JPS61278132A - Forming method for amorphous hydride sige film - Google Patents

Forming method for amorphous hydride sige film

Info

Publication number
JPS61278132A
JPS61278132A JP60120176A JP12017685A JPS61278132A JP S61278132 A JPS61278132 A JP S61278132A JP 60120176 A JP60120176 A JP 60120176A JP 12017685 A JP12017685 A JP 12017685A JP S61278132 A JPS61278132 A JP S61278132A
Authority
JP
Japan
Prior art keywords
film
raw material
hydrogen
material gas
3ige
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60120176A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushima
和彦 福島
Hideo Itozaki
糸崎 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60120176A priority Critical patent/JPS61278132A/en
Priority to DE19863610401 priority patent/DE3610401A1/en
Priority to FR868604451A priority patent/FR2579825B1/en
Publication of JPS61278132A publication Critical patent/JPS61278132A/en
Priority to US07/391,734 priority patent/US5011759A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To improve film quality by utilizing a photo-CVD method as a film formation method and diluting a raw material gas for forming a film with hydrogen. CONSTITUTION:Ultraviolet beams from a light source 1 excite and activate a raw material gas and hydrogen gas charged into a reaction chamber 2 while they decompose these gases and accelerate reactions, and a predetermined thin-film 5 is deposited on a substrate 4 heated by a heater 3 supported into the reaction chamber 2 similarly, thus obtaining an a-SiGe:H film. In a film formation process, hydrogen is added to the raw material gas, and dangling bonds are terminated by H. Accordingly, a localized level is reduced largely, and film quality can be improved.

Description

【発明の詳細な説明】 11ユ9泗月±! 本発明はゲルマニウムを添加した水素化アモルファスS
i膜の形成方法に関する。更に詳しくいえば、長波長感
度が高く、膜質良好なGeを添加した水素化アモルファ
スSi膜の製造方法に関する。
[Detailed description of the invention] 11 Yu 9 Satgetsu±! The present invention is a hydrogenated amorphous S containing germanium.
This invention relates to a method for forming an i-film. More specifically, the present invention relates to a method for producing a hydrogenated amorphous Si film doped with Ge that has high long-wavelength sensitivity and good film quality.

従来の技術 光起電力効果を利用した電子デバイスの代表的なものと
しては太陽電池を例示できる。この太陽電池は、太陽エ
ネルギーあるいはその他の光エネルギーを電気エネルギ
ーに変換するものであり、今後のエネルギ一対策の一通
として注目される技術の一つである。太陽電池による光
エネルギーの電気エネルギーへの変換は半導体のへテロ
接合、pnまたはpin接合、ショットキー接合などの
最も基本的な性質の1つである光起電力効果を利用する
ものであり、入射した光が吸収され、そこで電子・正孔
対を生成し、外部に取出されるといった機構により起こ
る。
2. Description of the Related Art A typical example of an electronic device that utilizes the photovoltaic effect is a solar cell. This solar cell converts solar energy or other light energy into electrical energy, and is one of the technologies that is attracting attention as a future energy solution. The conversion of light energy into electrical energy by solar cells utilizes the photovoltaic effect, which is one of the most fundamental properties of semiconductors such as heterojunctions, pn or pin junctions, and Schottky junctions. This occurs through a mechanism in which the light is absorbed, generates electron-hole pairs, and is extracted to the outside.

ところで、最近水素化アモルファスシリコン(以下簡単
化のためにa −3i : Hという)が薄膜太陽電池
材料として注目されており、これは太陽エネルギー分布
のピーク(500nm)近傍の光に対する吸収係数が結
晶Siに比較して1桁程大きい、薄膜形成温度が低い、
原料からグロー放電分解によって直接成膜でき、接合形
成も容易である等の興味ある特性を有している。
By the way, hydrogenated amorphous silicon (hereinafter referred to as a-3i:H for simplicity) has recently attracted attention as a material for thin-film solar cells, and it has an absorption coefficient for light near the peak (500 nm) of the solar energy distribution that is higher than that of crystalline silicon. Compared to Si, it is about an order of magnitude larger, and the thin film formation temperature is lower.
It has interesting properties such as being able to form a film directly from raw materials by glow discharge decomposition and making it easy to form bonds.

太陽電池の設計、製作において最も重要な問題は高い変
換効率の達成にあるといえ、そのために多くの研究・開
発が進められている。
The most important issue in the design and production of solar cells is achieving high conversion efficiency, and much research and development is underway to achieve this goal.

そこで、最近添加元素としてGeを用い、Geを添加し
た水素化アモルファスシリコン(以下a−3iGe :
 Hという)を1層として使用したa −3iGe:H
太陽電池が提案されている。例えば、禁止帯幅E、y1
.4eVのa −3iGe : H膜をi層に使用した
a −3iGe : H単層太陽電池の出力特性におい
ては、短絡電流J、。が9.Om^/cufと低く、長
波長感度は満足できるものではなかった。
Therefore, recently Ge has been used as an additive element to produce hydrogenated amorphous silicon (hereinafter referred to as a-3iGe).
a-3iGe:H using a-3iGe:H as one layer
Solar cells have been proposed. For example, forbidden band width E, y1
.. In the output characteristics of an a-3iGe:H single-layer solar cell using a 4 eV a-3iGe:H film as the i-layer, the short-circuit current J. 9. The long wavelength sensitivity was as low as Om^/cuf, and was not satisfactory.

そこで、a −3i : H/ a −3iGe : 
H積層太陽電池の変換効率の向上を図るためには、2層
目の太陽電池であるa −3iGe : H単層太陽電
池の特性、特にJ、。および長波長感度の改善を図る必
要があった。
Therefore, a-3i: H/ a-3iGe:
In order to improve the conversion efficiency of the H stacked solar cell, the characteristics of the a-3iGe:H single layer solar cell, which is the second layer solar cell, especially J. It was also necessary to improve the long wavelength sensitivity.

発Iが解決しようとする問題点 以上詳しく述べたように、a −3iが各種の興味ある
特性を有することから薄膜太陽電池材料として注目され
、広範な研究が行われているが、変換効率の点でいまだ
不十分であり、実用化に適した技術の開発が切に望まれ
ている。
As detailed above, a-3i has attracted attention as a material for thin-film solar cells due to its various interesting properties, and extensive research has been conducted on it. However, the development of technology suitable for practical use is highly desired.

例えば、上記のa −3i :H/a−3iGe:H積
層太陽電池にあっては、特にa −5iGe : H単
層太陽電池の特性向上を図る必要があると考えられる。
For example, in the above a-3i:H/a-3iGe:H stacked solar cell, it is considered necessary to particularly improve the characteristics of the a-5iGe:H single-layer solar cell.

従来のこの種の製品が短絡電流Jse、長波長感度にお
いて劣っている原因は、GeH4原料ガス流量比GeH
</ (GeH,+5iH4)が大きいと禁制帯幅E9
の低いa −3iGe : H膜が生成されるが、Ge
が電気的な欠陥を生成し光電導度(AM 1.0.10
0mW/cnf照射時)Δσ、および暗電導度σdが劣
化されているものと考えられることにある。即ち、a 
−3iGe : H膜はE、が低く、長波長感度が高い
ことが必要とされ、そのためには上記Δσphを10−
’(Ω・cm) −’程度とし、かつσ6を10−8〜
10−’(Ω・cmν1程度に下げる必要があった。
The reason why conventional products of this type are inferior in short circuit current Jse and long wavelength sensitivity is the GeH4 raw material gas flow rate ratio GeH
</If (GeH, +5iH4) is large, the forbidden band width E9
low a-3iGe: H film is produced, but Ge
generates electrical defects and increases photoconductivity (AM 1.0.10
This is because it is thought that Δσ (during 0 mW/cnf irradiation) and dark conductivity σd are deteriorated. That is, a
-3iGe:H film is required to have low E and high long wavelength sensitivity, and for this purpose, the above Δσph should be set to 10-
'(Ω・cm) -' and σ6 is 10-8~
It was necessary to lower it to about 10-'(Ω·cmν1).

そこで、本発明の目的は低欠陥でJsc、長波長特性の
優れたa −3iGe : H薄膜の成膜方法を提供す
ることにあり、また高い変換効率を有するa −3i:
H/a−3iGe:H積層太陽電池を提供することも本
発明の目的の1つである。
Therefore, an object of the present invention is to provide a method for forming an a-3iGe:H thin film with low defects and excellent Jsc and long wavelength characteristics, and also to provide a method for forming an a-3iGe:H thin film with high conversion efficiency.
It is also an object of the present invention to provide a H/a-3iGe:H stacked solar cell.

問題点を解決するための手段 本発明者等はa −3i薄膜太陽電池の有する上記の如
き諸欠点を解決すべく種々検討、研究した結果、成膜法
として光CVD法を利用し、成膜用原料ガスを水素希釈
することが膜質向上を図る上で極めて有利であることを
見出し、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted various studies and researches to solve the above-mentioned drawbacks of a-3i thin film solar cells. The present invention was completed based on the discovery that diluting the raw material gas with hydrogen is extremely advantageous in improving film quality.

即ち、本発明のa −3iGe : H膜の成膜方法は
a−3i : H膜にGeを添加したa −3iGe 
: H膜の改良製造方法であって、添加源を含む原料ガ
スに以下のような割合で水素を添加し、薄膜形成法とし
て光化学気相蒸着(光CVD)法を利用したことを特徴
とするものである。
That is, the method for forming the a-3iGe:H film of the present invention is to form an a-3iGe film in which Ge is added to the a-3i:H film.
: An improved method for producing a H film, characterized in that hydrogen is added to a raw material gas containing an additive source at the following ratio, and a photochemical vapor deposition (photoCVD) method is used as a thin film forming method. It is something.

本発明の方法において有用な原料ガスとしてはSi H
,,512Fa、SiF、あるいはこれらの混合物など
をいずれも使用でき、一方添加元素としてのGeの原料
としてはGeHa、Ge F 4またはこれらの混合物
などを使用することができる。
The raw material gas useful in the method of the present invention is SiH
,,512Fa, SiF, or a mixture thereof can be used. On the other hand, as a raw material for Ge as an additive element, GeHa, Ge F 4 or a mixture thereof can be used.

上記原料ガスを水素希釈する際の水素の添加量な割合で
ある必要がある。
The amount and ratio of hydrogen added when diluting the raw material gas with hydrogen needs to be appropriate.

本発明の方法において有利な成膜法としての光CVD法
は水銀増感法、直接励起法のいずれも利用でき、例えば
第3図に示すような装置を使用して薄膜形成することが
可能である。該装置によれば光源1からの紫外光が反応
室2内に装入された原料ガスおよび水素ガスを励起活性
化すると共に、分解・反応促進させ、同様に反応室2内
に支持されヒータ3によって加熱された基板4上に所定
の薄膜5を堆積することにより目的とするa −3iG
e:H膜を得ることができる。
The photo-CVD method, which is an advantageous film-forming method in the method of the present invention, can use either the mercury sensitization method or the direct excitation method, and it is possible to form a thin film using, for example, an apparatus as shown in FIG. be. According to this device, the ultraviolet light from the light source 1 excites and activates the raw material gas and hydrogen gas charged into the reaction chamber 2, and promotes decomposition and reaction. By depositing a predetermined thin film 5 on a substrate 4 heated by
e:H film can be obtained.

本発明の方法においては、特に波長0.3μm以下の紫
外線が有用である。また紫外線はレンズ等により集光し
て用いることもある。
In the method of the present invention, ultraviolet rays having a wavelength of 0.3 μm or less are particularly useful. Further, ultraviolet rays may be used by condensing them with a lens or the like.

作用 a −3i : H/ a −3iGe : H積層太
陽電池作製において重要なことは変換効率の向上にあり
、そのためには上記のようにa −3iGe : H単
層太陽電池の短絡電流Jscおよび長波長感度を向上さ
せなければならない。これは、添加元素としてのGeに
よりΔσ、およびσ6が悪化されることにあるものと考
えられるが、a −3iGe : H膜には大量のダン
グリングボンド(dangling bond) 、即
ち結合の手の切れた状態が存在し、これが薄膜の欠陥と
して作用するものと考えられる。
What is important in the production of a-3i:H/a-3iGe:H stacked solar cells is to improve the conversion efficiency, and for this purpose, as described above, the short-circuit current Jsc and long length of the a-3iGe:H single-layer solar cell are Wavelength sensitivity must be improved. This is thought to be due to the fact that Δσ and σ6 are worsened by Ge as an additive element, but the a-3iGe:H film also has a large amount of dangling bonds, that is, broken bonds. It is thought that this state exists and acts as a defect in the thin film.

そこで、本発明の方法では、成膜工程において、原料ガ
スに水素添加し、Hによって該ダングリングボンドをタ
ーミネートさせた。これによって、局在準位が大巾に減
少され、膜質の向上を図ることが可能となった。
Therefore, in the method of the present invention, hydrogen is added to the source gas in the film forming process, and the dangling bonds are terminated with H. As a result, the localized levels are greatly reduced, making it possible to improve the film quality.

本発明の方法に従って、原料ガスを水素希釈すれば上記
ダングリングボンドが減少し、そのために局在準位が大
巾に減少するのでΔσphを下げることなしにσ、を下
げることが可能となり、結果としてE、α1.4eVの
場合にあっても膜質の良好なa −3iGe : H膜
を得ることができる。
According to the method of the present invention, by diluting the raw material gas with hydrogen, the above-mentioned dangling bonds are reduced, and the localized levels are thereby greatly reduced, making it possible to lower σ without lowering Δσph. Even when E and α are 1.4 eV, an a-3iGe:H film with good film quality can be obtained.

本発明の方法において水素添加量は臨界的であって、比
Hz/(Ge源+Si源+82)は0.25〜0.60
の範囲内でなければならない。即ち、量比が0.25以
下である場合には水素量が不十分であるために、水素に
よるダングリングボンドのターミネートが不十分となり
、良好な膜質のa −3iGc、: H膜を得ることが
できず、一方逆に0.6以上とした場合には、水素ガス
が多くなりすぎるために膜の微結晶化が現れて、σdが
大きくなりすぎてi層として用いることができず、いず
れも避けることが必要である。
In the method of the present invention, the amount of hydrogen added is critical, and the ratio Hz/(Ge source + Si source + 82) is 0.25 to 0.60.
must be within the range. That is, when the quantitative ratio is 0.25 or less, the amount of hydrogen is insufficient, and the termination of dangling bonds by hydrogen is insufficient, resulting in an a-3iGc,:H film with good film quality. On the other hand, if the value is set to 0.6 or more, the amount of hydrogen gas becomes too large, resulting in microcrystallization of the film, and σd becomes too large to be used as an i-layer. It is also necessary to avoid

本発明の方法によれば、上記の如く膜質良好なa −5
iGe : H薄膜を有利に形成でき、この薄膜はa 
−3i : H/ a −3iGe : H積層太陽電
池の作製において有用である。以上、説明の簡単化のた
めに太陽電池を例として本発明の詳細な説明してきたが
、本発明の方法はa −3iGe : H薄膜を使用す
る感光体、センサーなどにおいても勿論有用である。
According to the method of the present invention, a-5 with good film quality as described above
iGe:H thin film can be advantageously formed, and this thin film has a
-3i:H/a-3iGe:H is useful in the production of H stacked solar cells. Although the present invention has been described in detail above using a solar cell as an example to simplify the explanation, the method of the present invention is of course also useful for photoreceptors, sensors, etc. that use a-3iGe:H thin films.

更に、成膜法として光CVD法を採用したことにより、
プラズマCVD法と比較して、高エネルギー荷電粒子に
よる膜の損傷がなく、良質のa −3iGe : H膜
を得ることが可能となる。
Furthermore, by adopting the photo-CVD method as the film-forming method,
Compared to the plasma CVD method, there is no damage to the film due to high-energy charged particles, and it is possible to obtain a high-quality a-3iGe:H film.

実施例 以下、実施例により本発明の方法を更に具体的に説明す
るが、本発明の範囲は以下の実施例により何等制限され
ない。
EXAMPLES Hereinafter, the method of the present invention will be explained in more detail with reference to Examples, but the scope of the present invention is not limited in any way by the following Examples.

実施例1 原料ガスとして5iHaを、添加元素Ge源としてGe
H+を夫々用い、ガス流量比GeH4/(GeH<+5
iH4)=0.4と一定にした。一方該原料ガス混合物
に水素を添加し、比H2/(GeH4+SiH4+H2
)を様々な値に変化させてa −3iGe : H薄膜
の形成を光CVD法(水銀増感法)によって行った。成
膜条件は増感用水銀温度60℃、全ガス流量30〜70
secm、基板温度160℃とした。かくして得た薄膜
につき、Δσ。
Example 1 5iHa as a raw material gas and Ge as an additive element Ge source
Using H+ respectively, the gas flow rate ratio GeH4/(GeH<+5
iH4) was kept constant at 0.4. On the other hand, hydrogen is added to the raw material gas mixture, and the ratio H2/(GeH4+SiH4+H2
) was changed to various values, and a-3iGe:H thin films were formed by a photo-CVD method (mercury sensitization method). Film-forming conditions were mercury temperature for sensitization of 60°C, total gas flow rate of 30-70°C.
secm, and the substrate temperature was 160°C. For the thin film thus obtained, Δσ.

およびσ6の測定を行い、得られた結果を第1図に示し
た。ここでΔσphおよびσ6の測定は電極であるAI
をギャップタイプに真空蒸着して行った。
and σ6 were measured, and the obtained results are shown in FIG. Here, Δσph and σ6 are measured using the electrode AI
was vacuum-deposited onto a gap type.

第1図の結果より求めた第2図から明らかな如く、比H
2/(GeH<+SiH4+H2>が0.25〜0.6
0の範囲内にある場合にΔσPh/σ6の比が大きく、
光感度の良好な膜を与えることを理解することができる
As is clear from Figure 2 obtained from the results in Figure 1, the ratio H
2/(GeH<+SiH4+H2> is 0.25 to 0.6
When it is within the range of 0, the ratio of ΔσPh/σ6 is large,
It can be understood that this provides a film with good photosensitivity.

タレト準復里 以上詳しく説明したように、本発明のa −3iGe:
H薄膜の形成方法によれば、a −3iGe : Hの
成膜用原料ガスを所定の比率の範囲内で水素希釈するこ
とによりダングリングボンドのターミネートが可能とな
りまた光CVD法を利用して成膜したことに基き、Δσ
ph/σ6比が大きく、光感度の優れたa −3iGe
 : H薄膜を得ることが可能となった。
As explained in detail above, the a-3iGe of the present invention:
According to the H thin film formation method, dangling bonds can be terminated by diluting the a-3iGe:H film forming raw material gas within a predetermined ratio range with hydrogen, and the film can be formed using the photo-CVD method. Based on the film, Δσ
a-3iGe with a large ph/σ6 ratio and excellent photosensitivity
: It became possible to obtain a H thin film.

従って、1層としてE9が低く、高い長波長感度を有す
るa −3iGe : H膜を必要とするa−3i:H
/ a −3iGe : H積層太陽電池を得ることが
可能となり、その変換効率も大巾に向上させることがで
きた。
Therefore, an a-3i:H film that requires an a-3iGe:H film with low E9 and high long-wavelength sensitivity as a single layer
/a-3iGe:H stacked solar cell could be obtained, and its conversion efficiency could also be greatly improved.

更に、本発明の方法はその他の各種感光体、センサーな
どにおける薄膜形成に対しても有利に適用できる。
Furthermore, the method of the present invention can be advantageously applied to the formation of thin films on various other photoreceptors, sensors, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法に従って得たa −3iGe :
H膜のΔσ、およびσ、を、原料ガスの水素希釈比H2
/ (GeH4+SiH<+H2)に対してプロットし
たグラフであり、 第2図は本発明の方法に従って得たa −3iGe :
 H膜のΔσPh/σ6を原料ガスの水素希釈比H2/
(GeH4+St Ha + H2)に対してプOット
したグラフであり、 第3図は本発明の方法を実施するための光CVD装置の
1例を模式的に示した図である。 (主な参照番号) 1・・・・光源、 2・・・・反応室、 3・・・・ヒ
ータ、4・・・・基板、 5・・・・堆積膜、 6・・
・・原料ガス、7・・・・減圧用真空排気ポンプ、
FIG. 1 shows a-3iGe obtained according to the method of the present invention:
Δσ and σ of the H film are expressed as hydrogen dilution ratio H2 of the raw material gas.
/ (GeH4+SiH<+H2), and Figure 2 is a graph plotted against a-3iGe obtained according to the method of the present invention:
ΔσPh/σ6 of the H film is expressed as hydrogen dilution ratio H2/of the raw material gas.
This is a graph plotted against (GeH4+StHa+H2). FIG. 3 is a diagram schematically showing an example of a photo-CVD apparatus for carrying out the method of the present invention. (Main reference numbers) 1...Light source, 2...Reaction chamber, 3...Heater, 4...Substrate, 5...Deposited film, 6...
... Raw material gas, 7... Vacuum exhaust pump for pressure reduction,

Claims (4)

【特許請求の範囲】[Claims] (1)ゲルマニウムを添加した水素化アモルファスシリ
コン薄膜の成膜方法において、  薄膜作製法として光化学気相蒸着法を利用し、添加源
を含む原料ガスを、全ガス流量に対する水素ガス流量の
比を0.25〜0.6の範囲内とするように水素で希釈
した状態で成膜することを特徴とする上記成膜方法。
(1) In the method of forming a hydrogenated amorphous silicon thin film doped with germanium, photochemical vapor deposition is used as the thin film forming method, and the raw material gas containing the doping source is adjusted to a ratio of hydrogen gas flow rate to the total gas flow rate to 0. The film forming method described above is characterized in that the film is formed in a diluted state with hydrogen so as to be within the range of .25 to 0.6.
(2)前記水素化アモルファスシリコンの原料ガスがS
iH_4、Si_2H_6、SiF_4またはこれらの
混合物であることを特徴とする特許請求の範囲第1項記
載の成膜方法。
(2) The raw material gas for the hydrogenated amorphous silicon is S
2. The film forming method according to claim 1, wherein the film is iH_4, Si_2H_6, SiF_4, or a mixture thereof.
(3)前記ゲルマニウム源がGeH_4、GeF_4ま
たはこれらの混合物である特許請求の範囲第2項記載の
成膜方法。
(3) The film forming method according to claim 2, wherein the germanium source is GeH_4, GeF_4, or a mixture thereof.
(4)前記光化学気相蒸着法が波長0.3μm以下の紫
外線によって実施されることを特徴とする特許請求の範
囲第1〜3項のいずれか1項に記載の成膜方法。
(4) The film forming method according to any one of claims 1 to 3, wherein the photochemical vapor deposition method is carried out using ultraviolet light having a wavelength of 0.3 μm or less.
JP60120176A 1985-03-28 1985-06-03 Forming method for amorphous hydride sige film Pending JPS61278132A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60120176A JPS61278132A (en) 1985-06-03 1985-06-03 Forming method for amorphous hydride sige film
DE19863610401 DE3610401A1 (en) 1985-03-28 1986-03-27 SEMICONDUCTOR ELEMENT AND METHOD FOR THE PRODUCTION THEREOF AND ITEM IN THAT THIS ELEMENT IS USED
FR868604451A FR2579825B1 (en) 1985-03-28 1986-03-27 SEMICONDUCTOR ELEMENT, METHOD FOR MAKING SAME AND ARTICLES IN WHICH THIS ELEMENT IS USED
US07/391,734 US5011759A (en) 1985-03-28 1989-08-08 Semiconductor element and method of forming same and article in which said element is used

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120176A JPS61278132A (en) 1985-06-03 1985-06-03 Forming method for amorphous hydride sige film

Publications (1)

Publication Number Publication Date
JPS61278132A true JPS61278132A (en) 1986-12-09

Family

ID=14779803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120176A Pending JPS61278132A (en) 1985-03-28 1985-06-03 Forming method for amorphous hydride sige film

Country Status (1)

Country Link
JP (1) JPS61278132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335238A (en) * 1992-06-03 1993-12-17 Daido Hoxan Inc Manufacture of semiconductor device
JPH05335236A (en) * 1992-06-03 1993-12-17 Daido Hoxan Inc Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335238A (en) * 1992-06-03 1993-12-17 Daido Hoxan Inc Manufacture of semiconductor device
JPH05335236A (en) * 1992-06-03 1993-12-17 Daido Hoxan Inc Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP2695585B2 (en) Photovoltaic element, method of manufacturing the same, and power generator using the same
CN100362667C (en) Semiconductor element and its producing method
JP2008153646A (en) Manufacturing method of semiconductor device
JPH0419703B2 (en)
JP2533639B2 (en) Method for producing amorphous silicon doped with P-type carbon
JP2616929B2 (en) Method for manufacturing microcrystalline silicon carbide semiconductor film
US4520380A (en) Amorphous semiconductors equivalent to crystalline semiconductors
Sichanugrist et al. Amorphous silicon oxide and its application to metal/nip/ITO type a-Si solar cells
JP2692091B2 (en) Silicon carbide semiconductor film and method for manufacturing the same
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
US4755483A (en) Method for producing semiconductor device with p-type amorphous silicon carbide semiconductor film formed by photo-chemical vapor deposition
US4749588A (en) Process for producing hydrogenated amorphous silicon thin film and a solar cell
US4703336A (en) Photodetection and current control devices
JPS61278132A (en) Forming method for amorphous hydride sige film
JP3407792B2 (en) Photoelectric conversion element and manufacturing method thereof
JPH11266030A (en) Semiconductor element and its manufacture
JPH0918038A (en) Photoelectric conversion element
JPS5935016A (en) Preparation of hydrogen-containing silicon layer
JP3040247B2 (en) Manufacturing method of silicon thin film
JPS61224353A (en) Image sensor
Itozaki et al. Amorphous Silicon-Germanium Deposited by Photo-CVD
JPH04192373A (en) Photovoltaic element
JPH02177371A (en) Manufacture of amorphous solar cell
JPS63184325A (en) Manufacture of hydrogenated amorphous silicon germanium film
JP2543498B2 (en) Semiconductor thin film