JPH0382140A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0382140A
JPH0382140A JP21734189A JP21734189A JPH0382140A JP H0382140 A JPH0382140 A JP H0382140A JP 21734189 A JP21734189 A JP 21734189A JP 21734189 A JP21734189 A JP 21734189A JP H0382140 A JPH0382140 A JP H0382140A
Authority
JP
Japan
Prior art keywords
power supply
gate
integrated circuit
logic
supply cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21734189A
Other languages
Japanese (ja)
Inventor
Nobuhiro Ryu
笠 信博
Shuichi Nakagami
中上 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21734189A priority Critical patent/JPH0382140A/en
Publication of JPH0382140A publication Critical patent/JPH0382140A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the size of a semiconductor chip by a method wherein a logical gate is made to build in a feeder cell. CONSTITUTION:In a feeder cell 10 with a dummy gate, a feeder cell for adding a desired potential to a well and a substrate is formed of a well feeder contact 9 and a substrate feeder contact 10, while 4 MOS transistors Tr1 to Tr4 are formed of first to third Al wirings 1 to 3, first to third polycrystalline silicon gates 4 to 6, a P-type diffused layer 7 and an N-type diffused layer 8. These four transistors constitute jointly a logical cell (a 2-input NAND circuit) and the logical gate acts as a logical gate for backup use at the time of abnormality of other logical gate. That is, by using the logical gate built in the feeder cell as a dummy gate for logical backup use, for example, part or the whole of a region which is used for merely the feeder cell can be used commonly as the region of the logical gate and the dead space of a semiconductor chip can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、論理ゲートと給電セルとを備えた半導体集積
回路装置に関し、特に、半導体チップのデッドスペース
を削減したレイアウトにて高集積化を図るようにした半
導体集積回路装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor integrated circuit device equipped with a logic gate and a power supply cell, and particularly relates to a semiconductor integrated circuit device having a logic gate and a power supply cell. The present invention relates to a semiconductor integrated circuit device.

[従来の技術] 通常、トランジスタを多数配した半導体集積回路装置に
おいては、半導体本体の複数の箇所に所定電位を供給す
るための給電セルを配し、半導体の基板と当該基板内に
形成されるウェルとの電気的な分離を行ない、もって当
該ウェルに形成されるトランジスタの機能の安定化を図
っている。
[Prior Art] Usually, in a semiconductor integrated circuit device in which a large number of transistors are arranged, power supply cells are arranged for supplying a predetermined potential to a plurality of locations on a semiconductor body, and a power supply cell is arranged in a semiconductor substrate and a power supply cell formed in the substrate. It is electrically isolated from the well, thereby stabilizing the function of the transistor formed in the well.

一方、論理ゲートを備えた半導体集積回路装置において
は、その製造過程で論理ゲートに欠陥が発生した場合に
備え、当該欠陥の生じた論理ゲートの機能を代行すべく
所謂論理デバッグ用ダミーゲート(ダミー論理ゲート)
を正規の論理ゲートの数に対し所定の比率で配し、論理
ゲートの欠陥発生時の論理修正を容易にし、半導体集積
回路装置の歩留りを上げている。
On the other hand, in semiconductor integrated circuit devices equipped with logic gates, in case a defect occurs in the logic gate during the manufacturing process, so-called logic debugging dummy gates (dummy logic gate)
are arranged at a predetermined ratio to the number of regular logic gates, making it easy to correct logic when a defect occurs in a logic gate, and increasing the yield of semiconductor integrated circuit devices.

ここで、第5図に従来より行なわれていた半導体集積回
路装置に於ける給電セルと論理デバッグ用ダミーゲート
のレイアウトの一例を示す。同図に示すように例えば1
m角のチップに1000個の論理ゲートを配した半導体
集積回路装置に於いては、10段のセル列が設けられ、
100μm間隔で1セル列当り10個の給電セル20が
配される。そして、このような規模の半導体集積回路装
置では、1000個の論理ゲートに対して約30個の割
合で論理デバッグ用ダミーゲート30を配し、製造過程
途中で生じ得る論理ゲートの欠陥に対して充分な論理修
正を行なうようにしている。
Here, FIG. 5 shows an example of a conventional layout of a power supply cell and a dummy gate for logic debugging in a semiconductor integrated circuit device. For example, 1 as shown in the figure.
In a semiconductor integrated circuit device with 1000 logic gates arranged on an m square chip, 10 stages of cell rows are provided.
Ten power supply cells 20 are arranged per cell column at intervals of 100 μm. In a semiconductor integrated circuit device of this scale, dummy gates 30 for logic debugging are arranged at a ratio of about 30 for every 1000 logic gates to prevent defects in logic gates that may occur during the manufacturing process. I try to make sufficient logical corrections.

[発明が解決しようとする課題] ところで近年の半導体装置の製造分野では、論理集積回
路の高機能化のための高集積化が要求され、これによる
半導体チップサイズの縮小5さらにはチップサイズの縮
小による半導体集積回路装置の原価の低減が望まれてい
る。しかるに第5図に示すような、給電セルのみならず
、論理ゲートの異常時に備えて論理デバッグ用ダミーゲ
ートをも配した半導体集積回路装置に於いては、上記給
電セルとダミーゲートとをそれぞれ別個の領域に形成し
ていたため、必然的にチップのデッドスペースが増える
構造となり、上記高集積化の要請に応えられなかった。
[Problem to be solved by the invention] In recent years, in the field of manufacturing semiconductor devices, there has been a demand for higher integration to improve the functionality of logic integrated circuits, and this has led to reductions in semiconductor chip size5 and further reductions in chip size. Therefore, it is desired to reduce the cost of semiconductor integrated circuit devices. However, in a semiconductor integrated circuit device as shown in FIG. 5, which has not only a power supply cell but also a dummy gate for logic debugging in case of an abnormality in the logic gate, the power supply cell and the dummy gate are separated from each other. Since the semiconductor chip was formed in the region of 1, the dead space of the chip inevitably increased, and the above-mentioned demand for higher integration could not be met.

本発明はかかる事情に鑑みてなされたもので、論理ゲー
トに欠陥が生じた場合であっても充分に論理修正のでき
る半導体集積回路装置をこれらの機能を維持したままコ
ンパクトに形成して高集積化を図り、もって半導体チッ
プのサイズを縮小することを可能にした半導体集積回路
装置を提供することをその主たる目的とする。
The present invention has been made in view of the above circumstances, and provides a highly integrated semiconductor integrated circuit device that is capable of sufficiently correcting the logic even if a defect occurs in a logic gate, and is compact and highly integrated while maintaining these functions. The main purpose of the present invention is to provide a semiconductor integrated circuit device that enables the size of semiconductor chips to be reduced by reducing the size of semiconductor chips.

この発明の前記ならびにそのほかの目的と新規な特徴に
ついては、本明細書の記述および添附図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

[課題を解決するための手段] 本願において開示される発明のうち代表的なものの概要
を説明すれば、下記のとおりである。
[Means for Solving the Problems] Representative inventions disclosed in this application will be summarized as follows.

本発明の半導体集積回路装置は、論理ゲートと給電セル
とを備えるにあたり、上記給電セルに論理ゲートを内蔵
させたものである。
In the semiconductor integrated circuit device of the present invention, which includes a logic gate and a power supply cell, the logic gate is built into the power supply cell.

[作用] 上記論理ゲートを内蔵した給電セルを備えた半導体集積
回路装置に於いては、当該給電セルに内蔵された論理ゲ
ートを例えば論理デバッグ用ダミーゲートとして用いる
ことによって従来給電セルにしか用いていなかった領域
の一部又は全部を論理ゲートの領域として共有すること
ができ、半導体チップのデッドスペースを減らすことが
できる。
[Function] In a semiconductor integrated circuit device equipped with a power supply cell having a built-in logic gate, the logic gate built in the power supply cell can be used, for example, as a dummy gate for logic debugging, so that it can be used only in the power supply cell in the past. A part or all of the area that was not used can be shared as a logic gate area, and the dead space of the semiconductor chip can be reduced.

[実施例] 以下、本発明の半導体集積回路装置の実施例を図面を参
照して説明する。
[Embodiments] Hereinafter, embodiments of the semiconductor integrated circuit device of the present invention will be described with reference to the drawings.

第1図は本発明に係る論理デバッグ用ダミーゲートを内
蔵した給電セル(以下単に「ダミーゲート付き給電セル
」という〉の構成を示す平面図である。
FIG. 1 is a plan view showing the configuration of a power supply cell (hereinafter simply referred to as "power supply cell with dummy gate") incorporating a dummy gate for logic debugging according to the present invention.

このダミーゲート付き給電セル100は、第1のアルミ
配線1、第2のアルミ配線2、第3のアルミ配l1A3
、第1のポリシリコンゲート4、第2のポリシリコンゲ
ート5、第3のポリシリコンゲート6、P拡散層7、N
拡散層8.ウェル給電コンタクト9及び基板給電コンタ
クト10を主な構成要素としている。
This power supply cell 100 with a dummy gate includes a first aluminum wiring 1, a second aluminum wiring 2, and a third aluminum wiring 11A3.
, first polysilicon gate 4, second polysilicon gate 5, third polysilicon gate 6, P diffusion layer 7, N
Diffusion layer 8. The main components are a well power supply contact 9 and a substrate power supply contact 10.

即ち、このダミーゲート付き給電セル100は、ウェル
給電コンタクト9、基板給電コンタクトlOによってウ
ェルおよび基板に所望の電位を付加する給電セルを形成
し、一方で第1〜第3のアルミ配線1〜3、第1〜第3
のポリシリコンゲート4〜6、P拡散層7及びN拡散層
8により4つのMOSトランジスタ(Trユ〜や)を形
成する。これら4つのトランジスタは共働して論理ゲー
ト(2入力NAND回路)を構成し、他の論理ゲート(
図示省略)の異常時のバックアップ用論理ゲートとして
作用する。
That is, this power supply cell 100 with a dummy gate forms a power supply cell that applies a desired potential to the well and the substrate by the well power supply contact 9 and the substrate power supply contact 10, while the first to third aluminum wirings 1 to 3 , 1st to 3rd
Four MOS transistors (Tr units) are formed by the polysilicon gates 4 to 6, the P diffusion layer 7, and the N diffusion layer 8. These four transistors work together to configure a logic gate (2-input NAND circuit), and other logic gates (
It acts as a backup logic gate in the event of an abnormality (not shown).

具体的には、第1図中、領域Iに第1のPチャネル型ト
ランジスタTr1が、領域■に第2のPチャネル型トラ
ンジスタTr、がそれぞれ形成されている。一方、領域
■及び■にはそれぞれ第1及び第2のNチャネル型トラ
ンジスタTr、、Tr4が形成されており、該4つのト
ランジスタTr工〜。の組み合わせにより、ダミーゲー
ト付き給電セル100内に1つの2入力NAND回路が
構成される。ここで図中a ” hはコンタクトホール
を示す。
Specifically, in FIG. 1, a first P-channel transistor Tr1 is formed in region I, and a second P-channel transistor Tr is formed in region (2). On the other hand, first and second N-channel transistors Tr, Tr4 are formed in regions (1) and (2), respectively, and the four transistors Tr--. By this combination, one two-input NAND circuit is configured within the power supply cell 100 with a dummy gate. Here, a''h in the figure indicates a contact hole.

第2図は第1図のダミーゲート付き給電セルの回路構成
のうち、特に論理デパック用ダミーゲートとしてのNA
ND回路部分の構成を示す等価回路である。図中A、B
はダミーゲート入力端子を示し、Cダミーゲート出力端
子を示す。
Figure 2 shows the circuit configuration of the power supply cell with dummy gate shown in Figure 1, especially the NA as a dummy gate for logical depacking.
This is an equivalent circuit showing the configuration of the ND circuit portion. A and B in the diagram
indicates a dummy gate input terminal, and C indicates a dummy gate output terminal.

上記構成のダミーゲート付き給電セルは、実質的には論
理デバッグ用ダミーゲートのデッドスペース内に給電セ
ルを配した構成となっているので、高集積化ひいてはチ
ップサイズの小型化が図れる。
The power supply cell with a dummy gate having the above configuration has a configuration in which the power supply cell is substantially arranged within the dead space of the dummy gate for logic debugging, so that high integration and further miniaturization of the chip size can be achieved.

例えば、第4図(a)に示すように、給電セル1個、論
理デバッグ用ダミーゲート1個を別個に設けた場合に必
要だった面積(1+2/3ゲ一ト面積)が本実施例のダ
ミーゲート付き給電セルを適用することにより1ゲ一ト
面積だけで足りるようになる。
For example, as shown in FIG. 4(a), the area (1+2/3 gate area) required when one power supply cell and one dummy gate for logic debugging are provided separately is reduced in this embodiment. By applying a power supply cell with a dummy gate, only one gate area becomes sufficient.

ついでながら、第1図に示すダミーゲート付き給電セル
では、2入力NAND回路のPチャネル型トランジスタ
Tr□、Tr、の拡散層7への電圧印加(例えば5V)
を行なうアルミ配線1の途中部分をウェルにコンタクト
させて給電を行なうことができ、一方、Nチャネル型ト
ランジスタTr、、Tr4の拡散N8への電圧印加(例
えばOV)を行なうアルミ配線3の途中部分を基板にコ
ンタクトさせて給電を行なうことができるので、それぞ
れの拡散層7,8と電気的に接続されているアルミ配線
1,3下(デッドスペース)にウェル給電コンタクト9
、基板給電コンタクト1oをそれぞれ形成させることが
可能となる。
Incidentally, in the power supply cell with a dummy gate shown in FIG.
The middle part of the aluminum wiring 1 that performs this can be brought into contact with the well to supply power, while the middle part of the aluminum wiring 3 that performs voltage application (for example, OV) to the diffusion N8 of the N-channel transistors Tr, Tr4. Since power can be supplied by contacting the well power supply contact 9 to the substrate, a well power supply contact 9 is placed under the aluminum wirings 1 and 3 (dead space) that are electrically connected to the respective diffusion layers 7 and 8.
, substrate power supply contact 1o can be formed respectively.

ここで、1++a角の1000ゲート規模の集積回路装
置に実際に本発明に係るダミーゲート付き給電セルを適
用した場合の効果を具体的に説明する。
Here, the effect when the power supply cell with a dummy gate according to the present invention is actually applied to an integrated circuit device having a size of 1++a square and 1000 gates will be specifically explained.

今仮に、従来の給電セルの配置に要する面積S2と1つ
の論理デバッグ用ダミーゲートの配置に要する面積S1
との比が略S1:82=2:3である場合を考える(尚
、本発明のダミーゲート付き給電セルの配置に要する面
積S、は従来の論理デバッグ用ダミーゲートに要する面
積s1と等しいものとする)。
Suppose now that the area S2 required for arranging conventional power supply cells and the area S1 required for arranging one dummy gate for logic debugging are
Let's consider a case where the ratio of S1:82 is approximately 2:3 (the area S required for arranging the power supply cell with a dummy gate of the present invention is equal to the area s1 required for a conventional dummy gate for logic debugging). ).

1+w+角の1000ゲート規模の集積回路装置では、
給電セルは通常縦、横100μm間隔毎に配され、計約
100個必要となる。一方、かかる規模の集積回路装置
を論理集積回路として用いる際、論理修正に必要な論理
デバッグ用ダミーゲートは前述したように約30個であ
る。
In a 1000 gate scale integrated circuit device of 1 + w + angle,
The power feeding cells are usually arranged at intervals of 100 μm in the vertical and horizontal directions, and approximately 100 cells in total are required. On the other hand, when an integrated circuit device of this scale is used as a logic integrated circuit, the number of logic debugging dummy gates required for logic modification is about 30, as described above.

このため、第5図にて示される従来システムでは、論理
デバッグ用ダミーゲートの大きさS工を基準(1ゲ一ト
面積)として考えた場合0従来の給電セルの配置に必要
な面積は、100XS、=100X−81 ・・・・約67ゲート面積 0論理デバツグ用ダミーゲートの配置に必要な面積は、
        ・・・・約30ゲート面積従って1つ
の半導体チップに給電セルと論理デバッグ用ダミーゲー
トの機能を持たせるためには。
Therefore, in the conventional system shown in FIG. 5, when considering the size S of the dummy gate for logic debugging as a reference (one gate area), the area required for the conventional power supply cell arrangement is: 100XS, = 100X-81 ...approximately 67 gate area 0 The area required for arranging the dummy gate for logic debugging is:
...Approximately 30 gate areas Therefore, in order to provide one semiconductor chip with the functions of a power supply cell and a dummy gate for logic debugging.

合計約97ゲート面積が必要である。A total of about 97 gate areas are required.

これに対し、本発明に係るダミーゲート付き給電セルを
、上記1000ゲート規模の集積回路装置に適用すると
、約100個の給電セルのうち約30個を上記論理デバ
ッグ用ダミーゲートとし。
On the other hand, when the power supply cell with dummy gates according to the present invention is applied to the 1000-gate integrated circuit device, about 30 out of about 100 power supply cells are used as the logic debugging dummy gates.

残り約70個を従来の給電セルとすれば良い。従って。The remaining approximately 70 cells may be used as conventional power feeding cells. Therefore.

0従来の給電セルの配置に必要な面積は、70 X S
3= 70 X−81 ・・・・約47ゲート面積 0論理デバツグ用ダミーゲートの配置に必要な面積は、
        ・・・・約30ゲート面積従って工つ
の半導体チップに給電セルと論理デバッグ用ダミーゲー
トの機能を持たせるためには合計約77ゲート面積で済
むことになる。
0 The area required for the conventional power supply cell arrangement is 70 x S
3 = 70 X-81...approximately 47 gate area 0 The area required for arranging the dummy gate for logic debugging is:
... Approximately 30 gate areas Therefore, in order to provide a single semiconductor chip with the functions of a power supply cell and a dummy gate for logic debugging, a total area of approximately 77 gates is required.

以上のことから判るように1000ゲート規模程度の集
積回路装置に本発明に係るダミーゲート付き給電セルを
適用すると約20ゲート面積、即ちダミーゲート付き給
電セルを20個配字ることができる面積を削減すること
が可能となる。
As can be seen from the above, when the power supply cell with dummy gates according to the present invention is applied to an integrated circuit device with approximately 1000 gates, the area is approximately 20 gates, that is, the area in which 20 power supply cells with dummy gates can be arranged. This makes it possible to reduce

尚、本発明に係るダミーゲート付き給電セルの適用によ
り削減されるチップ面積は、集積回路装置の規模(ゲー
ト数)に比例して大きくなるため。
Note that the chip area reduced by applying the power supply cell with a dummy gate according to the present invention increases in proportion to the scale (number of gates) of the integrated circuit device.

高集積回路装置になればなるほどその効果は大きくなる
The more highly integrated the circuit device becomes, the greater the effect becomes.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが1本発明は上記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on examples, it goes without saying that the present invention is not limited to the above-mentioned examples, and can be modified in various ways without departing from the gist thereof. Nor.

[発明の効果コ 本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば下記のとおりである
[Effects of the Invention] The effects obtained by typical inventions disclosed in this application are briefly explained below.

すなわち、本発明の半導体集積回路装置によれ。That is, according to the semiconductor integrated circuit device of the present invention.

ば、論理ゲートと給電セルとを備えるに際し、給電セル
に論理ゲートを内蔵させるようにしたので、給電セルの
デッドスペースを有効利用することによって、高集積化
によるチップサイズの減少を図ることができ、半導体集
積回路装置の原価低減が達成される。
For example, when providing a logic gate and a power supply cell, since the logic gate is built into the power supply cell, the dead space of the power supply cell can be effectively used, and the chip size can be reduced due to high integration. , a reduction in the cost of semiconductor integrated circuit devices is achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る論理デバッグ用ダミーゲートを内
蔵した給電セルの構成を示す平面図。 第2図は第1図の給電セルに内蔵されたダミーゲートの
回路構成を示す回路図。 第3図は本発明が適用された半導体集積回路袋−トを内
蔵した給電セルと、従来の給電セル及び従来のダミーゲ
ートとの大小関係を説明する説明図、 第5図は給電セルとダミーゲートとを別途備えた従来の
半導体集積回路装置のレイアウトブロック図である。 9・・・・ウェル給電コンタクト、10・・・・基板給
電コンタクト、20・・・・給電セル、30・・・・論
理デバッグ用ダミーゲート、100・・・・ダミーゲー
ト付き給電セル、A、B・・・・ダミーゲート入力端子
、C・・・・ダミーゲート出力端子、Trl、Tr2・
・・・Pチャネル型トランジスタ、Tr、、Tr4・・
・・Nチャネル型トランジスタ。 (a) 第3 第 図 図 (b) 第 図
FIG. 1 is a plan view showing the configuration of a power supply cell incorporating a logic debugging dummy gate according to the present invention. FIG. 2 is a circuit diagram showing the circuit configuration of a dummy gate built into the power supply cell of FIG. 1. FIG. 3 is an explanatory diagram illustrating the size relationship between a power supply cell incorporating a semiconductor integrated circuit bag to which the present invention is applied, a conventional power supply cell and a conventional dummy gate, and FIG. 5 shows a power supply cell and a dummy gate. FIG. 2 is a layout block diagram of a conventional semiconductor integrated circuit device separately provided with a gate. 9...well power supply contact, 10...substrate power supply contact, 20...power supply cell, 30...dummy gate for logic debugging, 100...power supply cell with dummy gate, A, B...Dummy gate input terminal, C...Dummy gate output terminal, Trl, Tr2.
...P-channel transistor, Tr, Tr4...
...N-channel transistor. (a) Figure 3 Figure (b) Figure

Claims (1)

【特許請求の範囲】 1、論理ゲートと給電セルとを備えた半導体集積回路装
置において、上記給電セルに論理ゲートを内蔵したこと
を特徴とする半導体集積回路装置。 2、上記給電セルに内蔵された論理ゲートは、他の論理
ゲートの異常時にのみ用いられるダミー論理ゲートであ
ることを特徴とする請求項1記載の半導体集積回路装置
。 3、上記給電セルに内蔵される論理ゲートは2入力NA
N回路であることを特徴とする請求項1又は2に記載の
半導体集積回路装置。
[Scope of Claims] 1. A semiconductor integrated circuit device comprising a logic gate and a power supply cell, characterized in that the power supply cell has a built-in logic gate. 2. The semiconductor integrated circuit device according to claim 1, wherein the logic gate built into the power supply cell is a dummy logic gate used only when another logic gate is abnormal. 3. The logic gate built into the above power supply cell has 2 input NA
3. The semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device is an N circuit.
JP21734189A 1989-08-25 1989-08-25 Semiconductor integrated circuit device Pending JPH0382140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21734189A JPH0382140A (en) 1989-08-25 1989-08-25 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21734189A JPH0382140A (en) 1989-08-25 1989-08-25 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0382140A true JPH0382140A (en) 1991-04-08

Family

ID=16702659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21734189A Pending JPH0382140A (en) 1989-08-25 1989-08-25 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0382140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0966041A2 (en) * 1998-06-18 1999-12-22 Ail Co. Ltd. Logic gate cell
US6497429B2 (en) 2000-09-04 2002-12-24 Takata Corporation Airbag apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0966041A2 (en) * 1998-06-18 1999-12-22 Ail Co. Ltd. Logic gate cell
EP0966041A3 (en) * 1998-06-18 2000-10-25 Ail Co. Ltd. Logic gate cell
US6329845B1 (en) 1998-06-18 2001-12-11 Ail Co., Ltd. Logic gate cell
US6497429B2 (en) 2000-09-04 2002-12-24 Takata Corporation Airbag apparatus

Similar Documents

Publication Publication Date Title
JPH0382140A (en) Semiconductor integrated circuit device
JPH1098108A (en) Semiconductor device
US5081059A (en) Method of forming semiconductor integrated circuit using master slice approach
JPH0831581B2 (en) Semiconductor device
JP2659970B2 (en) Semiconductor integrated circuit
JPH04164371A (en) Semiconductor integrated circuit
JP2741712B2 (en) Semiconductor integrated circuit device
JPH0562469B2 (en)
JP2693920B2 (en) Semiconductor integrated circuit device
KR920005798B1 (en) Borderless master slice semiconductor device
JPH09148443A (en) Multipower gate array
JPH11261006A (en) Semiconductor device
JP2596406B2 (en) Semiconductor integrated circuit
JP3065672B2 (en) Gate array type semiconductor integrated circuit device
JPH0563165A (en) Semiconductor device
JPH02191361A (en) Integrated circuit
JPH0774252A (en) Semiconductor integrated circuit
JPS6272143A (en) Pattern formation of semiconductor integrated circuit
JPH07105479B2 (en) Clip method in gate array master slice integrated circuit device
JPH07153926A (en) Semiconductor integrated circuit device
JPH0831524B2 (en) Semiconductor integrated circuit device
JPH05198680A (en) Semiconductor integrated circuit device
JPH0828482B2 (en) Clip method in gate array master slice integrated circuit device
JPH0383376A (en) Gate array
JPH05235309A (en) Semiconductor integrated circuit