JPS6386880A - Photochemical reaction utilizing device - Google Patents

Photochemical reaction utilizing device

Info

Publication number
JPS6386880A
JPS6386880A JP23273486A JP23273486A JPS6386880A JP S6386880 A JPS6386880 A JP S6386880A JP 23273486 A JP23273486 A JP 23273486A JP 23273486 A JP23273486 A JP 23273486A JP S6386880 A JPS6386880 A JP S6386880A
Authority
JP
Japan
Prior art keywords
chamber
reaction
auxiliary chamber
entrance window
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23273486A
Other languages
Japanese (ja)
Inventor
Akinori Shimizu
了典 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23273486A priority Critical patent/JPS6386880A/en
Publication of JPS6386880A publication Critical patent/JPS6386880A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration of a photochemical reaction due to the clouding of a light entrance window by providing an auxiliary chamber to a reaction chamber in the title photochemical reaction utilizing device through a thin tube, and supplying an inert gas into the auxiliary chamber while projecting laser light on a substrate to be treated in the reaction chamber from the light entrance window of the auxiliary chamber. CONSTITUTION:The inside of the photochemical reaction chamber 2 contg. an Si substrate 1 as the material to be treated is evacuated by a pump 7, gaseous SiH4 and gaseous O2 are simultaneously supplied from cylinders 9 and 10 along with gaseous N2 from a cylinder 8, the laser light 6 from a laser light source 3 is reflected by a mirror, focused by a lens 5, and projected on the surface of the Si substrate 1 to cause a photochemical reaction between SiH4 and O2, and an SiO2 is formed. In this case, the reaction chamber 2 is connected to the auxiliary chamber 16 through the thin tube 15, the laser light 6 is projected from the laser light entrance window 18 provided to the auxiliary chamber 16, and gaseous N2 is supplied under high pressure to the auxiliary chamber 16 from the reaction chamber 2. The reactive gas enters the auxiliary chamber 16, hence the formation of SiO2 on the light entrance window 18 is prevented, the decrease in the input amt. of the laser light due to the clouding of the light entrance window resulting from SiO2 is prevented, and the deterioration of the photochemical reaction is prevented.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は、光を利用して化学反応を誘起する装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a device that uses light to induce a chemical reaction.

[従来技術とその問題点] この種の光化学反応利用装置として、従来より第2図に
示すような装置が知られている。すなわち、この装置は
内部に半導体基板1を設置した反応チャンバ2と、レー
ザ光源3.ミラー4、レンズ5より成り半導体基板1上
をレーザ光6で照射するための光学系と、反応チャンバ
を排気するための真空ポンプ7と、ガスポンベ8〜9、
マスフローメータ11より成り反応チャンバ2に反応性
ガスを供給するガス系とから構成されている。
[Prior art and its problems] As this type of photochemical reaction utilization device, a device as shown in FIG. 2 has been known. That is, this device includes a reaction chamber 2 in which a semiconductor substrate 1 is installed, a laser light source 3. an optical system consisting of a mirror 4 and a lens 5 for irradiating the semiconductor substrate 1 with a laser beam 6; a vacuum pump 7 for evacuating the reaction chamber; and gas pumps 8 to 9.
It consists of a mass flow meter 11 and a gas system that supplies reactive gas to the reaction chamber 2.

ガスポンベ9,10より反応チャンバ2内に導入された
反応性ガスは反応チャンバ2の上部の光入射窓部12よ
り照射されるレーザ光6のエネルギーを吸収して分解し
、例えばガスポンベ10より供給された5iHnガスと
ガスポンベ9より供給さεも?ガスとより5iOz を
生成し、半導体基板lの表面上に堆積する。この装置を
使用すると、半導体基板1の温度が100〜200’ 
Cと極めて低くても、成長速度を低下させることなく良
質の薄膜を得ることができる。
The reactive gas introduced into the reaction chamber 2 from the gas pumps 9 and 10 absorbs the energy of the laser beam 6 irradiated from the light entrance window 12 at the upper part of the reaction chamber 2 and decomposes. 5iHn gas and ε supplied from gas pump 9? 5 iOz is produced with the gas and deposited on the surface of the semiconductor substrate l. When this device is used, the temperature of the semiconductor substrate 1 is 100 to 200'
Even if the C content is extremely low, a high quality thin film can be obtained without reducing the growth rate.

しかし上記化学反応が表面反応でない場合、レーザ光6
の通過する領域では反応が進行し、反応生成物が堆積す
る。すなわち、反応チャンバ2の光入射窓部12におい
てチャンバ内部に反応生成物が付着し、時間の経過とと
もにレーザ光6を遮へいするようになり、半導体基板l
上の反応を押さえてしまうことになる。従ってレーザ光
入射窓部の反応生成物付着防止は、光化学反応利用装こ
にとって必要不可欠な技術である。このため従来は、反
応チャンバ2内の光入射窓部12に向は曇り防lllノ
ズル13を開口させ、ガスポンベ8より窒素等の不活性
ガスを光入射窓部12にのみ局所的に吹き付け1反応性
ガスが光入射窓部12の近傍に流れ込まないようにする
方法が考えられている。しかしこのような単純な方法で
は、気体の乱流が発生し、反応性ガスを光入射窓部から
完全に除去することは困難である。従って、長時間のレ
ーザ光照射後には光入射窓部に曇りが生じ始め、膜の成
長速度の経時変化を押さえることはできないという問題
点があった。
However, if the above chemical reaction is not a surface reaction, the laser beam 6
The reaction proceeds in the region through which it passes, and reaction products are deposited. That is, reaction products adhere to the interior of the chamber at the light entrance window 12 of the reaction chamber 2, and over time they begin to block the laser beam 6, causing the semiconductor substrate l
This will suppress the above reaction. Therefore, preventing reaction products from adhering to the laser beam entrance window is an essential technology for photochemical reaction utilization devices. For this reason, conventionally, an anti-fog nozzle 13 is opened toward the light entrance window 12 in the reaction chamber 2, and an inert gas such as nitrogen is locally sprayed from the gas pump 8 only onto the light entrance window 12 for one reaction. Methods have been considered to prevent the gas from flowing into the vicinity of the light entrance window 12. However, with such a simple method, gas turbulence occurs and it is difficult to completely remove the reactive gas from the light entrance window. Therefore, after a long period of laser beam irradiation, the light entrance window begins to become cloudy, and there is a problem in that it is impossible to suppress the change in film growth rate over time.

[発明の目的] 本発明の目的は、光入射窓部の曇りを長時間にわたって
防+FL、基板表面上の化学反応を安定に進行させるこ
とが可能な光化学反応利用装置を提供することにある。
[Object of the Invention] An object of the present invention is to provide a photochemical reaction utilizing device that can prevent fogging of a light incident window portion over a long period of time and allow a chemical reaction on a substrate surface to proceed stably.

[発1!1の要点1 本発明は、反応チャンバの光入射窓部に入射光を通すた
めの細管を介1.て補助チャンバを設け、補助チャンバ
に反応チャンバより陽圧になるように調整された不活性
ガスを導入し、不活性ガスの流れが補助チャンバから反
応チャンバの方へ向かうようにすることにより、光入射
窓部から反応性ガスを完全に除去し、そこに反応生成物
が堆積しないようにしたものである。
[Emission 1! Key points 1 of 1] The present invention uses a thin tube to pass incident light into a light entrance window of a reaction chamber. An auxiliary chamber is provided in the auxiliary chamber, an inert gas adjusted to have a more positive pressure than the reaction chamber is introduced into the auxiliary chamber, and the flow of the inert gas is directed from the auxiliary chamber toward the reaction chamber. The reactive gas is completely removed from the entrance window to prevent reaction products from accumulating there.

細管の内径としては、lB管内壁に反応生成物を堆積さ
せないようにするため、入射光ビーム径の1.5〜5倍
程度のものを用いるのが望ましい。
The inner diameter of the thin tube is preferably about 1.5 to 5 times the diameter of the incident light beam in order to prevent reaction products from being deposited on the inner wall of the IB tube.

[発明の実施例] 次に本発明の実施例を図面について説明する。[Embodiments of the invention] Next, embodiments of the present invention will be described with reference to the drawings.

第1図はシリコン基板上に酸化シリコン膜を形成する場
合について本発明の実施例を示すもので、第2図と同等
部分には同符号を付しである。
FIG. 1 shows an embodiment of the present invention in the case of forming a silicon oxide film on a silicon substrate, and the same parts as in FIG. 2 are given the same reference numerals.

反応チャンバ2は真空ポンプ7、及びガスポンベ8〜1
0.マスフローメータ11から成るガス系を有する点は
従来と同様である9反応チャンバ2は更にその光入射窓
部14に細管15が接続され、この細管15の上方には
補助チャンバ16が設けられ、補助チャンバ16内には
ガス系より不活性ガス導入管17が開口している。更に
、補助チャンバ16の上方にはレーザ光源3、ミラー4
、レンズ5より成る光学系が配置されている。
The reaction chamber 2 has a vacuum pump 7 and a gas pump 8 to 1.
0. The nine reaction chamber 2 is similar to the conventional one in that it has a gas system consisting of a mass flow meter 11.A thin tube 15 is further connected to the light entrance window 14 of the nine reaction chamber 2, and an auxiliary chamber 16 is provided above the thin tube 15. An inert gas introduction pipe 17 opens into the chamber 16 from the gas system. Further, above the auxiliary chamber 16, a laser light source 3 and a mirror 4 are provided.
, an optical system consisting of lenses 5 is arranged.

シリコン基板1は反応チャンバ2の200°Cに加熱さ
れた底板上にi&置されている8反応を誘起するために
光源3としてArFエキシマレーザを使用し、波長19
3nmの発振レーザ光6をミラー4により変向させレン
ズ5に入射する。レンズ5により絞り込まれたレーザ光
6は、補助チャンバ16の光入射窓部18より補助チャ
ンバ16内に入り、細管15を通って光入射窓部14よ
り反応チャンバ2内に入射し、シリコン基板1の表面上
で焦点を結ぶ。
The silicon substrate 1 is placed on the bottom plate heated to 200 °C of the reaction chamber 2. An ArF excimer laser is used as the light source 3 to induce the reaction, and the wavelength is 19.
A 3 nm oscillated laser beam 6 is deflected by a mirror 4 and is incident on a lens 5. The laser beam 6 narrowed down by the lens 5 enters the auxiliary chamber 16 through the light entrance window 18 of the auxiliary chamber 16, passes through the thin tube 15, enters the reaction chamber 2 through the light entrance window 14, and is exposed to the silicon substrate 1. focus on the surface.

反応ガスとしては、マスフローメータ11によりvt量
制御されてポンベ10から5m1/分の5iHiガス、
ポンベ9から800m 17分のN20ガス、ポンベ8
から65m1/分のN?ガスが導入される0反応チャン
バ2内は真空ポンプ7により排気され、lTo r r
前後の圧力に保たれている。上記反応ガスを10分間流
すと、シリコン基板lの上には2000人の厚さの醸化
シリコン膜が堆積する。
As the reaction gas, 5iHi gas is supplied at 5 m1/min from the pump 10 with the VT amount controlled by the mass flow meter 11;
800m from Ponbe 9 17 minutes of N20 gas, Ponbe 8
From 65m1/min of N? The inside of the reaction chamber 2 into which the gas is introduced is evacuated by the vacuum pump 7, and lTo r r
Maintained by front and rear pressure. When the above reaction gas is allowed to flow for 10 minutes, a 2000-layer thick silicon film is deposited on the silicon substrate l.

一力補助チャンバ16内には不活性ガス導入管17を介
してポンベ8よりN2ガスが充填されており、反応チャ
ンバ2内より陽圧になっているから、このN2ガスは細
’i? 15を通って反応+ チャンバ2内に流れ込むので、反応チャンバからSiH
<及びN20ガスが補助チャンバ16内へ逆流するのを
防ぐことができ、光の入射経路、すなわち補助チャンバ
の光入射窓部18、補助チャンバ16の内壁、細管15
の内壁に酸化シリコンが堆積するのを完全に防止できる
The inside of the auxiliary chamber 16 is filled with N2 gas from the pump 8 via the inert gas introduction pipe 17, and the pressure is positive from the inside of the reaction chamber 2, so this N2 gas is in a small amount. 15 into the reaction chamber 2, SiH from the reaction chamber flows into the reaction chamber 2.
< and N20 gas can be prevented from flowing back into the auxiliary chamber 16, and the light incident path, that is, the light entrance window 18 of the auxiliary chamber, the inner wall of the auxiliary chamber 16, and the thin tube 15.
It is possible to completely prevent silicon oxide from depositing on the inner walls of the

1−述の実施例では酸化シリコン膜を堆積する場合につ
いて説明したが、それに限ることなく、例えばCI?ガ
スによるポリシリコンの光エッチングにも適用できる。
1- In the above-mentioned embodiment, the case where a silicon oxide film is deposited was explained, but the invention is not limited thereto, and for example, CI? It can also be applied to photoetching of polysilicon using gas.

この場合レーザ光としてはXeClエキシマレーザの3
08nm発振光を使用し、反応チャンバ内には10To
 r r前後のCI?ガスを導入する。ポリシリコンを
堆積したシリコン基板直上にAIマスクを設置し、前述
のレーザ光を照射すると、マスクパターン通りの異方性
エツチングが達成される。この場合も補助チャンバにN
2ガスを導入することにより、光入射窓部がC12ガス
にさらされるのを防止でき、光入射窓部内壁がエツチン
グされて曇りが生じるのを押さえることができる。
In this case, the laser beam is XeCl excimer laser 3
08nm oscillation light is used, and 10To is used in the reaction chamber.
r CI before and after r? Introduce gas. When an AI mask is placed directly above a silicon substrate on which polysilicon is deposited and the aforementioned laser beam is irradiated, anisotropic etching according to the mask pattern is achieved. In this case as well, N
By introducing C12 gas, the light entrance window can be prevented from being exposed to the C12 gas, and the inner wall of the light entrance window can be prevented from being etched and fogged.

更に本発明は光による堆積、エツチングばかりでなく、
光によるドーピング、洗浄等、光化学反応を利用するす
べての装置に適用できることは言うまでもない。
Furthermore, the present invention is not limited to photodeposition and etching.
It goes without saying that this method can be applied to all devices that utilize photochemical reactions, such as doping with light and cleaning.

[発明の効果] 未発明によれば、外部の光学系から直接反応チャンバに
光を入射せず、補助チャンバを介1.て光を入射せしめ
、補助チャンバには反応チャンバより陽圧になるように
調整された不活性ガスを導入し、不活性ガスの流れが補
助チャンバ側から反応チャンバの方に向かうようにした
ので、反応チャンバに導入される反応性ガスが補助チャ
ンバの光入射窓部に触れることがなく、光入射窓部にお
ける反応による曇りを長時間にわたって防止し、基板表
面上のイビ学反応を安定に進行させることができ、曇り
を取り除くための保守回数が著しく低減され、装置の稼
(動車を大きく向上させることが可濠となるものである
[Effects of the Invention] According to the invention, light is not directly incident on the reaction chamber from an external optical system, but is passed through an auxiliary chamber. The inert gas adjusted to have a more positive pressure than the reaction chamber was introduced into the auxiliary chamber, and the flow of the inert gas was directed from the auxiliary chamber toward the reaction chamber. The reactive gas introduced into the reaction chamber does not touch the light entrance window of the auxiliary chamber, which prevents the light entrance window from becoming cloudy due to reaction over a long period of time, allowing the Ibichemical reaction to proceed stably on the substrate surface. The number of maintenance required to remove fogging is significantly reduced, and the operation of the equipment is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成配置図。 第2図は従来装置の構成配置図である。 1争−・シリコン基板、  2−・Φ反応チャンバ、 
 3 e e−レーザ光源、  7・[相]・真空ポン
プ、  8〜10・・・ガスボンベ、  11・・・マ
スフローメータ、  14・・拳反応チャンバの光入射
窓部、  15・・・細管、  16・・・補助チャン
バ、  17・・・不活性ガス導入管、18・・・補助
チャンバの光入射窓部。 第1図 がスボンベ
FIG. 1 is a structural layout diagram of an embodiment of the present invention. FIG. 2 is a structural layout diagram of a conventional device. 1st race - silicon substrate, 2nd - Φ reaction chamber,
3 e e-laser light source, 7. [phase] Vacuum pump, 8 to 10... Gas cylinder, 11... Mass flow meter, 14... Light entrance window of fist reaction chamber, 15... Thin tube, 16 . . . Auxiliary chamber, 17. Inert gas introduction pipe, 18. Light entrance window of the auxiliary chamber. Figure 1 is the trousers.

Claims (1)

【特許請求の範囲】 1)光を利用して化学反応を誘起する装置において、反
応チャンバの光入射窓部に細管を介して補助チャンバを
設け、補助チャンバに導入した不活性ガスが補助チャン
バから細管を通って反応チャンバ内に流れ込むようにし
、補助チャンバの光入射窓部から細管を介して反応チャ
ンバ内に光を入射せしめるようにしたことを特徴とする
光化学反応利用装置。 2)特許請求の範囲第1項記載の装置において、入射光
がレーザ光であり、前記細管の内径がレーザ光のビーム
径の1.5〜5倍であることを特徴とする光化学反応利
用装置。
[Claims] 1) In an apparatus that uses light to induce a chemical reaction, an auxiliary chamber is provided in the light entrance window of the reaction chamber via a thin tube, and an inert gas introduced into the auxiliary chamber is supplied from the auxiliary chamber. A photochemical reaction utilizing device characterized in that the light flows into the reaction chamber through the thin tube, and the light is made to enter the reaction chamber from the light entrance window of the auxiliary chamber through the thin tube. 2) The device according to claim 1, wherein the incident light is a laser beam, and the inner diameter of the thin tube is 1.5 to 5 times the beam diameter of the laser beam. .
JP23273486A 1986-09-30 1986-09-30 Photochemical reaction utilizing device Pending JPS6386880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23273486A JPS6386880A (en) 1986-09-30 1986-09-30 Photochemical reaction utilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23273486A JPS6386880A (en) 1986-09-30 1986-09-30 Photochemical reaction utilizing device

Publications (1)

Publication Number Publication Date
JPS6386880A true JPS6386880A (en) 1988-04-18

Family

ID=16943940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23273486A Pending JPS6386880A (en) 1986-09-30 1986-09-30 Photochemical reaction utilizing device

Country Status (1)

Country Link
JP (1) JPS6386880A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276836U (en) * 1988-12-02 1990-06-13
WO2022250051A1 (en) * 2021-05-25 2022-12-01 三菱重工業株式会社 Vacuum laser processing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075328A (en) * 1983-10-03 1985-04-27 Semiconductor Energy Lab Co Ltd Process and device for photo gaseous phase reaction
JPS60236230A (en) * 1984-05-09 1985-11-25 Matsushita Electric Ind Co Ltd Processing method of substrate by optically-excited gas decomposition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075328A (en) * 1983-10-03 1985-04-27 Semiconductor Energy Lab Co Ltd Process and device for photo gaseous phase reaction
JPS60236230A (en) * 1984-05-09 1985-11-25 Matsushita Electric Ind Co Ltd Processing method of substrate by optically-excited gas decomposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276836U (en) * 1988-12-02 1990-06-13
WO2022250051A1 (en) * 2021-05-25 2022-12-01 三菱重工業株式会社 Vacuum laser processing device

Similar Documents

Publication Publication Date Title
US4643799A (en) Method of dry etching
US5490896A (en) Photomask or a light shielding member having a light transmitting portion and a light shielding portion
EP0198361B1 (en) Method and apparatus for thin film formation using photo-induced chemical reaction
US4579750A (en) Laser heated CVD process
US4612085A (en) Photochemical patterning
EP0208966A1 (en) Apparatus for, and methods of, depositing a substance on a substrate
JPS6386880A (en) Photochemical reaction utilizing device
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JPS595621A (en) Forming method for thin-film
EP0319021B1 (en) Apparatus for laser chemical vapour deposition
JPS63114972A (en) Photochemical reaction utilizing device
JP3258121B2 (en) CVD equipment
JPS63277768A (en) Device for utilizing photochemical reaction
JPS5940525A (en) Growth of film
JPS5992523A (en) Method for crystal growth
JPS60216549A (en) Manufacture of semiconductor device
JPS63216974A (en) Device for forming thin film
JPH08262251A (en) Film forming device for optical waveguide
JPS63172421A (en) Thin film forming apparatus
JPH0128830B2 (en)
GB2131608A (en) Fabricating semiconductor circuits
JPS59111322A (en) Manufacture of thin-film
JP2719174B2 (en) Manufacturing method of metal film
JPS63277769A (en) Device for utilizing photochemical reaction
JPS6393108A (en) Formation of optically pumped film