JPH0645258A - Manufacture of amorphous semiconductor thin film - Google Patents

Manufacture of amorphous semiconductor thin film

Info

Publication number
JPH0645258A
JPH0645258A JP19675192A JP19675192A JPH0645258A JP H0645258 A JPH0645258 A JP H0645258A JP 19675192 A JP19675192 A JP 19675192A JP 19675192 A JP19675192 A JP 19675192A JP H0645258 A JPH0645258 A JP H0645258A
Authority
JP
Japan
Prior art keywords
thin film
light source
electrode
amorphous semiconductor
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19675192A
Other languages
Japanese (ja)
Inventor
Masatoshi Kitagawa
雅俊 北川
Takeshi Kamata
健 鎌田
Munehiro Shibuya
宗裕 澁谷
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19675192A priority Critical patent/JPH0645258A/en
Publication of JPH0645258A publication Critical patent/JPH0645258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To obtain an amorphous semiconductor thin film having high quality at a high temperature by incorporating a short wavelength light source in an electrode, and applying optical energy to a deposited surface of the film. CONSTITUTION:An electric field is applied from a power source to an electrode and substrate holder 15 through an electrode 13. A short wavelength light source 16 such as a low-pressure mercury lamp, etc., is incorporated in the electric field applying electrode 13, and a discharge surface 17 of the electrode 13 is formed of a metal mesh, etc. Thus, a plasma region P between the electrodes 13 and 15 is irradiated with a light generated from the source 16 through the mesh perpendicularly to a substrate 20. Material gas 14 or other gas is introduced from a gas inlet 18 to plasma decompose it, and the substrate is simultaneously irradiated with a light from the source 16 to be deposited with a film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非晶質半導体薄膜の製
造装置に関する。さらに詳しくは、プラズマ化学気相分
解手段と光化学反応手段を併用した非晶質半導体薄膜の
製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing an amorphous semiconductor thin film. More specifically, it relates to an apparatus for producing an amorphous semiconductor thin film, which uses both plasma chemical vapor decomposition means and photochemical reaction means.

【0002】[0002]

【従来の技術】従来、水素化非晶質シリコン(a−S
i:H)等に代表される、非晶質半導体薄膜の形成に使
用されるプラズマCVD装置は図3に示すような構成を
持つ。41が真空チャンバーで排気孔42より真空に排
気される。直流または高周波電源43から電界が電極4
4へ導入され、基板加熱が可能な基板ホルダ−兼電極4
5との間に電界が印可されプラズマが発生する。46は
ガス導入口でモノシラン(SiH4 ),ジシラン(Si
2 6 )等の原料ガス48やH2 、He等の希釈ガス4
9が導入される。これらのガスがプラズマ分解されても
しくはプラズマ分解を促進してa−Si:H薄膜として
基板47上に堆積形成される。
2. Description of the Related Art Conventionally, hydrogenated amorphous silicon (a-S
The plasma CVD apparatus used for forming an amorphous semiconductor thin film, represented by i: H), has a configuration as shown in FIG. 41 is evacuated to a vacuum through the exhaust hole 42 in the vacuum chamber. An electric field from the direct current or high frequency power source 43 is applied to the electrode 4.
4, which can be heated by a substrate holder-electrode 4
An electric field is applied between the electrode 5 and the plasma and plasma is generated. Reference numeral 46 is a gas inlet, which is monosilane (SiH 4 ), disilane (Si
2 H 6 ) or other source gas 48 or H 2 or He or other dilution gas 4
9 is introduced. These gases are decomposed by plasma or promoted plasma decomposition to be deposited and formed on the substrate 47 as an a-Si: H thin film.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この様
な従来のプラズマCVD装置では、プラズマ分解を生じ
させるためのガス圧力は0.1 〜5Torr の範囲が一般的で
あり、それによってプラズマ中の電子エネルギー分布が
左右されるため、結果的に例えばモノシラン(Si
4 )の分解では、SiH3 やSiH2 等の高次水素化
シリコンからなる中性ラジカルが前駆体として堆積の大
部分に寄与していると考えられている。そのため基板温
度を200℃以上が必要であるとされている。この結
果、例えば、非晶質シリコン太陽電池や液晶ディスプレ
イ用の非晶質シリコン薄膜トランジスタ等の半導体デバ
イスを形成する場合、例えば多層膜構成の界面の拡散が
生じたり、基板材料そのものが熱に弱いものであるとき
は使用できなかったり、基板材料と薄膜との界面に拡散
が生じたりするため、使用材料に制約があったりして、
デバイス設計上に工夫が必要であったり、プロセスにお
ける制約が多くあるという問題がある。
However, in such a conventional plasma CVD apparatus, the gas pressure for causing plasma decomposition is generally in the range of 0.1 to 5 Torr, whereby the electron energy distribution in the plasma is As a result, for example, monosilane (Si
In the decomposition of H 4 ), it is considered that neutral radicals composed of high-order hydrogenated silicon such as SiH 3 and SiH 2 contribute to most of the deposition as a precursor. Therefore, it is said that the substrate temperature needs to be 200 ° C. or higher. As a result, for example, when forming a semiconductor device such as an amorphous silicon solar cell or an amorphous silicon thin film transistor for a liquid crystal display, for example, diffusion of the interface of the multilayer film structure occurs, or the substrate material itself is weak to heat. When it is, it cannot be used, or diffusion occurs at the interface between the substrate material and the thin film, so there are restrictions on the material used,
There are problems that device design must be devised and that there are many process restrictions.

【0004】本発明は、前記従来技術の問題を解決する
ため、より低温で非晶質半導体薄膜を形成するための製
造装置を提供することを目的とする。
In order to solve the above-mentioned problems of the prior art, it is an object of the present invention to provide a manufacturing apparatus for forming an amorphous semiconductor thin film at a lower temperature.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明の非晶質半導体薄膜の製造装置は、直流、も
しくは高周波を含む交流電界によるプラズマ化学気相分
解手段を少なくとも備え、基板表面に非晶質半導体薄膜
を製造する装置において、前記基板表面またはその近辺
に短波長光による光エネルギー供給手段を備えたことを
特徴とする。
In order to achieve the above object, an apparatus for producing an amorphous semiconductor thin film of the present invention comprises at least a plasma chemical vapor phase decomposition means by an alternating electric field containing direct current or high frequency, and a substrate surface. Further, in the apparatus for producing an amorphous semiconductor thin film, a light energy supply unit for supplying short-wavelength light is provided on or near the surface of the substrate.

【0006】前記構成においては、短波長光源として少
なくとも150nm〜350nmの波長の光を含む光源
を用いることが好ましい。また前記構成においては、短
波長光源が、プラズマ化学気相堆積過程を生じさせるた
めの電界を印加する開孔を有する電極に内蔵され、光源
から照射される方向と電界印加方向が同方向であること
が好ましい。
In the above structure, it is preferable to use a light source containing light having a wavelength of at least 150 nm to 350 nm as the short wavelength light source. Further, in the above structure, the short wavelength light source is built in the electrode having the opening for applying the electric field for causing the plasma chemical vapor deposition process, and the irradiation direction from the light source and the electric field application direction are the same direction. It is preferable.

【0007】また前記構成においては、短波長光源が稀
釈ガスの供給流路に備えられていることが好ましい。
Further, in the above structure, it is preferable that a short wavelength light source is provided in the diluting gas supply passage.

【0008】[0008]

【作用】前記した本発明の構成によれば、プラズマ化学
気相分解手段と光化学反応手段を併用することにより、
高品質な薄膜を低温で成膜することが可能となる。すな
わち、まず第1に、堆積表面に基板温度にとって代わる
光エネルギーが体積表面での化学的反応として作用し、
プラズマ分解によってよって生成された膜形成に寄与す
るラジカルからなる前駆体に短波長光を照射することに
よって、基板表面での化学的反応作用を促進させ前記前
駆体の再分解に寄与する。第2に、従来のプラズマCV
Dでのプラズマ発生し得るガス圧力領域は0.1Torr から
5Torr であったものが、光照射により励起状態にあるこ
とにより100Torr の比較的高い圧力でプラズマ分解を行
えようになり、結果的にイオンの等荷電粒子の基板に与
える衝撃を低減しデバイス形成の際に良好な信頼性を実
現できる。
According to the above-mentioned constitution of the present invention, by using the plasma chemical vapor decomposition means and the photochemical reaction means in combination,
It becomes possible to form a high quality thin film at a low temperature. That is, first of all, the light energy that replaces the substrate temperature acts on the deposition surface as a chemical reaction on the volume surface,
By irradiating short-wavelength light to a precursor composed of radicals generated by plasma decomposition and contributing to film formation, a chemical reaction action on the surface of the substrate is promoted to contribute to re-decomposition of the precursor. Second, conventional plasma CV
The gas pressure region where plasma can be generated in D is from 0.1 Torr
What was 5 Torr, but because it is excited by light irradiation, it becomes possible to perform plasma decomposition at a relatively high pressure of 100 Torr, and as a result, the impact of ions of equicharged particles on the substrate is reduced and device formation is possible. In this case, good reliability can be realized.

【0009】次に、短波長光源として少なくとも150
nm〜350nmの波長の光を含む光源を用いるという
好ましい構成によれば、光化学反応をより効率的に行う
ことができる。
Next, at least 150 as a short wavelength light source.
According to the preferable configuration of using the light source including the light having the wavelength of nm to 350 nm, the photochemical reaction can be performed more efficiently.

【0010】また、短波長光源がプラズマ化学気相堆積
過程を生じさせるための電界を印加する開孔を有する電
極に内蔵され、光源から照射される方向と電界印加方向
が同方向であるという好ましい構成によれば、堆積膜方
向に光化学反応を選択的に行わせることができ、合理的
な成膜ができる。
Further, it is preferable that the short-wavelength light source is built in an electrode having an opening for applying an electric field for causing the plasma chemical vapor deposition process, and the direction of irradiation from the light source and the direction of application of the electric field are the same. According to the configuration, the photochemical reaction can be selectively performed in the deposition film direction, and rational film formation can be performed.

【0011】また、短波長光源が稀釈ガスの供給流路に
備えられているという好ましい構成によれば、前記作用
に加えて、光源の汚れなどを回避することができる。
Further, according to the preferable construction in which the short-wavelength light source is provided in the diluting gas supply passage, in addition to the above-mentioned action, the light source can be prevented from becoming dirty.

【0012】[0012]

【実施例】以下図面に基づき、本発明の代表的な実施例
を示す。図1は本発明で使用される光照射型プラズマC
VD装置の概略図である。11が真空チャンバーで、排
気孔12より真空に排気される。電極13を通して電源
から電極兼基板ホルダ15との間に電界が印加される。
電界印加用電極13の内部には例えば低圧水銀ランプ等
の短波長光源16が内蔵されており電界印加用電極13
の放電面17は金属メッシュ等から成る。これによりプ
ラズマが電極13内部に侵入できずかつ光源16から発
生された光はメッシュを通して、電極13、15間のプ
ラズマ領域Pにしかも基板20表面に垂直に光照射し得
る構造となっている。18はガス導入口で例えば非晶質
シリコン薄膜を形成する際には、SiH4 、Si2 6
等の原料ガス14が導入される。19は光源部を通って
電極15からH2 、He,Ar等やそれらの混合ガス等
のガスが導入される第2のガス導入口であり、光源ラン
プに膜堆積を起こさない作用や、堆積速度を抑制し光照
射作用を促進する作用を持つ。なお、21は加熱ヒータ
ーである。これらのガス導入口から原料ガスやその他の
ガスを導入しプラズマ分解させ、同時に短波長光源から
基板表面に向かって光照射を行い膜の堆積を行なう。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Representative embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a light irradiation type plasma C used in the present invention.
It is a schematic diagram of a VD device. A vacuum chamber 11 is evacuated to a vacuum through an exhaust hole 12. An electric field is applied from the power supply to the electrode / substrate holder 15 through the electrode 13.
A short-wavelength light source 16 such as a low-pressure mercury lamp is built in the electric field applying electrode 13, and the electric field applying electrode 13
The discharge surface 17 of is made of metal mesh or the like. As a result, plasma cannot enter the electrode 13 and light generated from the light source 16 can be radiated through the mesh to the plasma region P between the electrodes 13 and 15 and vertically to the surface of the substrate 20. Reference numeral 18 denotes a gas inlet, for example, when forming an amorphous silicon thin film, SiH 4 , Si 2 H 6
Raw material gas 14 such as Reference numeral 19 is a second gas introduction port through which a gas such as H 2 , He, Ar, etc. or a mixed gas thereof is introduced from the electrode 15 through the light source section, which has a function to prevent film deposition on the light source lamp and a deposition. It has the effect of suppressing the speed and promoting the light irradiation action. In addition, 21 is a heater. A raw material gas and other gases are introduced from these gas introduction ports to cause plasma decomposition, and at the same time, light is irradiated from the short wavelength light source toward the substrate surface to deposit a film.

【0013】図2にプラズマ発生用高周波電力密度を3
0 mW/cm2 、光照射光量を50 mW/cm2 (波長:270
nm)、堆積温度を室温(25℃)から400℃まで変
化させた時の、形成した非晶質シリコン(a−Si:
H)薄膜の暗電気伝導度と疑似太陽光(AM1:100
mW/cm2 )照射下における光電気伝導度の変化を示す。
比較のため、短波長光照射を行なわない場合の変化も図
中に示してある。ほかの条件は下記の通りであった。 (1)SiH4 供給量:100SCCM (2)H2 供給量:400SCCM (3)真空度:0.5Torr (その他必要条件をすべて具体的数値で列挙くださ
い。)図2から明らかなように、光照射を有する場合と
有しない場合とでは、室温から200℃の基板温度での
光電気伝導度の向上が明かである。
The high frequency power density for plasma generation is shown in FIG.
0 mW / cm 2 , light irradiation amount of 50 mW / cm 2 (wavelength: 270
nm), and the formed amorphous silicon (a-Si: when the deposition temperature is changed from room temperature (25 ° C.) to 400 ° C.
H) Dark electrical conductivity of thin film and simulated sunlight (AM 1: 100
The change in photoconductivity under irradiation of mW / cm 2 ) is shown.
For comparison, changes in the case where short wavelength light irradiation is not performed are also shown in the figure. Other conditions were as follows. (1) SiH 4 supply amount: 100 SCCM (2) H 2 supply amount: 400 SCCM (3) Vacuum degree: 0.5 Torr (List all other necessary conditions in concrete values.) As is clear from FIG. The improvement in photoconductivity at room temperature to 200 ° C. substrate temperature is apparent with and without irradiation.

【0014】[0014]

【発明の効果】以上説明した通り、本発明によれば、プ
ラズマ化学気相分解手段と光化学反応手段を併用するこ
とにより、高品質な薄膜を低温で成膜することができ
る。
As described above, according to the present invention, a high quality thin film can be formed at a low temperature by using the plasma chemical vapor decomposition means and the photochemical reaction means in combination.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で薄膜形成に使用したプラズマCVD装
置概略図である。
FIG. 1 is a schematic view of a plasma CVD apparatus used for forming a thin film in the present invention.

【図2】本発明の効果を示すために光照射光量を行なっ
た時と行なわないときの、基板温度と光電気伝導度の関
係を示す図である。
FIG. 2 is a diagram showing the relationship between the substrate temperature and the photoconductivity when the amount of light irradiation is performed and when it is not performed in order to show the effect of the present invention.

【図3】従来のプラズマCVD装置概略図である。FIG. 3 is a schematic view of a conventional plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

11 真空チャンバー 12 排気孔 13 電界印加電極 14 電界印加電源 15 電極兼基板ホルダー 16 短波長光源 17 放電面(メッシュ電極面) 18 原料ガス導入口 19 第2のガス導入口 11 Vacuum Chamber 12 Exhaust Hole 13 Electric Field Applying Electrode 14 Electric Field Applying Power Supply 15 Electrode / Substrate Holder 16 Short Wavelength Light Source 17 Discharge Surface (Mesh Electrode Surface) 18 Raw Material Gas Inlet 19 Second Gas Inlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平尾 孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Hirao 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 直流、もしくは高周波を含む交流電界に
よるプラズマ化学気相分解手段を少なくとも備え、基板
表面に非晶質半導体薄膜を製造する装置において、前記
基板表面またはその近辺に短波長光による光エネルギー
供給手段を備えたことを特徴とする非晶質半導体薄膜の
製造装置。
1. An apparatus for producing an amorphous semiconductor thin film on a substrate surface, which comprises at least plasma chemical vapor phase decomposition means using a direct current or an alternating electric field containing a high frequency, and a short wavelength light on or near the substrate surface. An apparatus for producing an amorphous semiconductor thin film, comprising an energy supply means.
【請求項2】 短波長光源として少なくとも150nm
〜350nmの波長の光を含む光源を用いる請求項1に
記載の非晶質半導体薄膜の製造装置。
2. A short wavelength light source of at least 150 nm
The apparatus for manufacturing an amorphous semiconductor thin film according to claim 1, wherein a light source including light having a wavelength of ˜350 nm is used.
【請求項3】 短波長光源が、プラズマ化学気相堆積過
程を生じさせるための電界を印加する開孔を有する電極
に内蔵され、光源から照射される方向と電界印加方向が
同方向である請求項1に記載の非晶質半導体薄膜の製造
装置。
3. A short-wavelength light source is built in an electrode having an opening for applying an electric field for causing a plasma chemical vapor deposition process, and the direction of irradiation from the light source and the direction of application of the electric field are the same. Item 2. An apparatus for producing an amorphous semiconductor thin film according to item 1.
【請求項4】 短波長光源が、稀釈ガスの供給流路に備
えられている請求項1に記載の非晶質半導体薄膜の製造
装置。
4. The apparatus for producing an amorphous semiconductor thin film according to claim 1, wherein a short-wavelength light source is provided in a diluting gas supply channel.
JP19675192A 1992-07-23 1992-07-23 Manufacture of amorphous semiconductor thin film Pending JPH0645258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19675192A JPH0645258A (en) 1992-07-23 1992-07-23 Manufacture of amorphous semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19675192A JPH0645258A (en) 1992-07-23 1992-07-23 Manufacture of amorphous semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH0645258A true JPH0645258A (en) 1994-02-18

Family

ID=16363010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19675192A Pending JPH0645258A (en) 1992-07-23 1992-07-23 Manufacture of amorphous semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0645258A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100316270B1 (en) * 1999-01-28 2001-12-12 구본준, 론 위라하디락사 Deposition method of polycrystalline silicon using an electric field and rf plasma.
KR100371096B1 (en) * 1999-12-04 2003-02-05 엘지.필립스 엘시디 주식회사 Equipments for crystallization of amorphous silicon using plasma and electric field, and Method for crystallizing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100316270B1 (en) * 1999-01-28 2001-12-12 구본준, 론 위라하디락사 Deposition method of polycrystalline silicon using an electric field and rf plasma.
KR100371096B1 (en) * 1999-12-04 2003-02-05 엘지.필립스 엘시디 주식회사 Equipments for crystallization of amorphous silicon using plasma and electric field, and Method for crystallizing the same

Similar Documents

Publication Publication Date Title
JPH06105691B2 (en) Method for producing carbon-doped amorphous silicon thin film
US20030143410A1 (en) Method for reduction of contaminants in amorphous-silicon film
JPH084071B2 (en) Deposited film formation method
JPS60117711A (en) Forming apparatus of thin film
JPH09129555A (en) Plasma chemical deposition device
JPH0645258A (en) Manufacture of amorphous semiconductor thin film
JPH0774110A (en) Method of plasma cvd
US5221643A (en) Method for producing polycrystalline semiconductor material by plasma-induced vapor phase deposition using activated hydrogen
JPS6331110A (en) Manufacture of semiconductor device
JPH0142125B2 (en)
JPH0273978A (en) Formation of thin film
JP2608456B2 (en) Thin film forming equipment
JPS61216318A (en) Photo chemical vapor deposition device
JP2629773B2 (en) Method of forming multilayer thin film
JP2002261312A (en) Method of manufacturing hybrid thin-film photoelectric conversion device
JPH0546093B2 (en)
JPH07193017A (en) Plasma chemical vapor deposition method
JPS6216512A (en) Manufacture of semiconductor thin film
JPH06283436A (en) Method and apparatus for plasma cvd
JPS6138268B2 (en)
JPH03229871A (en) Production of insulating film and production of semiconductor device using this insulating film
JPH0741950A (en) Production of amorphous metallic alloy thin film using chemical vapor deposition method and its device
JPH07122497A (en) Thin film forming equipment and thin film forming method
JPS60125374A (en) Apparatus for producing amorphous silicon hydride film
JPS6346719A (en) Manufacture of thin-film