on the diffusion region of the Nch transistor, and two power supply wiring layers are present in the basic cell. [Problems to be Solved by the Invention] When a basic cell has two power supply wiring layers to the transistors of the basic cell as in the past, the wiring within the basic cell required to configure a logic element in the basic cell. For the purpose of enlarging the area, the width distance of the power supply wiring layer is limited. Also,
There is a possibility that the power supply wiring layer becomes an obstacle to the wiring layer within the basic cell that constitutes the logic element. Therefore, it is difficult with conventional power supply methods to increase the width of the power supply wiring layer and supply a uniform and stable potential to the basic cells of the entire chip for semiconductor integrated circuits with large chip sizes. be. The present invention solves the above-mentioned problems, and provides a power supply that stably supplies potential to the basic cells without interfering with the wiring layer within the basic cells that constitute the logic elements in the master slice gate array. The purpose is to provide a supply method. [Means for Solving the Problems] The semiconductor integrated circuit device of the present invention has a master slice type gate array in which basic cells constituted by PCh transistors and Nch transistors are regularly arranged. A PCh in which other basic cells constitute a basic cell in a direction parallel to the gate electrode in that basic cell with respect to the cell.
Shape where transistor and Pch transistor face each other, N
The basic cells in which the ch transistor and the Nch transistor are located opposite each other and are adjacent to the Nch transistor side of the basic cell in a direction parallel to the gate electrode in the basic cell share a wiring layer that supplies the potential to the Nch transistor. However, it is characterized in that basic cells adjacent to the Pch transistor side share a wiring layer that supplies a potential to the Pch transistor. [Embodiment] Figure 1 shows the arrangement structure of the basic cell and power supply wiring layer in the present invention.
transistors, 105 to 108 are Nch transistors, 109 is a wiring layer that supplies the potential of vSS, 110 is V
A wiring layer that supplies the potential of SS to the diffusion region constituting the Nch run disk via vias (hereinafter, the wiring layer corresponding to 109 will be referred to as the main power supply wiring layer, and the wiring layer corresponding to 110 will be referred to as the main power supply wiring layer, ), 111 is a VDD main power supply wiring layer, and 112 is a VDD main power supply wiring layer. Conventionally, the wiring for supplying potential was located on the diffusion region of the transistor, and there were two power supply wiring layers in the basic cell, but P
When basic cells are arranged in such a way that a channel transistor and a Pch transistor or an Nch transistor and an Nch transistor face each other, the main power supply wiring layer is arranged between the basic cells as shown in the present invention, and the main power supply wiring layer and vias are used to connect the basic cells to each other. A potential can be supplied to a diffusion region that constitutes a transistor within a cell. When the main power supply wiring layer is placed between basic cells, the width (Wl) of the wiring layer is determined by the distance between the basic cells, so there is no need to consider the wiring area within the cell as in the conventional case, and the potential can be stabilized. It is possible to set it large so that it can be supplied. In addition, if the power supply wiring layer is located within the basic cell, it is impossible to set the intracell wiring layer at the position shown in 113 or 6118, but in the embodiment shown in Fig. 1, the area excluding the main power supply wiring layer is Can be set to Figure 2 shows the layout structure of the basic cells and power wiring layer when the distance between the basic cells is small. In Figure 2, the transistors in the basic cells are connected directly from the main power wiring layer via vias, as in the conventional case. Since a potential is supplied to the constituent diffusion regions, it is impossible to set the intra-cell wiring layer at a position passing above 211 in the figure perpendicularly to the gate electrode in the basic cell, but this implementation In the example, the width of the main power wiring layer (
W2) can be set large, and the potential can be stably supplied. [Effects of the Invention] As described above, according to the present invention, in a master slice type gate array in which basic cells are arranged in such a shape that Pch transistors and Pch transistors, and Nch transistors and Nch transistors face each other, A power supply method in which a main power wiring layer is placed between cells allows the width of the main power wiring layer to be increased, making it possible to stably supply potential to the basic cells and setting the main power wiring layer. This has the effect that the wiring area within the basic cell can be enlarged.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に於ける基本セルと電源配線層の配置
構造図、第2図は基本セル間の距離が小さい場合におけ
る基本セルと電源配線層の配置例を示す図である。 101、 102. 202. 105. 206. 203、 l 06゜ 207. 09、209 1 Ol 210 11  ・ ・ ・ ・ l 2 ・ ・ ・ ・ 13〜118 103、104.201゜ ・・Pchトランジスタ 107.108.205、 ・・Nchトランジスタ ・・vSS主電源配線層 ・・vSS支電源配線層 ・・VDD主電源配線層 ・・VDD支電源配線層 ・・ビア上に電源配線層を 設定した場合の電源配 線層の位置 119.211・・・ビア wl、w2・・・・・主電源配線層の幅以上 出願人 セイコーエプソン株式会社
FIG. 1 is a diagram showing the arrangement structure of basic cells and power wiring layers in the present invention, and FIG. 2 is a diagram showing an example of the arrangement of basic cells and power wiring layers when the distance between basic cells is small. 101, 102. 202. 105. 206. 203, l 06°207. 09, 209 1 Ol 210 11 ・ ・ ・ ・ l 2 ・ ・ ・ 13 to 118 103, 104.201°...Pch transistor 107.108.205, ..Nch transistor...vSS main power wiring layer...vSS Sub-power wiring layer...VDD main power wiring layer...VDD sub-power wiring layer...Position of the power wiring layer when the power wiring layer is set on the via 119.211...Via wl, w2...・More than the width of the main power wiring layer Applicant: Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] PchトランジスタとNchトランジスタにより構成さ
れる基本セルが規則的に配置されるマスタスライス方式
のゲートアレイに於いて、1個の基本セルに対して其基
本セル内のゲート電極に平行方向に他の基本セルが基本
セルを構成するPchトランジスタとPchトランジス
タが相対する形状、NchトランジスタとNchトラン
ジスタが相対する形状で位置し、かつ、基本セル内のゲ
ート電極に平行方向に其基本セルのNchトランジスタ
側に隣接する基本セルがNchトランジスタへ電位を供
給する配線層を共有し、Pchトランジスタ側に隣接す
る基本セルがPchトランジスタへ電位を供給する配線
層を共有することを特徴とする半導体集積回路装置。
In a master slice type gate array in which basic cells composed of Pch transistors and Nch transistors are regularly arranged, one basic cell is connected to another basic cell in a direction parallel to the gate electrode in that basic cell. The cell is located in a shape in which Pch transistors and Pch transistors that constitute a basic cell face each other, and Nch transistors and Nch transistors that form a basic cell face each other, and are located on the Nch transistor side of the basic cell in a direction parallel to the gate electrode in the basic cell. A semiconductor integrated circuit device characterized in that adjacent basic cells share a wiring layer for supplying a potential to an Nch transistor, and basic cells adjacent to the Pch transistor side share a wiring layer for supplying a potential to a Pch transistor.
JP24281688A 1988-09-28 1988-09-28 Semiconductor integrated circuit device Pending JPH0290649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24281688A JPH0290649A (en) 1988-09-28 1988-09-28 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24281688A JPH0290649A (en) 1988-09-28 1988-09-28 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0290649A true JPH0290649A (en) 1990-03-30

Family

ID=17094717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24281688A Pending JPH0290649A (en) 1988-09-28 1988-09-28 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0290649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393996A (en) * 1993-04-21 1995-02-28 Siemens Aktiengesellschaft Integrated semiconductor configuration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393996A (en) * 1993-04-21 1995-02-28 Siemens Aktiengesellschaft Integrated semiconductor configuration

Similar Documents

Publication Publication Date Title
US6359472B2 (en) Semiconductor integrated circuit and its fabrication method
JPH0434309B2 (en)
JP3212915B2 (en) Semiconductor integrated circuit device
KR920006750B1 (en) Semiconductor device
JPH0290649A (en) Semiconductor integrated circuit device
JPH0258871A (en) Borderless masterslice semiconductor device
JP2659970B2 (en) Semiconductor integrated circuit
JPH02177456A (en) Gate array basic cell
KR920005798B1 (en) Borderless master slice semiconductor device
JPH0154861B2 (en)
JPH02174258A (en) Delay cell
JPH0786534A (en) Semiconductor device
JPH02191361A (en) Integrated circuit
JPS61191047A (en) Semiconductor integrated circuit device
JPH01289266A (en) Semiconductor integrated circuit device
JPH0290675A (en) Semiconductor integrated circuit device
JPS6272143A (en) Pattern formation of semiconductor integrated circuit
KR950013741B1 (en) Semiconductor ic device
JPH03108760A (en) Cmos gate array
JPH0382140A (en) Semiconductor integrated circuit device
JPH01278743A (en) Cmos integrated circuit
JPH10214903A (en) Layout method of standard cell
JPS6226853A (en) Complementary mos semiconductor integrated circuit device
JPH06112448A (en) Manufacture of semiconductor device
JPH03209745A (en) Layout method for standard-cell system