JPS6346719A - Manufacture of thin-film - Google Patents

Manufacture of thin-film

Info

Publication number
JPS6346719A
JPS6346719A JP61190894A JP19089486A JPS6346719A JP S6346719 A JPS6346719 A JP S6346719A JP 61190894 A JP61190894 A JP 61190894A JP 19089486 A JP19089486 A JP 19089486A JP S6346719 A JPS6346719 A JP S6346719A
Authority
JP
Japan
Prior art keywords
raw material
mercury
material gas
film
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61190894A
Other languages
Japanese (ja)
Inventor
Saburo Tanaka
三郎 田中
Hideo Itozaki
糸崎 秀夫
Shoji Nakagama
詳治 中釜
Tadashi Tomikawa
唯司 富川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61190894A priority Critical patent/JPS6346719A/en
Publication of JPS6346719A publication Critical patent/JPS6346719A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To equalize the photochemical reaction of a raw material gas, to decrease internal defects in a thin-film acquired and to improve film quality by irradiating the raw material gas containing mercury with continuous beams having substantially constant light intensity. CONSTITUTION:A raw material gas containing mercury is irradiated with continuous beams having substantially constant light intensity. That is, a quartz glass window 2 is mounted to the upper wall of a reaction chamber 1, and a light source 5 generating continuous beams such as a low-pressure mercury lamp using DC discharge or high-frequency discharge is arranged to the upper section of the window 2. A substrate 3 is disposed horizontally onto a heater 4 on the reaction 1 chamber 1, and the inside of the reaction chamber 1 is supplied with a gas, in which mercury vapor is mixed to a raw material gas (including a doping gas such as B2H6, PH3, etc. if necessary) as a thin-film substance source such as silanes such as SiH4 or GeH4, Ge2H6, etc. or these fluorides or chlorides, in response to a thin-film to be manufactured through a supply nozzle 6 and an exhaust port 7, heating the substrate 3 by the heater 4. Mercury is excited continuously by continuous beams from the light source 5, and generates a photochemical reaction with the raw material gas, thus shaping the thin- film consisting of Si, Ge, etc. on the substrate 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水銀増感した光CVD法により薄膜デバイス
に用いるシリコン等の薄膜を基板上に製造する薄膜の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a thin film manufacturing method for manufacturing a thin film of silicon or the like used in a thin film device on a substrate by a mercury-sensitized photo-CVD method.

〔従来の技術〕[Conventional technology]

非晶質シリコン(以下a−8iと略記する)、非晶質ダ
ルマニウム(以下a−Geと略記する)等の半導体は薄
膜として太陽電池、電子写真感光体、光センサ−、薄膜
トランジスタ等の薄膜デバイ頁に広く利用されている。
Semiconductors such as amorphous silicon (hereinafter abbreviated as a-8i) and amorphous dalmanium (hereinafter abbreviated as a-Ge) are used as thin films for solar cells, electrophotographic photoreceptors, optical sensors, thin film transistors, etc. Widely used for Debye pages.

これらの薄膜の製造方法としてはイオンシレーティング
法、ス、oツタリング法、真空蒸着法、CV D (C
bemical  Vaper Deposition
 )法等がよく知られている。CVD法には、原料ガス
のグロー放電により生成させたプラズマから薄膜を基板
上に堆積させるプラズマCVD法原料ガスに紫外線等の
光を照射して光励起反応により、原料ガスから薄膜を基
板上に形成する光CVD法などがある。
Methods for producing these thin films include ion silating method, sintering method, vacuum evaporation method, and CVD (C
chemical vapor deposition
) law etc. are well known. The plasma CVD method involves depositing a thin film on a substrate from plasma generated by glow discharge of a raw material gas.The CVD method involves irradiating the raw material gas with light such as ultraviolet rays to form a thin film on the substrate from the raw material gas through a photoexcitation reaction. There is a photo-CVD method that does this.

光CVD法には直接励起法と水銀増感励起法とがあるが
、共にプラズマの存在しないシステムであるから、高エ
ネルギーイオンによる薄膜の損傷やコンタミネーション
等がなく、高品質の薄膜の形成が期待できる。特に、水
銀増感励起法は原料ガスに微量の水銀蒸気をドープし、
水銀を光照射によシ励起して原料ガスと反応させるので
、励起した水銀の触媒作用により原料ガスの効率のよい
分解が可能である。
Photo-CVD methods include direct excitation method and mercury sensitized excitation method, but since both are plasma-free systems, there is no damage or contamination of thin films due to high-energy ions, and it is possible to form high-quality thin films. You can expect it. In particular, in the mercury-sensitized excitation method, the raw material gas is doped with a trace amount of mercury vapor.
Since mercury is excited by light irradiation and reacts with the raw material gas, efficient decomposition of the raw material gas is possible due to the catalytic action of the excited mercury.

しかし、従来の水銀増感による光CVD法において用い
ていた照射光は、商用周波数電圧による紫外線ランプの
光であり、いわゆる交流放電光であった。従って、その
光は第3図に示すように商用周波数に同期して100H
z又は120Hzで周期的にONとOFFを繰り返し、
光強度が周期的に変化した。そのため、原料ガスの光化
学反応が不均一となシ、得られる薄膜の膜質が悪く、こ
れを利用した薄膜デ・Zイスの特性も満足できるもので
はなかった。
However, the irradiation light used in the conventional photo-CVD method using mercury sensitization was light from an ultraviolet lamp using a commercial frequency voltage, and was so-called AC discharge light. Therefore, as shown in Figure 3, the light is 100H synchronized with the commercial frequency.
Repeat ON and OFF periodically at z or 120Hz,
The light intensity changed periodically. As a result, the photochemical reaction of the raw material gas is non-uniform, the quality of the obtained thin film is poor, and the characteristics of the thin film Z-chair using this are also unsatisfactory.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、水銀増感した光CVD法における原料ガスの
光化学反応を均一化し、膜質の良い薄膜を形成すること
のできる薄膜の製造方法を提供することを目的とする。
An object of the present invention is to provide a method for producing a thin film that can uniformize the photochemical reaction of a raw material gas in a mercury-sensitized photoCVD method and form a thin film with good film quality.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の水銀増感した光CVD法による薄膜の製造方法
は、光強度が実質的に一定な連続光を水銀を含む原料ガ
スに照射することを特徴とするものである。
The method of producing a mercury-sensitized thin film by photoCVD according to the present invention is characterized in that a raw material gas containing mercury is irradiated with continuous light having a substantially constant light intensity.

本発明で用いる連続光としては光強度が実質的に一定で
あればよく、直流放電を用いた重水素ランプや低圧水銀
ランプ等の紫外線ランプの光のほか、高周波放電を用い
た紫外線ランプの光もONとOFFの繰返し周波数が高
いため光強度が実質的に一定な連続光となるので有効で
あ如、その他レーザー光も使用できる。
The continuous light used in the present invention only needs to have a substantially constant light intensity, and includes light from ultraviolet lamps such as deuterium lamps and low-pressure mercury lamps using direct current discharge, as well as light from ultraviolet lamps using high-frequency discharge. Since the repetition frequency of ON and OFF is high, the light intensity becomes continuous light that is substantially constant, so other laser lights can also be used if they are effective.

本発明の薄膜の製造方法を製造装置の一具体例を示しだ
第1図によシ説明する。
The thin film manufacturing method of the present invention will be explained with reference to FIG. 1, which shows a specific example of a manufacturing apparatus.

反応室1の土壁に石英ガラス窓2を設け、その上方に直
流放電又は高周波放電を用いた低圧水銀ランプ等の連続
光を発生する光源6を配置しである。反応室1内の加熱
ヒータ4上に基板3を水平に配置し、加熱ヒータ4で基
板3を加熱しながら、供給ノズル6及び排気ロア全通し
て製造しようとする薄膜に応じてS i 84等のシラ
ン類またはQei(4。
A quartz glass window 2 is provided on the earthen wall of the reaction chamber 1, and a light source 6 that generates continuous light, such as a low-pressure mercury lamp using direct current discharge or high-frequency discharge, is arranged above the window. The substrate 3 is placed horizontally on the heater 4 in the reaction chamber 1, and while the substrate 3 is heated by the heater 4, the supply nozzle 6 and the exhaust lower are passed through the entire supply nozzle 6 and the exhaust lower to produce a thin film such as S i 84. silanes or Qei (4.

Qe2H6等、若しくはこれらのフッ化物や塩化物のよ
うな薄膜物質源の原料ガス(所望によりB2H6+PH
3等のドーピングガスを含む)に水銀蒸気を混合したガ
スを反応室1内に供給する。光源6からの連続光により
、水銀が連続的に励起されて原料ガスと光化学反応を生
じ、基板1上にSlやGe等の薄膜が形成される。
Raw material gas for thin film material such as Qe2H6, etc., or their fluorides and chlorides (B2H6+PH if desired)
A mixture of mercury vapor and a doping gas (containing a doping gas such as No. 3) is supplied into the reaction chamber 1. Continuous light from the light source 6 continuously excites mercury and causes a photochemical reaction with the source gas, forming a thin film of Sl, Ge, or the like on the substrate 1.

〔作用〕[Effect]

水銀増感での光CV D法による光化学反応は一次反応
と二次反応があると考えられ、例えば原料ガスとしてS
iH4を例に取れば、−次反応は次の反応式によるもの
と考えられている: 1−1g+hν →Hg* Hg*  +  5i)(4→  SiH3*+  H
* +  Hg”Hg*  +  H2→  2H* 
+Hg*SiH4+ H*  →SiH3*+ H3(
式中、Hg*、 I−1” 、 S iH3*は夫々水
銀、水素、シランのラジカルを表す) この−次反応で生ずるSiH3”は反応性が低く、長寿
命であり、良質な薄膜を形成するものと考えられている
The photochemical reaction by the photoCVD method in mercury sensitization is thought to include a primary reaction and a secondary reaction. For example, S
Taking iH4 as an example, the -order reaction is thought to be based on the following reaction formula: 1-1g+hν →Hg* Hg* + 5i) (4→ SiH3*+ H
* + Hg"Hg* + H2→ 2H*
+Hg*SiH4+ H* →SiH3*+ H3(
In the formula, Hg*, I-1", and SiH3* represent mercury, hydrogen, and silane radicals, respectively.) SiH3" produced in this -order reaction has low reactivity, long life, and forms a high-quality thin film. It is considered to be.

一方、二次反応の過程はまだ明らかにされていないが、
SiH*やSiH2*等の反応性が高く寿命の短いラジ
カルを生成し、これらのラジカルが膜質を悪化させてい
るものと考えられる。
On the other hand, although the process of the secondary reaction has not yet been clarified,
It is thought that highly reactive and short-lived radicals such as SiH* and SiH2* are generated, and these radicals deteriorate the film quality.

第3図に示す商用周波数の交流放電を用いた低圧水銀ラ
ンプ等の非連続光のもとでは、光の照射されているとき
(a)は−次反応と二次反応が連続して起こるが、光の
照射されないとき(b)には二次反応のみが起こシ、所
望のSiH3*が生成しないため膜質が悪化するものと
推測される。
Under discontinuous light such as a low-pressure mercury lamp using AC discharge at a commercial frequency as shown in Figure 3, when the light is irradiated, the -order reaction and the second-order reaction occur continuously in (a). It is presumed that when no light is irradiated (b), only secondary reactions occur and the desired SiH3* is not produced, resulting in poor film quality.

本発明では、第2図に示すように、光強度がほぼ一定な
連続光を使用するので、常に一次反応が起こっている状
態を保つことができ、二次反応のみが起こることがない
ため、良好な膜質を得ることができる。
In the present invention, as shown in FIG. 2, since continuous light with almost constant light intensity is used, it is possible to maintain a state where the primary reaction is always occurring, and because only the secondary reaction does not occur, Good film quality can be obtained.

また、通常の水銀増感光CVD法よりも反応室の圧力を
低くし及び/又はガス流量を高めることにより、上記し
た二次反応での不所望な生成物質を素早く排出できるの
で一層好ましい。
Further, by lowering the pressure in the reaction chamber and/or increasing the gas flow rate than in the usual mercury-sensitized photoCVD method, undesired substances produced in the above-mentioned secondary reaction can be quickly discharged, which is more preferable.

〔実施例〕〔Example〕

光源として高周波低圧水銀ランプを備えた第1図の装置
を用いて、ガラス基板上の透明電極上にpin構造の光
導電層を水銀増感光CVD法により形成し、その上にア
ルミニウム電極を形成して、太陽電池を構成した。尚、
使用した高周波電圧は10V、電力は35Wで周波数は
2kHzでちった。
Using the apparatus shown in FIG. 1 equipped with a high-frequency, low-pressure mercury lamp as a light source, a photoconductive layer with a pin structure was formed on a transparent electrode on a glass substrate by mercury-sensitized photochemical CVD, and an aluminum electrode was formed on top of the photoconductive layer. A solar cell was constructed. still,
The high frequency voltage used was 10V, the power was 35W, and the frequency was 2kHz.

光導電層のp層、i層及びn層の形成に使用した原料ガ
ス、流量及び成膜時間は下記第1表の通シであり、その
他の条件は圧力5 Torr、基板温度180t:及び
水銀温度60Cであった。
The raw material gases, flow rates, and film-forming times used to form the p-layer, i-layer, and n-layer of the photoconductive layer are as shown in Table 1 below, and the other conditions are a pressure of 5 Torr, a substrate temperature of 180 tons, and mercury. The temperature was 60C.

第1表 (注) GeH4、B2H6、PH3は水素希釈ガスを
使用した。
Table 1 (Note) Hydrogen dilution gas was used for GeH4, B2H6, and PH3.

上記のごとく製造した太陽電池の特性を従来の非連続光
による水銀増感光CVD法を用いて製造した同一構造の
太陽電池のそれと比較すると、AMl、5及び100 
mW/cm2の太陽光下において下記第2表の通シであ
った。
Comparing the characteristics of the solar cells manufactured as described above with those of solar cells of the same structure manufactured using the conventional mercury-sensitized photoCVD method using discontinuous light, AMl, 5 and 100
Under sunlight of mW/cm2, the results were as shown in Table 2 below.

第2表 特  性     本発明  従 来 短絡電流(m!VCrn”)     19    1
5開放電圧(V)       0.62   0.6
1曲性因子(%)       60    54変換
効率(チ)      7.1    4.9〔発明の
効果〕 本発明によれば、水銀増感した光CVD法において連続
光を使用することにより、原料ガスの光化学反応が均一
化され、得られた薄膜の内部欠陥が減少するなど膜質を
向上させることができる。
Table 2 Characteristics Present invention Conventional Short circuit current (m!VCrn”) 19 1
5 Open circuit voltage (V) 0.62 0.6
1 Flexibility factor (%) 60 54 Conversion efficiency (ch) 7.1 4.9 [Effects of the invention] According to the present invention, by using continuous light in the mercury-sensitized photoCVD method, the The photochemical reaction is made more uniform, and the film quality can be improved by reducing internal defects in the obtained thin film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するための装置の一具体例
を示す概略断面図であり、第2図は直流放電を用いた紫
外線ランプの連続光の光強度を示すグラフであシ、第3
図は商用周波数電流による交流放電を用いた紫外線ラン
プの非連続光の光強度を示すグラフである。 ■・・・反応室、2・・・石英ガラス窓、3・・・基板
、4・・・加熱ヒータ、5・・・光源、6・・・供給ノ
、l’ /l/、7・・・排気口。 第1図 第2図 哨間
FIG. 1 is a schematic sectional view showing a specific example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a graph showing the light intensity of continuous light from an ultraviolet lamp using direct current discharge. Third
The figure is a graph showing the light intensity of discontinuous light from an ultraviolet lamp using AC discharge using a commercial frequency current. ■... Reaction chamber, 2... Quartz glass window, 3... Substrate, 4... Heater, 5... Light source, 6... Supply, l'/l/, 7... ·exhaust port. Figure 1 Figure 2 Illustration room

Claims (2)

【特許請求の範囲】[Claims] (1)水銀増感した光CVD法により基板上に薄膜を製
造する方法において、光強度が実質的に一定な連続光を
水銀を含む原料ガスに照射することを特徴とする薄膜の
製造方法。
(1) A method for producing a thin film on a substrate by a mercury-sensitized photo-CVD method, which comprises irradiating a raw material gas containing mercury with continuous light having a substantially constant light intensity.
(2)上記連続光が直流放電又は高周波放電を用いた紫
外線ランプの光であることを特徴とする特許請求の範囲
(1)項記載の薄膜の製造方法。
(2) The method for producing a thin film according to claim (1), wherein the continuous light is light from an ultraviolet lamp using direct current discharge or high frequency discharge.
JP61190894A 1986-08-13 1986-08-13 Manufacture of thin-film Pending JPS6346719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61190894A JPS6346719A (en) 1986-08-13 1986-08-13 Manufacture of thin-film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61190894A JPS6346719A (en) 1986-08-13 1986-08-13 Manufacture of thin-film

Publications (1)

Publication Number Publication Date
JPS6346719A true JPS6346719A (en) 1988-02-27

Family

ID=16265500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61190894A Pending JPS6346719A (en) 1986-08-13 1986-08-13 Manufacture of thin-film

Country Status (1)

Country Link
JP (1) JPS6346719A (en)

Similar Documents

Publication Publication Date Title
JPH0546092B2 (en)
US5214002A (en) Process for depositing a thermal CVD film of Si or Ge using a hydrogen post-treatment step and an optional hydrogen pre-treatment step
JPS62156811A (en) Thin film semiconductor element and forming method thereof
JPS60117711A (en) Forming apparatus of thin film
JP2588446B2 (en) Semiconductor device
JPS6346719A (en) Manufacture of thin-film
JPS6347365A (en) Production of thin film
JPS63258016A (en) Manufacture of amorphous thin film
JP2629773B2 (en) Method of forming multilayer thin film
JPH0651908B2 (en) Method of forming thin film multilayer structure
JPS62240768A (en) Formation of deposited film
JPS61216318A (en) Photo chemical vapor deposition device
JPS6138268B2 (en)
JPH0645258A (en) Manufacture of amorphous semiconductor thin film
JPS6216512A (en) Manufacture of semiconductor thin film
JPH0322411A (en) Photo assisted cvd device
JPS6281022A (en) Apparatus for manufacturing amorphous semiconductor film
JPH06158327A (en) Thin film depositing method
JPS6355928A (en) Manufacture of amorphous thin film
JPS61224370A (en) Solar cell
JPS6284512A (en) Preparation of semiconductor film of amorphous silicon germanium hydride or germanium
JPS61278132A (en) Forming method for amorphous hydride sige film
JPS6332863B2 (en)
JPS63219585A (en) Production of amorphous thin film
JPH0750682B2 (en) Deposited film formation method