JPS6381811A - Formation of thin film using nozzle molecular beam - Google Patents

Formation of thin film using nozzle molecular beam

Info

Publication number
JPS6381811A
JPS6381811A JP22640986A JP22640986A JPS6381811A JP S6381811 A JPS6381811 A JP S6381811A JP 22640986 A JP22640986 A JP 22640986A JP 22640986 A JP22640986 A JP 22640986A JP S6381811 A JPS6381811 A JP S6381811A
Authority
JP
Japan
Prior art keywords
thin film
nozzle
substrate
electron beam
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22640986A
Other languages
Japanese (ja)
Inventor
Satoru Iguchi
哲 井口
Shigeo Furuno
古野 志健男
Mitsugi Hanabusa
英 貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP22640986A priority Critical patent/JPS6381811A/en
Publication of JPS6381811A publication Critical patent/JPS6381811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase film-forming speed as well as to obtain a thin film of good quality by a method wherein the gas, containing film forming material, is spouted out into vacuum atmosphere toward a substrate in the state of molecular beam through a nozzle, an electron beam is made to irradiate thereon, and the prescribed pattern is drawn on the substrate. CONSTITUTION:A glass substrate 3 is horizontally arranged in a vacuum chamber 1, and a nozzle 2 is arranged above the substrate 3 in such a manner that it will be spouting in vertical direction. Then, the monosilane gas diluted by hellium is supplied from a cylinder 5. Also, an electron gun 9 is arranged on the side of the nozzle 2, and its beam is brought in the state wherein it is possible to change its scanning direction using a deflecting coil 10. The width of pattern can be reduced to about 0.05 mum by focussing the electron beam. Also, by changing the energy of the electron beam, a polycrystalline or single crystal thin film can be obtained. An amorphous silicon thin film of the prescribed pattern can be formed in a short period of time using the above- mentioned device.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、所定パターンの薄膜を高速度で形成する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming a thin film with a predetermined pattern at high speed.

本発明の方法は、例えば、アモルファスシリコン等の薄
膜の形成に利用される。
The method of the present invention is used, for example, to form a thin film of amorphous silicon or the like.

[従来の技術] 所定パターンの薄膜の形成方法として、例えば、材料ガ
スに紫外線レーデを照射してエピタキシャル成長させる
、紫外線レーザCVD法(特開昭59−164697)
において、レーザビームを所定パターンで基板照射する
方法が提案されている。
[Prior Art] As a method for forming a thin film with a predetermined pattern, for example, there is an ultraviolet laser CVD method (Japanese Patent Laid-Open No. 164697/1983), in which a material gas is irradiated with an ultraviolet radar to cause epitaxial growth.
, a method has been proposed in which a substrate is irradiated with a laser beam in a predetermined pattern.

[発明厚解決しようとする問題点] 上記方法は、一般に、成膜速度が数100人/1n程度
と大変遅く、また、コスト高であるという欠点を有する
[Problems to be Solved by the Invention] The above-mentioned method generally has the drawback that the film formation rate is very slow, approximately several hundred people/1n, and it is expensive.

また、レーザビームを用いて所定パターンの薄膜を形成
する場合には、超微細なパターを描くことはできず、幅
0.5μ程度が限度となる。
Furthermore, when forming a thin film with a predetermined pattern using a laser beam, it is not possible to draw an ultra-fine pattern, and the width is limited to about 0.5 μm.

本発明は、かかる問題点の解決を企図するものであり、
成膜速度を改善するとともに、膜質の良好な所望のパタ
ーン(微細なパターン)の薄膜を容易に(qる方法を提
供、プるものである。
The present invention is intended to solve such problems,
The present invention provides a method for easily forming a thin film having a desired pattern (fine pattern) with good film quality while improving the film formation rate.

[問題点を解決するための手段及び作用]本発明は、薄
膜形成材料を含有するガスを、ノズルを介して真空中へ
分子線状態となるように噴出し、基板に到達せしめ、 電子ビームを、該ビームの先端が基板上に所定パターン
を描くようにして照射し、 該基板上に前記材料の′a膜を前記所定パターンで形成
することを特徴とするノズル分子線による薄膜形成方法
である。
[Means and effects for solving the problems] The present invention ejects a gas containing a thin film forming material into a vacuum into a molecular beam through a nozzle to reach a substrate, and emits an electron beam. , a thin film forming method using a nozzle molecular beam, characterized in that the tip of the beam irradiates a substrate so as to draw a predetermined pattern, and forms a film of the material on the substrate in the predetermined pattern. .

分子線とは、ここでは、ノズルから基板に至るまでの間
に於いて、材料ガス分子どうしの衝突を無視できる程度
の速度の材料ガスの流れをいう。
The term "molecular beam" here refers to a flow of material gas at such a speed that collisions between material gas molecules can be ignored from the nozzle to the substrate.

換言すれば、 材料ガス分子の平均自由行程〉「ノズル−基板」間距離
であるものをいう。
In other words, the mean free path of material gas molecules is the distance between the nozzle and the substrate.

ガスを噴出せしめる空間の圧力は、1Torr以下、望
ましくは0.ITorr以下とする。
The pressure in the space where the gas is ejected is 1 Torr or less, preferably 0. It should be less than ITorr.

電子ビームは、走査型顕微鏡に用いられていると同様な
電子銃、及び偏向コイルを用いて得ることができる。ま
た、電子線のエネルギーを変えることにより、形成すべ
き薄膜の結品構造を変えることができる。
The electron beam can be obtained using an electron gun and deflection coil similar to those used in scanning microscopes. Furthermore, by changing the energy of the electron beam, the structure of the thin film to be formed can be changed.

材料ガスは、形成すべき薄膜によって定まり、例えば、
モノシラン(SiH2)、ジシラン(Si2H@)、ト
リシラン(Si31−1g)、フォスフイン(PH4)
 、ジボラン(B2H2)等である。
The material gas is determined by the thin film to be formed, for example,
Monosilane (SiH2), disilane (Si2H@), trisilane (Si31-1g), phosphine (PH4)
, diborane (B2H2), and the like.

[実施例] 以下、本発明を具体的な実施例に基づいて説明する。[Example] The present invention will be described below based on specific examples.

第1図は、本実施例で用(くる装置の全体構成図であり
、第2因は、該装置の要部側面図である。
FIG. 1 is an overall configuration diagram of the device used in this embodiment, and the second factor is a side view of the main parts of the device.

図のように、真空ポンプ11を用いて0.1Torr程
度の高真空とした真空槽1内にガラス基板3 (20I
1mX 20Il+e)を水平に配置し、該基板3の上
方i5+nmの位置に、噴射方向が鉛直方向を向くよう
にしてノズル2を配置した。なおノズル2には、ボンベ
5よりヘリウム(He)で稀釈されたモノシランガス(
Siト14)が供給され、ノズル2内の圧力は、200
To r r程度とされている。また8は、ノズル2の
噴射口である。
As shown in the figure, a glass substrate 3 (20I
1 m×20 Il+e) was placed horizontally, and the nozzle 2 was placed at a position i5+ nm above the substrate 3 so that the spray direction was directed vertically. The nozzle 2 is filled with monosilane gas diluted with helium (He) from the cylinder 5.
Si 14) is supplied, and the pressure inside the nozzle 2 is 200
It is said to be about Torr. Further, 8 is an injection port of the nozzle 2.

一方、ノズル2の側方には電子銃9を配置し、ビームの
走査方向を、偏向コイル10を用いて変え得るようにし
た。
On the other hand, an electron gun 9 is placed on the side of the nozzle 2, and the scanning direction of the beam can be changed using a deflection coil 10.

なお、7は噴射ガスをパルス状とする場合に使用する?
!¥磁弁であり、また、4は基板3を載置する台である
。談合4は導電性であり、真空容器1にアースされてい
る。
In addition, 7 is used when the injection gas is pulsed.
! It is a magnetic valve, and 4 is a stand on which the board 3 is placed. The rigging 4 is electrically conductive and is grounded to the vacuum vessel 1.

かかる装置によってアモルファスシリコン薄膜を短時間
で所定パターンで形成出来る。
With such an apparatus, an amorphous silicon thin film can be formed in a predetermined pattern in a short time.

また、パターン幅は、電子線を集束することにより、0
.05μm程度まで小さくすることができる。
In addition, the pattern width can be reduced to 0 by focusing the electron beam.
.. It can be made as small as about 0.05 μm.

また、電子線のエネルギーを変えることにより、多結晶
、あるいは単結品状態の薄膜を得ることができる。
Further, by changing the energy of the electron beam, a thin film in a polycrystalline or single-crystalline state can be obtained.

さらに、材料ガスの分子線を用いているため、真空容器
1内のガス量が少なくてすみ、したがってガス交換が容
易であり、また、容器1の内側の観測窓等に不必要な膜
が形成されることも回避された。
Furthermore, since the molecular beam of the material gas is used, the amount of gas in the vacuum container 1 is small, so gas exchange is easy, and unnecessary films are not formed on the observation window inside the container 1. This was also avoided.

なお上記実施例では、ノズル−基板間距離を15Ill
I11としているが、これは、10〜301110程度
でもよい。
In the above embodiment, the distance between the nozzle and the substrate is 15Ill.
Although it is set as I11, this may be about 10 to 301110.

[効果〕 以上、要するに本発明は、電子線を所定パターンで照射
し、基板上に該所定パターンの11膜を形成する方法で
ある。
[Effects] In summary, the present invention is a method of irradiating electron beams in a predetermined pattern to form eleven films of the predetermined pattern on a substrate.

実施例に詳述したところからも明らかなように、本発明
の方法によると、成膜速度を従来よりも大幅に改善する
ことができる。
As is clear from the detailed description of the Examples, the method of the present invention allows the film formation rate to be significantly improved compared to the conventional method.

また、電子ビームを集束することにより、従来よりも微
細なバターニングが可能となった。
Furthermore, by focusing the electron beam, it has become possible to create finer patterning than before.

また、分子線を用いているため、材料ガスの2次反応が
起こりにくく、良質な薄膜を得ることができる。
Furthermore, since molecular beams are used, secondary reactions of the material gas are less likely to occur, and a high-quality thin film can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本実施例で用いる装置の全体構成図であり、
第2図は、該装置の要部側面図である。 2・・・ノズル   3・・・基板 9・・・電子銃
FIG. 1 is an overall configuration diagram of the device used in this example,
FIG. 2 is a side view of the main parts of the device. 2... Nozzle 3... Substrate 9... Electron gun

Claims (2)

【特許請求の範囲】[Claims] (1)薄膜形成材料を含有するガスを、ノズルを介して
真空中へ分子線状態となるように噴出し、基板に到達せ
しめ、 電子ビームを、該ビームの先端が基板上に所定パターン
を描くようにして照射し、 該基板上に前記材料の薄膜を前記所定パターンで形成す
ることを特徴とするノズル分子線による薄膜形成方法。
(1) A gas containing a thin film forming material is ejected into a vacuum through a nozzle in the form of a molecular beam to reach the substrate, and the tip of the electron beam draws a predetermined pattern on the substrate. A method for forming a thin film using a nozzle molecular beam, comprising: irradiating the material as described above to form a thin film of the material on the substrate in the predetermined pattern.
(2)前記ガスは、SiH_4ガスであり、前記薄膜は
アモルファスシリコン薄膜である特許請求の範囲第1項
記載の方法。
(2) The method according to claim 1, wherein the gas is SiH_4 gas and the thin film is an amorphous silicon thin film.
JP22640986A 1986-09-25 1986-09-25 Formation of thin film using nozzle molecular beam Pending JPS6381811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22640986A JPS6381811A (en) 1986-09-25 1986-09-25 Formation of thin film using nozzle molecular beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22640986A JPS6381811A (en) 1986-09-25 1986-09-25 Formation of thin film using nozzle molecular beam

Publications (1)

Publication Number Publication Date
JPS6381811A true JPS6381811A (en) 1988-04-12

Family

ID=16844665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22640986A Pending JPS6381811A (en) 1986-09-25 1986-09-25 Formation of thin film using nozzle molecular beam

Country Status (1)

Country Link
JP (1) JPS6381811A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282616A (en) * 1988-09-20 1990-03-23 Sanyo Electric Co Ltd Formation of amorphous semiconductor thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282616A (en) * 1988-09-20 1990-03-23 Sanyo Electric Co Ltd Formation of amorphous semiconductor thin film

Similar Documents

Publication Publication Date Title
US6280645B1 (en) Wafer flattening process and system
EP1210723B1 (en) Shaped and low density focused ion beams
JPH08139079A (en) Charged beam device
JP2003226509A (en) Method for synthesizing carbon nanotube
JP2001107252A (en) Three-dimensional micro structure, its manufacturing method and its manufacturing device
JPS6381811A (en) Formation of thin film using nozzle molecular beam
US4902530A (en) Method of correcting a pattern film
US6303511B2 (en) Wafer flattening process
US5089289A (en) Method of forming thin films
JPS61225819A (en) Laser cvd apparatus
JP2776218B2 (en) Laser CVD equipment
JPH07150362A (en) Production of ysz buffer layer on sapphire
JPS62183111A (en) Laser cvd device
US5748360A (en) Decelerating and focusing ion beam device
JP3610617B2 (en) Thin film fabrication method by laser deposition
JP2748781B2 (en) Method of forming silicon film
JPS59127840A (en) Deposition of organic film and device therefor
JPS61124568A (en) Ion beam sputter device
JPH0558071B2 (en)
JPH0699291A (en) Abrasion machining method
JPS6386880A (en) Photochemical reaction utilizing device
JPS6197912A (en) Cvd equipment
JPH0136970B2 (en)
JPS62241248A (en) Focusing device for ion beam
JPS63241172A (en) Treatment of object