JPS6281022A - Apparatus for manufacturing amorphous semiconductor film - Google Patents

Apparatus for manufacturing amorphous semiconductor film

Info

Publication number
JPS6281022A
JPS6281022A JP60221183A JP22118385A JPS6281022A JP S6281022 A JPS6281022 A JP S6281022A JP 60221183 A JP60221183 A JP 60221183A JP 22118385 A JP22118385 A JP 22118385A JP S6281022 A JPS6281022 A JP S6281022A
Authority
JP
Japan
Prior art keywords
film
gas
atoms
semiconductor film
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60221183A
Other languages
Japanese (ja)
Inventor
Osamu Nabeta
鍋田 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60221183A priority Critical patent/JPS6281022A/en
Publication of JPS6281022A publication Critical patent/JPS6281022A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve the quality of an amorphous semiconductor film by increasing the quantities of H atoms and H ions existing in reaction gas in case of manufacturing an amorphous semiconductor film which mainly contains amorphous silicon by a plasma CVD method or a photo-CVD method to reduce a dangling bond in the obtained film. CONSTITUTION:When a voltage is applied across an upper electrode 2 and an electrode 8 made of metal mesh and silicon compound gas fed into a reaction tank 1 is SiH4, glow discharge decomposition product to be accumulated on a substrate 5 passing through the electrode 8 is mixed with H atoms, H ions and H radicals produced by the decomposition of H2 gas. In this case, if the discharging power for producing the glow discharge of the H2 gas is increased, the quantities of the H atoms and H ions increase. Thus, the quantity to be associated in the film to be formed increases. Therefore, dangling bond in the film can be sufficiently compensated.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、プラズマCVD法あるいは光CVD法を用い
てシランガスなどを分解する、非晶質シリコンを主体と
した非晶質半導体膜の製造装置に関するものである。
The present invention relates to an apparatus for manufacturing an amorphous semiconductor film mainly made of amorphous silicon, which decomposes silane gas or the like using a plasma CVD method or a photoCVD method.

【従来技術とその問題点】[Prior art and its problems]

プラズマCVD法あるいは光CVD法により製造される
非晶質シリコン薄膜は、17来の大規模発電用太陽電池
材料として注目を集め、研究、開発が進められている。 第2図にプラズマCVD法を用いた非晶質半導体膜製造
装置の典型的な一例を示す、ガス回路系を通って、ガス
導入口6から反応槽1内に導入された原料ガスが、高周
波量allまたは直流ff1iff12により下部電極
2と下部電極3の間で発生したグロー放電によって分解
し、下部電極3上に搭載された基板5の上に非晶質膜が
堆積する。なお、未反応ガスはガス排出ロアを1って排
気される。現在、太陽電池材料として広く用いられてい
る非晶質シリコン膜は、StH,とH2の混合ガスまた
は5ix)I& とH2の混合ガスを原料ガスとして形
成されるa−5r:H膜であるが、この他5jHa。 5iFnおよびH2の混合ガスを原料ガスとしたa −
5i:F:H膜やSiL、GeH4およびH2の混合ガ
スを原料ガスとしたa  Si:Ge:)l膜について
も研究が進められている。 このような非晶質半導体膜において、膜中にダングリン
グボンドが存在すると、これが電気的欠陥となって膜質
を低下させる原因となるので、ダングリングボンドがで
きるだけ1iI償されなければならない。しかし、−例
として原料ガスにS i H4と11、の混合ガスを用
いた場合、Si  H結合はH−H結合に比べて解離し
やすいため5iHaO方が分解しやすくなる。ところで
、St、、とH2の分解によるa−5i:H膜の堆積過
程で、S i II aはS i If t + S 
i Hzあるいはこれらの複雑な結合状態の形になって
膜中に組み込まれるのに対して、H2はl(原子または
Hイオンの形で組み込まれる。したがって、SiHmの
分解によって膜中に組み込まれるものはダングリングボ
ンドを生しやすい。一方H2の分解によるH原子または
HイオンはSiとHのネットワーク中に存在するダング
リングボンドを補償する形で膜中に組み込まれる。上述
のように、S+H4とH3の混合ガスをグロー放電させ
た場合、1(よの方が分解されにくいため、シリコンと
水素のネットワーク中に生じるダングリングボンドを十
分に補償することができなくなり、a −3i+H#の
光電特性を低下させる原因となる。そこで、混合ガス中
のIItの割合を多くしてグロー放電プラズマ中のH原
子およびHイオンの数を多くし、膜中に生じるダングリ
ングボンドを減少させる方法が考えられるが、この場合
は原料ガス中のSiHm分が少ないため、成膜速度が著
しく低下してしまう欠点をもつ。また、5itHbとl
i2の混合ガスの場合も、5izHbの方が分解しやす
く、シかも膜中にダングリングボンドを生しやすいため
、電気的欠陥を生して膜質の低下をひきおこす。 以上の様にプラズマCVD法によってa −3i:tl
膜を形成する場合、プラズマ中のH原子およびHイオン
が少ないために得られる膜のII質は低下する。この他
、a−3i:F:H膜やa−5i:Ge:H膜について
も、混合ガスのグロー放電によるプラズマ中のH原子お
よびHイオンが少ないため得られる膜の膜質は低下する
。同様のことが光CVD法を用いる場合にも当てはまる
Amorphous silicon thin films produced by plasma CVD or photoCVD have attracted attention as solar cell materials for large-scale power generation for the past 17 years, and research and development are underway. Figure 2 shows a typical example of an amorphous semiconductor film manufacturing apparatus using the plasma CVD method. Raw material gas introduced into the reaction tank 1 from the gas inlet 6 through the gas circuit system is high-frequency The amorphous film is decomposed by the glow discharge generated between the lower electrode 2 and the lower electrode 3 due to the amount all or the direct current ff1iff12, and an amorphous film is deposited on the substrate 5 mounted on the lower electrode 3. Note that unreacted gas is exhausted through the gas exhaust lower. Currently, the amorphous silicon film widely used as a solar cell material is an a-5r:H film formed using a mixed gas of StH and H2 or a mixed gas of 5ix) I& and H2 as a raw material gas. , and 5jHa. a − using a mixed gas of 5iFn and H2 as a raw material gas
Research is also progressing on a 5i:F:H film and an aSi:Ge:)l film using a mixed gas of SiL, GeH4, and H2 as a raw material gas. In such an amorphous semiconductor film, if dangling bonds exist in the film, these become electrical defects and cause deterioration of the film quality, so the dangling bonds must be compensated as much as possible. However, for example, when a mixed gas of SiH4 and 11 is used as the raw material gas, 5iHaO is more easily decomposed because SiH bonds are more easily dissociated than H-H bonds. By the way, in the process of depositing the a-5i:H film by the decomposition of St,... and H2, S i II a becomes S i If t + S
While H2 is incorporated into the film in the form of i Hz or these complex bonding states, H2 is incorporated in the form of l (atoms or H ions. Therefore, what is incorporated into the film by the decomposition of SiHm On the other hand, H atoms or H ions resulting from the decomposition of H2 are incorporated into the film in a way that compensates for the dangling bonds existing in the Si and H network.As mentioned above, when S+H4 When a mixed gas of H3 is glow-discharged, 1(yo) is more difficult to decompose, so it becomes impossible to sufficiently compensate for the dangling bonds that occur in the network of silicon and hydrogen, and the photoelectric properties of a -3i+H# Therefore, a method can be considered to increase the proportion of IIt in the mixed gas to increase the number of H atoms and H ions in the glow discharge plasma, thereby reducing the dangling bonds generated in the film. However, in this case, since the SiHm content in the source gas is small, the film formation rate is significantly reduced.
In the case of a mixed gas of i2 as well, 5izHb is more easily decomposed and more likely to form dangling bonds in the film, resulting in electrical defects and deterioration of film quality. As described above, a -3i:tl is obtained by plasma CVD method.
When forming a film, the II quality of the obtained film is degraded because there are few H atoms and H ions in the plasma. In addition, in the case of the a-3i:F:H film and the a-5i:Ge:H film, the film quality of the obtained film deteriorates because there are few H atoms and H ions in the plasma due to the glow discharge of the mixed gas. The same applies when using the photo-CVD method.

【発明の目的] 本発明は、プラズマCVD法あるいは光CVD法により非晶質シリコンを主体とした非晶質半導体膜を製造する際に、反応ガス中に存在するH原子およびHイオンの量を増加させることによって、得られる膜中のダングリングボンドを低減させ、膜質を向上させることのできる製造装置を提供することを目的とする。 【発明の要点】[Purpose of the invention] In the present invention, when manufacturing an amorphous semiconductor film mainly made of amorphous silicon by a plasma CVD method or a photo CVD method, by increasing the amount of H atoms and H ions present in a reaction gas, It is an object of the present invention to provide a manufacturing apparatus that can reduce dangling bonds in the obtained film and improve the film quality. [Key points of the invention]

本発明は、反応槽内のソリコン化合物を含む反応ガス中
にグロー放電を発生させるか光を照射することにより反
応槽内に配室された基板上に非晶質シリコンを主体とす
る非晶質半導体膜を形成する装置の先・端部が基板近傍
に達する水素ガス導入管を備え、その導入管は少な(と
も先端部が金属よりなり、先端部近傍にグロー放電を発
生させる電圧を印加する電源に接続されていることによ
り、導入された水素がH原子、HイオンおよびHラジカ
ルとなって71E+a上に送り込まれ、化合物ガスの分
解において欠乏しているH原子あるいはHイオンを補給
して生成膜中のダングリングボンドを補償することによ
り上記の目的を達成する。
The present invention produces an amorphous material mainly made of amorphous silicon on a substrate placed in a reaction tank by generating glow discharge or irradiating light in a reaction gas containing a solicon compound in a reaction tank. The device for forming a semiconductor film is equipped with a hydrogen gas introduction tube whose tip/end reaches near the substrate. By being connected to a power supply, the introduced hydrogen becomes H atoms, H ions, and H radicals and is sent onto 71E+a, which replenishes the H atoms or H ions that are deficient during the decomposition of compound gases. The above objective is achieved by compensating for dangling bonds in the membrane.

【発明の実施例] 以下図を引用して本発明のいくつかの実施例について説
明する。各図において、第2図と共通の部分には同一の
符号が付されている。 第1図に示す実施例においては、上部電極2と金属製メ
ソシュからなる電極8との間に電圧を印加し、導入口6
より反応槽l内に送り込まれたシリコン化合物ガスをグ
ロー放電分解させ、メノンユ電掻8を通して支持台4の
上に搭載された鋸板5上に膜を堆積する。一方H!ガス
は、導入管21を介して基板5の上に流し込むようにな
っているが、その際その導入管21の金属製先端部22
とこれに平行して設置された金属製fi極棒23との間
に簡周波電a24により電圧を印加する。この電圧によ
り先端部22の関口内部にグロー放電が生ずる。この結
果、先端部22を通るH2ガスは、分解してH原子。 HイオンおよびHラジカルとなって基1反5上に流れ込
み、導入口6からのシリコン化合物ガスの分解したもの
と混合して基板5に非晶質シリコン薄膜を形成する。こ
のシリコン化合物ガスをSin、とじた場合、メツシュ
電極を通って基板上に堆積するグロー放電分解生成物は
H2ガスの分解によって生したH原子、Hイオンおよび
Hラジカルと混合する。その際、H2ガスのグロー放電
をおこす放電電力を大きくすれば、H原子およびHイオ
ンの量は増加するため、形成される膜中に組み込まれる
量も増加する。したがって、膜中のダングリングボンド
を十分に埋めることができ膜質の向上が得られる。H2
ガスのグロー放電のための電圧には、電#25によって
直流電圧を重畳することも有効である。 第3図は本発明の第二の実施例で、H!ガスの導入管を
複数個形成し、おのおのの導入管21の先端部と、基板
5を搭載した金属製支持台4の間に高周波電源24また
は直流t#25によって電圧を印加する。さらに支持台
4を回路26によって制御されるモータを使って回転さ
せることによって、基板上に流れ込むH原子、Hイオン
およびHラジカルの量を均一にする。したがって得られ
る膜の膜質および均一性を向上させることができる。な
お、前記シリコン化合物ガスとして5jJi、SiF4
とSiH。 の混合ガスまたはGeHaとS i ll 4の混合ガ
スを用いた場合も、同様に得られる膜の膜質を向上させ
ることができる。 第4図に、本発明の第三の実施例として光CVD法を応
用した場合を示す。原料ガスとして5izHbを用いて
導入口6より反応槽1内に導入し、紫外光を水銀ランプ
27からレンズ28を通して照射して、5izHbを分
解させる。一方、H2ガスは導入管21を通して基板5
上に流れ込むようになっているが、その際導入管21の
金属製先端部22と基板5を搭載した金属製支持台4の
間に高周波または直流電圧を印加すれば、先端部22の
内部にグロー放電が発生する。この結果、紫外光の照射
による5itHaの分解生成物は導入管21の先端部2
2から流出するH原子、HイオンおよびHラジカルと混
合して、基板5上に膜を形成する。この場合も、そのH
原子およびHイオンによって膜中に生じるダングリング
ボンドが低減し、膜質の向上が得られる。 【発明の効果】 本発明によれば、プラズマCVD法あるいは光CVD法
による非晶質半導体膜製造装置において、シリコン化合
物ガスなどの原料ガスとは別に水素ガスをガス導入管に
より成膜すべき基板の近傍に送り込み、その際導入管先
端部に電圧を印加してグロー放電を発生させ、生じたH
原子、Hイオンその他のプラズマ種を原料ガスの反応雰
囲気中に供給する。これにより生成される膜中のダング
リングボンドが補償され、膜中の欠陥が低減して膜質が
向上するという効果が得られる。
[Embodiments of the Invention] Some embodiments of the present invention will be described below with reference to the drawings. In each figure, parts common to those in FIG. 2 are given the same reference numerals. In the embodiment shown in FIG. 1, a voltage is applied between the upper electrode 2 and the electrode 8 made of a metal mesh, and the inlet 6
The silicon compound gas sent into the reaction tank 1 is decomposed by glow discharge, and a film is deposited on the saw plate 5 mounted on the support base 4 through the menonyu electric scraper 8. On the other hand, H! The gas is made to flow onto the substrate 5 through the introduction pipe 21, and at this time, the metal tip 22 of the introduction pipe 21
A voltage is applied between this and a metal fi pole rod 23 installed in parallel thereto by a simple frequency electric field a24. This voltage causes a glow discharge to occur inside the entrance of the tip 22. As a result, the H2 gas passing through the tip 22 decomposes into H atoms. The H ions and H radicals flow onto the base 1 and 5 and mix with the decomposed silicon compound gas from the inlet 6 to form an amorphous silicon thin film on the substrate 5. When this silicon compound gas is filled with Sin, the glow discharge decomposition products deposited on the substrate through the mesh electrode are mixed with H atoms, H ions, and H radicals produced by the decomposition of H2 gas. At this time, if the discharge power for causing glow discharge of H2 gas is increased, the amount of H atoms and H ions will increase, and therefore the amount incorporated into the formed film will also increase. Therefore, the dangling bonds in the film can be sufficiently filled and the film quality can be improved. H2
It is also effective to superimpose a DC voltage using voltage #25 as the voltage for gas glow discharge. FIG. 3 shows a second embodiment of the present invention, in which H! A plurality of gas introduction tubes are formed, and a voltage is applied between the tip of each introduction tube 21 and the metal support base 4 on which the substrate 5 is mounted by a high frequency power source 24 or a DC t# 25. Furthermore, by rotating the support table 4 using a motor controlled by the circuit 26, the amounts of H atoms, H ions, and H radicals flowing onto the substrate are made uniform. Therefore, the film quality and uniformity of the obtained film can be improved. Incidentally, as the silicon compound gas, 5jJi, SiF4
and SiH. The quality of the obtained film can be similarly improved when using a mixed gas of GeHa and Sill4 or a mixed gas of GeHa and Sill4. FIG. 4 shows a case where a photo-CVD method is applied as a third embodiment of the present invention. 5izHb is introduced into the reaction tank 1 from the inlet 6 as a raw material gas, and ultraviolet light is irradiated from the mercury lamp 27 through the lens 28 to decompose the 5izHb. On the other hand, H2 gas passes through the introduction pipe 21 to the substrate 5.
At this time, if a high frequency or DC voltage is applied between the metal tip 22 of the introduction tube 21 and the metal support base 4 on which the substrate 5 is mounted, water flows into the tip 22. A glow discharge occurs. As a result, the decomposition products of 5itHa due to ultraviolet light irradiation are removed from the tip 2 of the introduction tube 21.
A film is formed on the substrate 5 by mixing with H atoms, H ions, and H radicals flowing out from the substrate 5 . In this case as well, that H
Dangling bonds generated in the film due to atoms and H ions are reduced, resulting in improved film quality. Effects of the Invention According to the present invention, in an amorphous semiconductor film manufacturing apparatus using a plasma CVD method or a photo CVD method, hydrogen gas is supplied to a substrate to be formed into a film through a gas inlet pipe, separately from a raw material gas such as a silicon compound gas. The H
Atoms, H ions, and other plasma species are supplied into the reaction atmosphere of the source gas. Dangling bonds in the film thus generated are compensated, defects in the film are reduced, and film quality is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は従来のプ
ラズマCVD法による非晶質半導体膜製造装置の断面図
、第3図、第4図はそれぞれ本発明の異なる実施例を示
す断面図である。 1:反応槽、2;上部電極、4;支持台、5:基板、6
:ガス導入口、7:ガス排出口、8:メソシュ電極、2
1 : o、ガス導入管、22:導入管先端第2図
FIG. 1 is a cross-sectional view of one embodiment of the present invention, FIG. 2 is a cross-sectional view of an amorphous semiconductor film manufacturing apparatus using a conventional plasma CVD method, and FIGS. 3 and 4 are different embodiments of the present invention. FIG. 1: Reaction tank, 2: Upper electrode, 4: Support stand, 5: Substrate, 6
: Gas inlet, 7: Gas outlet, 8: Metosh electrode, 2
1: o, gas introduction pipe, 22: introduction pipe tip Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 1)反応槽内のシリコン化合物を含む反応ガス中にグロ
ー放電を発生させるか光を照射することにより反応槽内
に配置された基板上に非晶質シリコンを主体とする非晶
質半導体膜を形成するものにおいて、先端部が基板近傍
に達する水素ガス導入管を備え、該導入管は少なくとも
先端部が金属よりなり、先端部近傍にグロー放電を発生
させる電圧を印加する電源に接続されたことを特徴とす
る非晶質半導体膜製造装置。
1) An amorphous semiconductor film mainly made of amorphous silicon is formed on a substrate placed in a reaction tank by generating glow discharge or irradiating light in a reaction gas containing a silicon compound in the reaction tank. The hydrogen gas inlet tube has a hydrogen gas introduction tube whose tip reaches near the substrate, and at least the tip of the introduction tube is made of metal, and is connected to a power source that applies a voltage that generates a glow discharge near the tip. An amorphous semiconductor film manufacturing device characterized by:
JP60221183A 1985-10-04 1985-10-04 Apparatus for manufacturing amorphous semiconductor film Pending JPS6281022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60221183A JPS6281022A (en) 1985-10-04 1985-10-04 Apparatus for manufacturing amorphous semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60221183A JPS6281022A (en) 1985-10-04 1985-10-04 Apparatus for manufacturing amorphous semiconductor film

Publications (1)

Publication Number Publication Date
JPS6281022A true JPS6281022A (en) 1987-04-14

Family

ID=16762778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60221183A Pending JPS6281022A (en) 1985-10-04 1985-10-04 Apparatus for manufacturing amorphous semiconductor film

Country Status (1)

Country Link
JP (1) JPS6281022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522935A (en) * 1992-02-28 1996-06-04 Nec Corporation Plasma CVD apparatus for manufacturing a semiconductor device
WO2021106096A1 (en) 2019-11-27 2021-06-03 株式会社アース・ウェザー Ship routing prediction system, and program used for said routing prediction system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522935A (en) * 1992-02-28 1996-06-04 Nec Corporation Plasma CVD apparatus for manufacturing a semiconductor device
WO2021106096A1 (en) 2019-11-27 2021-06-03 株式会社アース・ウェザー Ship routing prediction system, and program used for said routing prediction system

Similar Documents

Publication Publication Date Title
JPH0341978B2 (en)
JPS62156811A (en) Thin film semiconductor element and forming method thereof
JPS6281022A (en) Apparatus for manufacturing amorphous semiconductor film
JPS59207621A (en) Formation of thin film
JPH03139824A (en) Depositing method for semiconductor device
JPS63317675A (en) Plasma vapor growth device
JP3426788B2 (en) Plasma CVD equipment
RU2061095C1 (en) Process of manufacture of silica films
JPS6138268B2 (en)
JPH0411626B2 (en)
JP2629773B2 (en) Method of forming multilayer thin film
JPS6346719A (en) Manufacture of thin-film
JPH03214724A (en) Thin-film manufacturing method
JP3546095B2 (en) Plasma CVD equipment
JPH0546093B2 (en)
JPS6425518A (en) Method for forming amorphous silicon film
JPH10312965A (en) Plasma chemical deposition system
JPH04324628A (en) Manufacture of silicon thin film
JPH0750682B2 (en) Deposited film formation method
JPH05275354A (en) Manufacture of silicon film
JPH023912A (en) Forming method of carbon-containing silicon thin film
JPS62240767A (en) Formation of deposited film
JPS6261110B2 (en)
JPH0645258A (en) Manufacture of amorphous semiconductor thin film
JPS60219736A (en) Formation of deposited film