JPH0282616A - Formation of amorphous semiconductor thin film - Google Patents

Formation of amorphous semiconductor thin film

Info

Publication number
JPH0282616A
JPH0282616A JP63235875A JP23587588A JPH0282616A JP H0282616 A JPH0282616 A JP H0282616A JP 63235875 A JP63235875 A JP 63235875A JP 23587588 A JP23587588 A JP 23587588A JP H0282616 A JPH0282616 A JP H0282616A
Authority
JP
Japan
Prior art keywords
film
thin film
energy
substrate
quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63235875A
Other languages
Japanese (ja)
Other versions
JP2742796B2 (en
Inventor
Yoshihiro Hishikawa
善博 菱川
Koji Dojiro
堂城 浩嗣
Shinya Tsuda
津田 信哉
Shoichi Nakano
中野 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63235875A priority Critical patent/JP2742796B2/en
Publication of JPH0282616A publication Critical patent/JPH0282616A/en
Application granted granted Critical
Publication of JP2742796B2 publication Critical patent/JP2742796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance the quality of a thin film by controlling the energy of irradiation beam from an electron gun or an ion gun, decomposing stock gas, and forming a thin amorphous semiconductor film on a substrate by the reaction of generated film radical. CONSTITUTION:The energy of an electron beam Eb is controlled under the control of an accelerating voltage of an electron gun 8, and raw gas to be supplied toward a substrate 4 from diffusing holes of a diffuser 6 by the energy of the beam Eb is decomposed. Thus, film radical is generated, and a thin film is formed on the substrate 4. Since the energy of the beam Eb can be accurately controlled, the generation of the film radical for causing the distur bance of forming a thin film of high quality us suppressed, and the generation of the film radical which contributes to the formation of the thin film of high quality can be promoted. Thus, the quality of the film can be controlled, and an amorphous semiconductor thin film of high quality can be formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原料ガスを分解して基板上に非晶質半導体薄
膜を形成する非晶質半導体薄膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming an amorphous semiconductor thin film on a substrate by decomposing a source gas.

〔従来の技術〕[Conventional technology]

一般に、薄膜fζしたい材料の鷹成元素を含む原料ガス
を分解し、基板上に薄膜を形成する手法として化学気相
成長法(CVD)があり、例えば東京大学出版会「材料
のプロセス技術I」の141〜149頁に記載されてい
るように、原料ガスを分解するエネルギの与え方によっ
て、プラズマCVD 、 MCVD、光CVD lζ大
別される。
In general, chemical vapor deposition (CVD) is a method of decomposing a raw material gas containing the elemental element of the material desired to form a thin film fζ and forming a thin film on a substrate. As described on pages 141 to 149 of , plasma CVD, MCVD, and optical CVD are broadly classified depending on the method of applying energy to decompose the source gas.

ところで、プラズマCVDは、高周波グロー放電やマイ
クロ波放電によって原料ガスをプラズマ化し、プラズマ
中の電子のエネルギによって原料ガスを分解して活性な
ラジカルやイオンを生成し、低温で基板上に薄膜を形成
する方法である。
By the way, in plasma CVD, a raw material gas is turned into plasma by high-frequency glow discharge or microwave discharge, and the raw material gas is decomposed by the energy of electrons in the plasma to generate active radicals and ions, and a thin film is formed on a substrate at a low temperature. This is the way to do it.

つぎに、熱CVDは、抵抗加熱、高周波誘導加熱等によ
って基板を高温に加熱し、熱エネルギによって原料ガス
を分解し、基板表面での化学反応により基板上に薄膜を
形成する方法であり、光CVDは、光源として低圧水銀
ランプやエキシマレーザ等を用い、これらの光源による
照射光エネルギによってHやAr等のガス分子を励起し
て励起揮を生成し、この励起種のエネルギによって原料
ガスを分解し、基板表面での化学反応により基板上に薄
膜を形成する方法である。
Next, thermal CVD is a method in which a substrate is heated to a high temperature using resistance heating, high-frequency induction heating, etc., raw material gas is decomposed by thermal energy, and a thin film is formed on the substrate through a chemical reaction on the substrate surface. CVD uses a low-pressure mercury lamp, excimer laser, etc. as a light source, and uses the energy of the light irradiated by these light sources to excite gas molecules such as H and Ar to generate excited volatiles, and the energy of these excited species decomposes the source gas. However, this is a method of forming a thin film on a substrate through a chemical reaction on the substrate surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の技術で記述した方法のうち、プラズマCVDの場
合、プラズマ中の電子のエネルギがO〜数1Oevの広
い分布を有するため、原料ガスの分解により生成される
成膜ラジカルが多種にわたり、例えば原料ガスとしての
SiH4を分解すると、5i)(a。
Among the methods described in the conventional technology, in the case of plasma CVD, the energy of electrons in the plasma has a wide distribution ranging from 0 to several 1 Oev, so there are many types of film-forming radicals generated by decomposition of the raw material gas. When SiH4 as a gas is decomposed, 5i)(a).

SiH2,SrH、Siの各成膜ラジカルが生成され、
非晶質のSi:H(以下a−3i:Hという)の薄膜を
形成する場合fζ、a−5i:Hの成膜プロセスが復雑
になり、形成される薄膜の膜質の制御、高品質化が極め
て困難になるという問題点がある。
Film-forming radicals of SiH2, SrH, and Si are generated,
When forming a thin film of amorphous Si:H (hereinafter referred to as a-3i:H), the film formation process of fζ, a-5i:H becomes complicated, and it is difficult to control the film quality of the formed thin film and achieve high quality. The problem is that it is extremely difficult to

一方、熱CVDの場合も、熱エネルギが0〜約toev
の分布を有するため、原料ガスの分解により生成される
成膜ラジカルが多種にわたり、前記したプラズマCVD
の場合と同様の問題点がある。
On the other hand, in the case of thermal CVD, the thermal energy is 0 to about toev
Because of the distribution of
There are similar problems as in the case of

また、光CVDの場合、原料ガスを分解する励起種のエ
ネルギは励起1によって一義的に決まるため、励起種を
選ぶことによって生成される成膜ラジカルが一義的に定
まり、原料ガスを分解する為のエネルギを適宜精度よく
制御することは極めて困難であり、やはり膜質の制御、
高品質化を容易に行うことは不可能である。
In addition, in the case of photoCVD, the energy of the excited species that decomposes the source gas is uniquely determined by excitation 1, so the film-forming radicals generated by selecting the excited species are uniquely determined, and the energy of the excited species that decomposes the source gas is uniquely determined. It is extremely difficult to accurately control the energy of
It is impossible to easily improve quality.

そこで、本発明は前記の点に留意してなされ、電子ビー
ム又はイオンビームからなる照射ビームのエネルギを、
電子銃又はイオン銃の加速電圧の制御によって精度よく
制御し、良質の薄膜形成に寄与する成膜ラジカルの生成
を促進し、膜質の制御を可能にし、形成される非晶質半
導体薄膜の高品質化を容易Eζ図れるようにすることを
目的とする。
Therefore, the present invention was made with the above-mentioned points in mind, and the energy of the irradiation beam consisting of an electron beam or an ion beam is
Accurate control by controlling the acceleration voltage of the electron gun or ion gun promotes the generation of film-forming radicals that contribute to the formation of high-quality thin films, making it possible to control film quality and improve the quality of the formed amorphous semiconductor thin film. The purpose is to make it easier to achieve Eζ.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成するために、本発明の非晶質半導体薄膜
の形成方法では、反応室に基板を配設し前記反応室に前
記基板方向に原料ガスを供給すると共に、前記反応室に
電子銃による電子ビーム又はイオン銃によるイオンビー
ムからなる照射ビームを照射し、前記電子銃又は前記イ
オン銃の加速電圧を制御して前記照射ビームのエネルギ
を制御し、前記照射ビームのエネルギlこより前記原料
ガスを分解して成膜ラジカルを生成し、生成した前記成
膜ラジカルの前記基板表面での反応により前記基板上に
非晶質半導体薄膜を形成することを特徴としている。
In order to achieve the above object, in the method for forming an amorphous semiconductor thin film of the present invention, a substrate is disposed in a reaction chamber, a raw material gas is supplied to the reaction chamber in the direction of the substrate, and an electron gun is provided in the reaction chamber. An irradiation beam consisting of an electron beam or an ion beam from an ion gun is irradiated, the energy of the irradiation beam is controlled by controlling the acceleration voltage of the electron gun or the ion gun, and the energy of the irradiation beam is is decomposed to generate film-forming radicals, and the generated film-forming radicals react on the surface of the substrate to form an amorphous semiconductor thin film on the substrate.

〔作用〕[Effect]

以上のように構成されているため、9子ビーム又はイオ
ンビームからなる照射ビームのエネルギが、9子銃又は
イオン銃の加速電圧の制御によって精度よく制御され、
この照射ビームにより、原料ガスが分解され、良質の薄
膜形成に寄与する成膜ラジカルの生成が促進され、膜質
の制御が可能となり、高品質の非晶質半導体薄膜が得ら
れる。
With the above configuration, the energy of the irradiation beam consisting of a 9-element beam or an ion beam is accurately controlled by controlling the accelerating voltage of the 9-element gun or ion gun,
This irradiation beam decomposes the source gas and promotes the generation of film-forming radicals that contribute to the formation of a high-quality thin film, making it possible to control film quality and obtain a high-quality amorphous semiconductor thin film.

〔実施例〕〔Example〕

実施例について図面を参照して説明する。 Examples will be described with reference to the drawings.

(実施例I) まず、実施例1を示した第1図fこついて説明する。(Example I) First, FIG. 1F showing the first embodiment will be explained.

形成装置を示す第1図において、(1)は真空容器、(
2)は容器(1ン内に形成された反応室、(3ンは容器
(υの上向面ζこ設置された基板加熱手段、(4)は加
熱手段(3)に保持された基板、(5)は先端部が反応
室(2)の下部に導入された原料ガスの供給パイプ、(
6)は供給パイプ(5)の先端に取り付けられ複数個の
吹出孔が形成された原料ガス吹出部、(7)は容器の下
面に形成されたガス排出口、(8)は電子銃であり、容
器(1)の外側に設けられ、照射孔(9)、を介して反
応室(2)に照射ビームである電子ビーム(Eb)を照
射する。
In FIG. 1 showing the forming apparatus, (1) is a vacuum container, (
2) is a reaction chamber formed in the container (1), (3) is a substrate heating means installed on the upper surface of the container (υ), (4) is a substrate held in the heating means (3), (5) is a raw material gas supply pipe whose tip end is introduced into the lower part of the reaction chamber (2);
6) is a raw material gas blowing part attached to the tip of the supply pipe (5) and has a plurality of blowing holes, (7) is a gas outlet formed on the bottom surface of the container, and (8) is an electron gun. is provided outside the container (1), and irradiates the reaction chamber (2) with an electron beam (Eb), which is an irradiation beam, through an irradiation hole (9).

このとき、電子ビーム(Eb)のエネルギは電子銃基板
(4)の方向に供給される原料ガスが分解される。
At this time, the energy of the electron beam (Eb) decomposes the source gas supplied toward the electron gun substrate (4).

そして、前記した装置によりa−3+二Hの薄膜を形成
する場合、原料ガスとしてSiH4ガスを用いることζ
ζより、電子ビーム(Eb)のエネルギによってSiH
4ガスが分解され、Siを含む成膜ラジカルが生成され
、基板(4)上にa−3i:Hの薄膜が形成される。
When a thin film of a-3+2H is formed using the above-mentioned apparatus, SiH4 gas is used as the source gas ζ
From ζ, SiH is formed by the energy of the electron beam (Eb).
4 gas is decomposed, film-forming radicals containing Si are generated, and a thin film of a-3i:H is formed on the substrate (4).

このとき、電子ビーム(Eb)のエネルギによってS 
iH4ガスの分解による成膜ラジカルの生成ブロセスは
、 @  e+5iH4−3iH2+H2+e    (a
t  t、9ev)のe+5iH4−3iHa−1−H
−)−e  (at 8.9ev)@  e″″−+−
3iH4→Si+2Hz+e    (at  4.2
eV)のようになり、前記Cのプロセスが不要である場
合には、電子ビーム(Eb)のエネルギを4.2eV未
満にすることにより、前記Oのプロセスを除く成膜ラジ
カルの生成プロセスを実現できる。なお、eは電子を示
す。
At this time, due to the energy of the electron beam (Eb), S
The production process of film-forming radicals by decomposition of iH4 gas is as follows: @ e+5iH4-3iH2+H2+e (a
t t, 9ev) e+5iH4-3iHa-1-H
−) −e (at 8.9ev) @ e″″−+−
3iH4→Si+2Hz+e (at 4.2
eV) and the process C is not necessary, by reducing the energy of the electron beam (Eb) to less than 4.2 eV, the process of generating film-forming radicals excluding the process O is realized. can. Note that e represents an electron.

ところで、第1図に示す装置を用い、基板温度を150
’C,反応圧力lx 103Torr 、 5iH4u
 ス流量をIQsccM、 i子ビーA (Eb) (
y) xネルギ’e L9eV、電子電流密度を0.1
mA/cm トして、a−3i:Hの薄膜を形成し、得
られたa−3i:H薄膜の欠陥密度の目安とな7) E
SR[Electron 5pin Re5onanc
e〕スピン密度を測定した結果、従来のI X l O
”cm ”d>ら5刈d’cmに大幅に減少し、このa
−3i:Hfei層lこ用いたpin型太陽電池の変換
効率は、従来のものに比べて約10%向上した。
By the way, using the apparatus shown in FIG. 1, the substrate temperature was set to 150
'C, reaction pressure lx 103Torr, 5iH4u
Let the flow rate be IQsccM, i Baby A (Eb) (
y) x energy 'e L9eV, electron current density 0.1
7) E
SR[Electron 5pin Re5onanc
e] As a result of measuring the spin density, the conventional I
``cm'' d > 5 cut d'cm, and this a
-3i: The conversion efficiency of the pin type solar cell using the Hfei layer was improved by about 10% compared to the conventional one.

これは、電子銃(8)の加速電圧の制御によって電子ビ
ーム(Eb)のエネルギを3 、 geV tζ制御す
ることにより、原料ガスである5iHaガスの分解によ
って、良質の薄膜形成の阻害要因となる高励起状態のS
i及びSiHの成膜ラジカルは生成されずに、前記した
0、Oのプロセスで示されるように、良質の薄膜形成に
寄与するSiH2,5iHaの成膜ラジカルが生成され
たため、高品質のa−5i:Hの薄膜が得られたもので
ある。
By controlling the energy of the electron beam (Eb) to 3, geV tζ by controlling the acceleration voltage of the electron gun (8), the decomposition of the 5iHa gas, which is the raw material gas, becomes a factor that inhibits the formation of a high-quality thin film. Highly excited state S
As shown in the above-mentioned 0,O process, the film-forming radicals of SiH2,5iHa, which contribute to the formation of a high-quality thin film, were generated, while the film-forming radicals of i and SiH were not generated. A thin film of 5i:H was obtained.

従って、実施例1によると、電子銃(8)の加速電圧の
制御によって電子ビーム(Eb)のエネルギを精度よく
制御することができるため、良質の薄膜形成の阻害要因
となる成膜ラジカルの生成を抑止すると共に、良質の薄
膜形成に寄与する成膜ラジカルの生成を促進することが
でき、膜質の制御が可能となり、高品質のa−3i:H
等の非晶質半導体薄膜を形成することができ、得られた
薄膜を例えば太陽電池などに適用した場合に、変換効率
を従来よりも大幅fζ向上することができる。
Therefore, according to Example 1, the energy of the electron beam (Eb) can be precisely controlled by controlling the accelerating voltage of the electron gun (8), so that formation radicals, which are a factor that inhibits the formation of a high-quality thin film, are generated. At the same time as suppressing
When the obtained thin film is applied to, for example, a solar cell, the conversion efficiency can be significantly improved fζ compared to the conventional method.

(実施例2) ツキに、実施例2を示した第2図fこついて説明する。(Example 2) For now, let us explain with reference to FIG. 2f, which shows the second embodiment.

形成装置を示す第22齋こおいて、@1図と同一記号は
同−若しくは相当するものを示し、αQは反応室(2)
の下部に設けられ基板(4)に照射ビームとし± でのArのイオンビーム(Ib)を照射するイオン銃、
01)はバイアス用直流電源であり、基板(4)fζ正
バイアスを与え、イオンビーム(Ib)が直接基板(4
)に当ることを防止する。
In the 22nd box showing the forming device, the same symbols as in Figure @1 indicate the same or equivalent ones, and αQ is the reaction chamber (2).
an ion gun installed at the bottom of the substrate (4) for irradiating the substrate (4) with an Ar ion beam (Ib) at ±;
01) is a DC power supply for bias, which applies a positive bias to the substrate (4) fζ, and the ion beam (Ib) is directly applied to the substrate (4).
).

このとき、イオン銃QOの加速電圧の制御〔こよって、
イオンビーム(Ib)のエネルギが制御されるのは、前
記実施例1と同様である。
At this time, control of the acceleration voltage of the ion gun QO [therefore,
The energy of the ion beam (Ib) is controlled in the same manner as in the first embodiment.

そして、前記した装置により、原料ガスとしてSiH4
ガスとCH4ガスを用い、基板温度をaooc。
Then, using the above-mentioned apparatus, SiH4 is used as the raw material gas.
Using gas and CH4 gas, the substrate temperature is aooc.

反応圧力を0.2Torr 、 SiH4ガス流量をt
ooSCCM、CH4ガス流量を11005CC,Ar
塙イオンビーム(Ib)のエネルギをLOOeV、イオ
ン電流密度を1mA/cm 、基板(4)のバイアス電
圧を+100vとして、a−5iC:Hの薄膜を形成し
たところ、得られたaSiC:H4膜のバンドギャップ
は2.3eV、光導電率は〉109cm  となり、光
導電率は従来よりも約2桁高くなった。
The reaction pressure was 0.2 Torr, and the SiH4 gas flow rate was t.
ooSCCM, CH4 gas flow rate 11005CC, Ar
When a thin film of a-5iC:H was formed using the energy of the Hanawa ion beam (Ib) as LOOeV, the ion current density as 1 mA/cm, and the bias voltage of the substrate (4) as +100V, the resulting aSiC:H4 film The bandgap was 2.3 eV and the photoconductivity was >109 cm, which is about two orders of magnitude higher than that of the conventional method.

これは、従来のプラズマCVDではプラズマ中の大半の
電子のエネルギがtoeV以下であるため、−クの形成
が阻害されていたのに対し、イオン銃士 QGの加速電圧の制御によってArのイオンビーム(I
b)のエネルギをtooevと高い値に制御することに
より、CH4ガスの20〜30%がCH又はCまで分解
されこれらのCH,Cの成膜ラジカルの生成により、緻
密な5i−Cの正四面体的ネットワークが形成されたた
め、高い光導電率を有する高&質のa−3iC:Hの薄
膜が得られたものである。
This is because in conventional plasma CVD, the energy of most of the electrons in the plasma is below toeV, which inhibits the formation of ions. (I
By controlling the energy in b) to a high value of tooev, 20 to 30% of CH4 gas is decomposed into CH or C, and by the generation of these CH and C film-forming radicals, a dense 5i-C regular tetrahedron is formed. Since a physical network was formed, a high-quality a-3iC:H thin film with high photoconductivity was obtained.

+ また、基板(4)に正バイアスを与えてArのイオンビ
ーム(tb)が基板(4)に直接当ることを防止したた
め、イオンビーム(Ib)による膜表面のダメージが防
止され、膜質低下が防止される。
+ Also, since a positive bias was applied to the substrate (4) to prevent the Ar ion beam (tb) from directly hitting the substrate (4), damage to the film surface due to the ion beam (Ib) was prevented, and film quality deterioration was prevented. Prevented.

従って、実施例2によると、イオン銃GOの加速+ 電圧の制御によってArのイオンビーム(Ib)のエネ
ルギを精度よく制御することができるため、前記実施例
1の場合と同様、良質の薄膜形成に寄与する成膜ラジカ
ルの生成を促進することができ、高品質のa−3iC:
H等の非晶質半導体薄膜を形成することができる。
Therefore, according to the second embodiment, the energy of the Ar ion beam (Ib) can be precisely controlled by controlling the acceleration + voltage of the ion gun GO, so that, as in the case of the first embodiment, a high-quality thin film can be formed. High-quality a-3iC:
An amorphous semiconductor thin film such as H can be formed.

(実施例3) さらに、実施例3を示した第3図について説明する。(Example 3) Furthermore, FIG. 3 showing Example 3 will be explained.

形成装置を示す第3図において、第1図と同一記号は同
−若しくは相当するものを示し、(2)は反+ 心室(2)の側部に設けられ照射ビームとしてのHのイ
オンビームを照射するイオン銃、頭はイオン銃(2)の
イオンビーム照射口近傍に設けられた中性化十 器であり、前記Hのイオンビームを、中性化して中性の
H原子の粒子ビーム(cb)とし、この中性の粒子ビー
ム(cb)のエネルギにより原料ガスが分解される。
In FIG. 3 showing the formation device, the same symbols as in FIG. The head of the ion gun that irradiates is a neutralizer installed near the ion beam irradiation port of the ion gun (2), which neutralizes the H ion beam to create a neutral H atom particle beam ( cb), and the source gas is decomposed by the energy of this neutral particle beam (cb).

このとき、イオン銃(2)の加速電圧の制御によつ+ て、Hのイオンビームのエネルギが制御されて粒子ビー
ム(cb)のエネルギが制御されるのは、前記実施例1
.2と同様である。
At this time, the energy of the H ion beam is controlled and the energy of the particle beam (cb) is controlled by controlling the accelerating voltage of the ion gun (2) in accordance with the first embodiment described above.
.. It is the same as 2.

そして、前記した装置により、原料ガスとしてSiH4
ガスを用い、基板温度を200C,反応圧力を10  
Torr 、 SiH4ガス流量をIO5ccM、イオ
ン銃(2)+ からのHのイオンビームエネルギをleV、イオン電流
密K ヲ0 、1mA/cm トして、a−5i:Hの
薄膜を形成し、得られたa−3i:H薄膜のESRスピ
ン密度を測定した結果、8X10  an  となり、
従来より大幅に減少し、このa−5i:H1ei層に用
いたpin型太陽電池の変換効率は、従来のものに比べ
て約15%向上した。
Then, using the above-mentioned apparatus, SiH4 is used as the raw material gas.
Using gas, the substrate temperature was 200C, and the reaction pressure was 10
Torr, SiH4 gas flow rate IO5ccM, H ion beam energy from ion gun (2)+ leV, ion current density Kwo0, 1mA/cm to form a-5i:H thin film. As a result of measuring the ESR spin density of the a-3i:H thin film, it was 8X10 an,
The conversion efficiency of the pin type solar cell used in this a-5i:H1ei layer was improved by about 15% compared to the conventional one.

これは、イオン銃(2)の加速電圧の制御によってH十
のイオンビームのエネルギをleVに制御し。
This is done by controlling the energy of the ion beam of H0 to leV by controlling the acceleration voltage of the ion gun (2).

粒子ビーム(cb)のエネルギを制御することにより、
SiH4+H−+5iHa−1−H+ のプロセスにより、5iHaの成膜ラジカルが選択的に
生成され、この5iHaの成膜ラジカルが良質の薄膜形
成に寄与するため、高品質のa−3i:Hの薄膜が得ら
れたものである。
By controlling the energy of the particle beam (CB),
The SiH4+H-+5iHa-1-H+ process selectively generates 5iHa film-forming radicals, and these 5iHa film-forming radicals contribute to the formation of a high-quality thin film, resulting in a high-quality a-3i:H thin film. This is what was obtained.

従って、実施例3fこよると、イオン銃@の加速士 電圧の制御によって、Hのイオンビームのエネルギを制
御して中性の粒子ビーム(cb)のエネルギを制御でき
るため、前記実施例1の場合と同様、良質の薄膜形成に
寄与する成膜ラジカルの生成を選択的に促進でき、高品
質のa−3i:H等の非晶質半導体薄膜を形成すること
ができる。
Therefore, according to the embodiment 3f, by controlling the accelerator voltage of the ion gun @, the energy of the H ion beam can be controlled and the energy of the neutral particle beam (cb) can be controlled. As in the case, the generation of film-forming radicals that contribute to the formation of a high-quality thin film can be selectively promoted, and a high-quality amorphous semiconductor thin film such as a-3i:H can be formed.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているため、以
下に記載する効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

電子ビーム又はイオンビームからなる照射ビームのエネ
ルギを、電子銃又はイオン銃の加速電圧の制御によって
精度よく制御することができるため、照射ビームのエネ
ルギによる原料ガスの分解によって、良質の薄膜形成に
寄与する成膜ラジカルの生成を促進することができ、膜
質の制御が可能になり、高品質の非晶質半導体薄膜を形
成することができ、例えば非晶質シリコン太陽電池Cζ
おいて、変換効率の向上を図る上で極めて有利である。
The energy of the irradiation beam consisting of an electron beam or ion beam can be precisely controlled by controlling the acceleration voltage of the electron gun or ion gun, so the energy of the irradiation beam decomposes the source gas, contributing to the formation of high-quality thin films. It is possible to promote the production of film-forming radicals, to control film quality, and to form high-quality amorphous semiconductor thin films, such as amorphous silicon solar cells Cζ
This is extremely advantageous in terms of improving conversion efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の非晶質半導体薄膜の形成方法の実施例
を示し、第1図ないし第3図はそれぞれ実施例1ないし
実珈例3のI形成装置の概略図である。 (2)・・・反応室、(4)・・・基板、(8)・・・
電子銃、QO,Q2・・・イオン銃、(Eb)・・・電
子ビーム、(tb)・・・イオンビーム。
The drawings show an embodiment of the method for forming an amorphous semiconductor thin film of the present invention, and FIGS. 1 to 3 are schematic diagrams of I forming apparatuses of embodiment 1 to practical example 3, respectively. (2)...Reaction chamber, (4)...Substrate, (8)...
Electron gun, QO, Q2...Ion gun, (Eb)...Electron beam, (tb)...Ion beam.

Claims (1)

【特許請求の範囲】[Claims] (1) 反応室に基板を配設し、前記反応室に前記基板
方向に原料ガスを供給すると共に、前記反応室に電子銃
による電子ビーム又はイオン銃によるイオンビームから
なる照射ビームを照射し、前記電子銃又は前記イオン銃
の加速電圧を制御して前記照射ビームのエネルギを制御
し、前記照射ビームのエネルギにより前記原料ガスを分
解して成膜ラジカルを生成し、生成した前記成膜ラジカ
ルの前記基板表面での反応により、前記基板上に非晶質
半導体薄膜を形成することを特徴とする非晶質半導体薄
膜の形成方法。
(1) disposing a substrate in a reaction chamber, supplying raw material gas to the reaction chamber in the direction of the substrate, and irradiating the reaction chamber with an irradiation beam consisting of an electron beam from an electron gun or an ion beam from an ion gun; The energy of the irradiation beam is controlled by controlling the accelerating voltage of the electron gun or the ion gun, and the raw material gas is decomposed by the energy of the irradiation beam to generate film-forming radicals. A method for forming an amorphous semiconductor thin film, comprising forming an amorphous semiconductor thin film on the substrate by a reaction on the surface of the substrate.
JP63235875A 1988-09-20 1988-09-20 Method for forming a-sic: H thin film Expired - Fee Related JP2742796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63235875A JP2742796B2 (en) 1988-09-20 1988-09-20 Method for forming a-sic: H thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63235875A JP2742796B2 (en) 1988-09-20 1988-09-20 Method for forming a-sic: H thin film

Publications (2)

Publication Number Publication Date
JPH0282616A true JPH0282616A (en) 1990-03-23
JP2742796B2 JP2742796B2 (en) 1998-04-22

Family

ID=16992539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63235875A Expired - Fee Related JP2742796B2 (en) 1988-09-20 1988-09-20 Method for forming a-sic: H thin film

Country Status (1)

Country Link
JP (1) JP2742796B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073806A (en) * 2001-09-07 2003-03-12 National Institute Of Advanced Industrial & Technology METHOD FOR FORMING SiC THIN-FILM
US6972055B2 (en) * 2003-03-28 2005-12-06 Finens Corporation Continuous flow deposition system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055615A (en) * 1983-09-07 1985-03-30 Sharp Corp Thin film forming device
JPS60257515A (en) * 1984-06-04 1985-12-19 Ricoh Co Ltd Manufacture of thin film
JPS62108525A (en) * 1985-11-06 1987-05-19 Hitachi Ltd Method and apparatus for surface treating
JPS62204520A (en) * 1986-03-05 1987-09-09 Fuji Electric Co Ltd Manufacture of thin film
JPS6355928A (en) * 1986-08-26 1988-03-10 Sumitomo Electric Ind Ltd Manufacture of amorphous thin film
JPS6381811A (en) * 1986-09-25 1988-04-12 Toyota Motor Corp Formation of thin film using nozzle molecular beam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6055615A (en) * 1983-09-07 1985-03-30 Sharp Corp Thin film forming device
JPS60257515A (en) * 1984-06-04 1985-12-19 Ricoh Co Ltd Manufacture of thin film
JPS62108525A (en) * 1985-11-06 1987-05-19 Hitachi Ltd Method and apparatus for surface treating
JPS62204520A (en) * 1986-03-05 1987-09-09 Fuji Electric Co Ltd Manufacture of thin film
JPS6355928A (en) * 1986-08-26 1988-03-10 Sumitomo Electric Ind Ltd Manufacture of amorphous thin film
JPS6381811A (en) * 1986-09-25 1988-04-12 Toyota Motor Corp Formation of thin film using nozzle molecular beam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073806A (en) * 2001-09-07 2003-03-12 National Institute Of Advanced Industrial & Technology METHOD FOR FORMING SiC THIN-FILM
US6972055B2 (en) * 2003-03-28 2005-12-06 Finens Corporation Continuous flow deposition system

Also Published As

Publication number Publication date
JP2742796B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
JPH06314660A (en) Method and apparatus for forming thin film
JP2764575B2 (en) Radical control method
JP3837451B2 (en) Method for producing carbon nanotube
US5952061A (en) Fabrication and method of producing silicon films
JPH0282616A (en) Formation of amorphous semiconductor thin film
JP2758247B2 (en) Organic metal gas thin film forming equipment
RU2100477C1 (en) Process of deposition of films of hydrogenized silicon
JPS59216625A (en) Photochemical vapor phase growing method
JPS61236691A (en) Vapor phase synthesis of diamond
JPS6277465A (en) Formation of amorphous silicon film
JPS62159419A (en) Apparatus for forming amorphous semiconductor thin film
JPH031377B2 (en)
JPH0459769B2 (en)
JPS5966045A (en) Surface modifying device
JPS62240766A (en) Formation of deposited film
JPS6328865A (en) Hard carbon film manufacturing device
JPH06199595A (en) Method for synthesizing diamond
JP3132963B2 (en) Method of forming silicon oxide film
JPS63153278A (en) Thin film forming device
JPH01208470A (en) Thin film-forming equipment
JPH07273041A (en) Formation of semiconductor thin film
JPS62238364A (en) Thin film forming device
JPH07300677A (en) Film formation and apparatus therefor by photo-cvd
JPH03229871A (en) Production of insulating film and production of semiconductor device using this insulating film
JPH0645258A (en) Manufacture of amorphous semiconductor thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees