JPS59111322A - Manufacture of thin-film - Google Patents
Manufacture of thin-filmInfo
- Publication number
- JPS59111322A JPS59111322A JP22071682A JP22071682A JPS59111322A JP S59111322 A JPS59111322 A JP S59111322A JP 22071682 A JP22071682 A JP 22071682A JP 22071682 A JP22071682 A JP 22071682A JP S59111322 A JPS59111322 A JP S59111322A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- substrate
- wavelength
- tmg
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/04—Coating on selected surface areas, e.g. using masks
- C23C16/047—Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、化学的気相成長法(CVD )による薄膜製
造方法の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in thin film manufacturing methods by chemical vapor deposition (CVD).
CVDは、各種半導体デバイスの製造工程中に良く採用
される薄膜生成法ではあるが、原料ガスや作成すべき薄
膜の種類如何によっては、満足な結果が得られない場合
もあった。その原因を明らかにするため、先づ、第1図
に従来装置の概略を挙げ、殊に金属有機物−CVD (
MO−CVD)による−例として、昨今注目されている
GaAs単結晶を、1nP、 Sj、 GaAs等の適
描な基板/上に成長、堆積させる場合の従来例に就き説
明する。CVD is a thin film production method that is often employed during the manufacturing process of various semiconductor devices, but depending on the raw material gas and the type of thin film to be produced, satisfactory results may not be obtained in some cases. In order to clarify the cause, first of all, Fig. 1 shows an outline of the conventional equipment, and in particular, metal-organic substance-CVD (
As an example, a conventional example of growing and depositing a GaAs single crystal, which has been attracting attention recently, on a suitable substrate such as 1nP, Sj, GaAs, etc., will be explained.
適当な装置容器コ内に基板lをおき、この基板を任意温
度に加熱出来るよう、適当なヒータ3を容器の内又は外
(高周波誘導加熱)に設置する。容器は充分排気出来る
ものとする。原料ガスとして、TMGと略されるトリメ
チルガリムムGa (CHs ) 3 と、アルシン
ASHa及びキャリアガスとして水素H2を夫々、注入
ロ!、乙、7より適当量流し、反対側の排気ログから排
気する。基板を加熱(700℃)すると、それに触れた
TMG及びAsHsは熱分解し、GαとAsを発生し、
それらはただちに基板上に付着・結晶化する。A substrate 1 is placed in a suitable device container, and a suitable heater 3 is installed inside or outside the container (high frequency induction heating) so that the substrate can be heated to an arbitrary temperature. The container must have sufficient ventilation. Trimethylgallium Ga (CHs) 3, abbreviated as TMG, as raw material gas, arsine ASHa, and hydrogen H2 as carrier gas were injected, respectively. , B, Flow an appropriate amount from 7, and exhaust from the exhaust log on the opposite side. When the substrate is heated (700°C), TMG and AsHs that come into contact with it are thermally decomposed, generating Gα and As.
They immediately adhere and crystallize on the substrate.
こうした従来法では、次のような欠点があった。■基板
上にGaAsを成長させる場合、基板としての最適成長
温度Tbと、金属有機物の最適な分解温度TTMG +
TAs の三者は各々異なる。ところが、上記従来法
では、金属有機物ガスの温度は、加熱されている基板の
温度と略々等しい温度に固定されてしまう。従って、基
板温度の方を、結晶成長にとって最適な温度Tbに選ぶ
と、ガス温度は、当然、熱分解として最適な温度から外
れてしまう。従って、分解が不完全のまま、あるいは逆
に速過ぎる分解速度での成長が起き、その結果として基
板上に得られたGcLAsは、到底、良質のものとはな
シ得なかった。殊に、分解が不完全であれば、結晶中に
炭化水素が混じり込み、結晶の完全性を著しく阻害する
。■金属有機物ガスを連続的に流すのであるが、各々の
流量に偏差(一般に5%程度)が不可避的に存在する。These conventional methods have the following drawbacks. ■When growing GaAs on a substrate, the optimum growth temperature Tb for the substrate and the optimum decomposition temperature TTMG + for metal-organic substances.
Each of the three TAs is different. However, in the conventional method described above, the temperature of the metal-organic gas is fixed at approximately the same temperature as the substrate being heated. Therefore, if the substrate temperature is selected to be the optimum temperature Tb for crystal growth, the gas temperature will naturally deviate from the optimum temperature for thermal decomposition. Therefore, growth occurred with incomplete decomposition or, conversely, at a rate of decomposition that was too fast, and as a result, the GcLAs obtained on the substrate could not be of good quality. In particular, if the decomposition is incomplete, hydrocarbons will be mixed into the crystals, significantly impeding the integrity of the crystals. (2) Although the metal-organic gas is continuously flowed, there is inevitably a deviation (generally about 5%) in each flow rate.
このため、完全な組成(Ga:八8が1:1)の結晶は
得られない。■生成すべきG(LASはマスクを使わな
いかぎシ、基板上に全面的に付着する。これは、一般に
は無駄なことである。又、同一基板上の異なる個所に異
なる半導体を作る場合、上記従来例による限り、不用な
部分は薄膜が出来上った後にエツチングで除去するか(
必要な部分はフォトレジストで保護する)、事前にフォ
トレジストを付け、必要な部分のレジストをエツチング
で除去してから、GaA3を成長させねばならない。こ
の方法はレジスト形成−エツチングによる不用部除去と
、工程が大巾に増光、コスト高となる外、エツチングに
より、基板ないしは成長したG(LA8を傷めてしまう
。Therefore, a crystal with a perfect composition (Ga:88:1:1) cannot be obtained. ■ G to be generated (LAS does not use a mask and adheres to the entire surface of the substrate. This is generally wasteful. Also, when producing different semiconductors at different locations on the same substrate, According to the conventional example above, unnecessary parts are removed by etching after the thin film is completed (
GaA3 must be grown after applying a photoresist in advance and removing the resist in the necessary areas by etching. This method requires formation of a resist and removal of unnecessary parts by etching, which greatly increases brightness and increases costs, and etching damages the substrate or the grown G (LA8).
本発明は、このような従来技術の言わば三大欠点を除去
することを主目的としてなされたものである。The present invention has been made primarily to eliminate the three major drawbacks of the prior art.
本発明を概説すれば、少くとも一つの原料ガス、望まし
くは用いる複数種の原料カスの夫々に適当な波長のレー
ザ光を併用し、各レーザ光を各原料ガス専用の加熱分解
源として利用することに犬き々特徴を持つものである。To summarize the present invention, a laser beam of an appropriate wavelength is used for at least one raw material gas, preferably for each of a plurality of types of raw material scraps, and each laser beam is used as a thermal decomposition source for each raw material gas. This is especially true of dogs.
以下、第2図以降に即し、本発明の実施例に就き説明す
る。Embodiments of the present invention will be described below with reference to FIG. 2 and subsequent figures.
第2図は本発明方法を実施する装置の一例を示していて
、第1図示の従来構成装置と同一で良い、或いは対応す
る各構成子には同一の符号を援用している。また、本実
施例で製作すべき薄膜も、本発明の効果を顕らかにする
ために、先の従来例との対応を採ってGapsとし、T
MG及びAsHsを原料ガスとして選ぶ。FIG. 2 shows an example of an apparatus for carrying out the method of the present invention, and the same reference numerals are used for components that may be the same as or correspond to the conventional apparatus shown in FIG. In addition, in order to make the effect of the present invention more apparent, the thin film to be manufactured in this example is made of Gaps and T
MG and AsHs are selected as source gases.
装置的な特徴は、基板/上の予定個所に焦点を結ぶべく
配された適当台数、この場合、二台のレーザrα、rb
にあって、各レーザの発振光ビームLt 、 Ltは、
適当な収束光学系りα、りbにて所要スポット径にまで
絞シ込まれた後、装置容器コの器壁に設けられた光学窓
/θを介して基板/上に照射される。The equipment features are an appropriate number of lasers arranged to focus on a predetermined location on the substrate, in this case two lasers rα and rb.
, the oscillation light beams Lt, Lt of each laser are:
After narrowing down to a required spot diameter using appropriate converging optical systems α and Rb, the light is irradiated onto the substrate through an optical window /θ provided on the wall of the apparatus container.
予じめ述べておくと、レーザIa、Ibは、夫々、TM
G、 A、9Lに各専用の加熱分解用エネルギ源として
用いられるものであり、従って、その各発振波長は夫々
の原料ガスの光吸収スペクトルに鑑て選ばれる。即ち、
レーザrαをTMG用、レーザrbをA3H8用とする
ならば、レーザとαのビームL、の波長は、当該TMG
にのみ高効率で吸収されて熱変換される波長に、レーザ
rbの方はAsHaにのみ高効率で吸収されて熱変換さ
れる波長に選び、互いには異なる波長とする。具体例を
挙げれば次のようになる。To state in advance, the lasers Ia and Ib are TM
It is used as an energy source for thermal decomposition dedicated to G, A, and 9L, and therefore, each oscillation wavelength is selected in consideration of the optical absorption spectrum of each source gas. That is,
If the laser rα is used for TMG and the laser rb is used for A3H8, the wavelength of the laser and the beam L of α is the same as that of the TMG.
The wavelength of laser rb is selected to be absorbed with high efficiency and converted into heat only by AsHa, and the wavelength of laser rb is selected to be absorbed with high efficiency and converted into heat only by AsHa, and the wavelengths are different from each other. A specific example is as follows.
第5図(a)は、TMGの赤外吸収スペクトル、第3図
(b)はAsHsのそれを告示しているが、先づ、第5
図(a)からTMGは5,000c+++−’、 1,
200m−”、 770cm−”。Figure 5(a) shows the infrared absorption spectrum of TMG, and Figure 3(b) shows that of AsHs.
From figure (a), TMG is 5,000c+++-', 1,
200m-”, 770cm-”.
580crn−’ などの発振波数に吸収を示すこと
が判かる。この中から、1,20[1cPn−”の吸収
線に着目すると、既存のレーザの中、OCSレーザの発
振波数がこのTMGの1,200crn’における吸収
線と一致し得る。即ち、OCSレーザは、波数1.21
+、8cnr”から1,187.0crn−”まで約3
0本の発振線をもつので、1.200cn1−’の発振
線を選択して、TMGの吸収線に一致させることは容易
である。It can be seen that absorption occurs at oscillation wave numbers such as 580 crn-'. Among these, focusing on the absorption line at 1,20[1cPn-'', the oscillation wave number of the OCS laser among existing lasers can match the absorption line at 1,200crn' of this TMG.In other words, the OCS laser , wave number 1.21
+, 8cnr" to 1,187.0crn-" approximately 3
Since there are 0 oscillation lines, it is easy to select the 1.200cn1-' oscillation line to match the absorption line of TMG.
このOCSレーザIaを使い、第2図示のように、基板
/上あるいは、その極く近傍に焦点を結ばせたとする。Assume that this OCS laser Ia is used and focused on the substrate or very close to it, as shown in the second diagram.
すると、この焦点伺近はレーザ電界が集中するため、そ
の部分のみでTMGが強く加熱され、この部分のみに存
在するTMGが分解され、龜が遊離する。Then, since the laser electric field is concentrated in the vicinity of this focal point, the TMG is strongly heated only in that part, the TMG existing only in this part is decomposed, and the head is released.
全く同様に、AsH3は第6図(b)に示すごとく、波
数2,000.1.ooo、960.900cIn−’
に吸収を示す。In exactly the same way, AsH3 has a wave number of 2,000.1. ooo, 960.900cIn-'
shows absorption.
それゆえ、レーザrbとして炭酸ガスレーザを選び、特
に波数960crn−”に一致させれば(炭酸ガスレー
ザは940〜1,040crn”で数十水の発振線をも
つ) 、AsH,をレーザ光り、が焦点を結んでいる部
分でのみ分解することが可能である。TMGとAsHa
の吸収線は互に重複せず、レーザビームLllL、は波
長が互いに異なっている。従って、二台ル−ザtra、
trlyの各ビーA L、 、 L、によシ、TMGと
AsHsを独立に温度設定出来、各々の分解に対して最
適温度を与えることが出来る。さらに、基板/として、
I?IP 、 Si 、 GgあるいはGIZASを使
えば、これらは、この実施例で選定したレーザビームL
、 、 L、に対して透明であるので、レーザビームL
j 、 L!はこの基板を加熱しない。勿論、従前のよ
うに、ヒータ3を設置すれば、基板温度をも独立に設定
出来るので、基板上にGaps結晶を成長させる温度を
TMG、 AsHsの最適分解温度とは独立に(一般に
望ましい低温に)選択出来る。Therefore, if we choose a carbon dioxide laser as the laser rb and match it to a wave number of 960 crn-'' (a carbon dioxide laser has an oscillation line of several tens of water at 940 to 1,040 crn), the laser light will focus on AsH. It is possible to disassemble only the parts that connect them. TMG and AsHa
The absorption lines of LLL do not overlap with each other, and the wavelengths of the laser beams LLL and LLL are different from each other. Therefore, two Luisa tra,
It is possible to independently set the temperature of each beam, TMG and AsHs of the trly, and it is possible to provide the optimum temperature for each decomposition. Furthermore, as a substrate/
I? If IP, Si, Gg or GIZAS are used, these will be the laser beam L selected in this example.
, , L, so the laser beam L
j, L! does not heat this board. Of course, if the heater 3 is installed as before, the substrate temperature can be set independently, so the temperature at which Gaps crystals are grown on the substrate can be set independently of the optimal decomposition temperature of TMG and AsHs (generally desired low temperature). ) can be selected.
以上の実施例から推して、おおよそ、CvDであれば、
原料ガスの如何、基板材の如何を問わず、本発明を広く
適用できることは顕らかであり、夫々の原料ガスに応じ
たレーザも各種のものから任意に選択できる。MO−C
VD用の原料ガスの一例としても、■族金属としてTM
Gα、TMAl 。Judging from the above examples, roughly speaking, if it is CvD,
It is obvious that the present invention can be widely applied regardless of the raw material gas or the substrate material, and the laser can be arbitrarily selected from various types according to each raw material gas. MO-C
As an example of raw material gas for VD, TM as a group metal
Gα, TMAl.
TEGα、TEAt等、■族としてはAsHs 、 D
Ha 、 5bHs 。TEGα, TEAt, etc., AsHs, D as group ■
Ha, 5bHs.
ドーパントとしてDEZn p H2Ss rルS等が
あシ、赤外レーザとしても、炭酸ガス(CO2) 、
CO、OC8゜HF 、)r 、 N2 、HCl 、
DF 、HBr 、DCl、DBτ、 No 、 N
tO。As a dopant, DEZnp H2Ssr, etc. are used, and as an infrared laser, carbon dioxide gas (CO2),
CO, OC8゜HF,)r, N2, HCl,
DF, HBr, DCl, DBτ, No, N
tO.
H2S可視色素レーザ、エキシマ−レーザ等がある。Examples include H2S visible dye laser and excimer laser.
また、原料ガスは、各レーザの焦点付近の極く小さな範
囲でのみ分解し、かつまた、レーザ光はその波長の程度
に1で絞シ込み可能であるので、基板の成る一部分にの
み、従来のようなフォトリングラフ工程を経ることなく
、レジストレスプロセスで選択的に所望の薄膜を成長さ
せることができる。In addition, the source gas is decomposed only in a very small range near the focal point of each laser, and the laser beam can be narrowed down to the wavelength of the laser beam, so it is possible to inject only a portion of the substrate. A desired thin film can be selectively grown using a resistless process without going through a photophosphorographic process such as .
逆に、成る面積範囲に亘って基板上に薄膜を成長させる
には、レーザビームを通常の偏向器にて偏向、走査制御
するか、基板/を支持する公知のX−Y方向移動可能な
試料台を走査制御すれば良い。On the other hand, in order to grow a thin film on a substrate over a range of areas, the laser beam can be deflected and scanned using a normal deflector, or a known X-Y direction movable sample supporting the substrate can be used. All you have to do is scan and control the table.
更に、第4図に、一本のビームL+又はL2と要部を取
り出して示すように、各ビームにマスク/2に描いた所
望の同一のパターン/3に応じたノくターン情報を載せ
てから、所要寸法に絞って基板l上に投影するようにす
れば、基板上に所要パターンの薄膜をレジストレスプロ
セスで作成できる。この場合、マスク/Jは各ビーム専
用として、パターン情報を各ビームに載せてから、両ビ
ームを混合して第2図示のように基板上に投影しても良
いし、両ビームをミラー及び適当な光学系を用いて混合
した後、共通のマスクを介して両ビームに一括的にパタ
ーン情報を載せても良い。Furthermore, as shown in FIG. 4, which shows one beam L+ or L2 and its essential parts, each beam is loaded with turn information corresponding to the same desired pattern /3 drawn on mask /2. By narrowing down the size to the required size and projecting it onto the substrate l, a thin film with the desired pattern can be created on the substrate using a resistless process. In this case, the mask/J may be dedicated to each beam, pattern information may be placed on each beam, and both beams may be mixed and projected onto the substrate as shown in the second figure, or both beams may be After mixing using a suitable optical system, pattern information may be placed on both beams at once through a common mask.
以上の実施例を通じ、本発明の効果は次のようにまとめ
ることができる。Through the above examples, the effects of the present invention can be summarized as follows.
1)各種原料ガス毎に最適な加熱分解温度や基板温度(
最適成長温度)を、夫々、別個独立に制御設定できる。1) Optimal thermal decomposition temperature and substrate temperature (
(optimum growth temperature) can be controlled and set independently.
そのため、従来例のように基板温度に分解温度が拘束さ
れて成長結晶ケ阻害するおそれを除去でき、良質の結晶
が得られる。Therefore, it is possible to eliminate the possibility that the decomposition temperature is restricted by the substrate temperature and inhibit the growth of the crystal as in the conventional example, and a high-quality crystal can be obtained.
11)基板の選択された一部分にのみ、レジストレスで
薄膜を成長させることができ、工程数を削減できる上に
、従前のエーツーデングエ1程に伴う不都合から逃れる
ことができる。また、同一基板上に組成、或いは成分の
異なる結晶を要すれば容器内から取シ出すことなく、多
数、育成できる。11) It is possible to grow a thin film only on a selected part of the substrate without resisting, reducing the number of steps and avoiding the inconveniences associated with the conventional A2DGE 1. Furthermore, if crystals with different compositions or components are required on the same substrate, a large number of crystals can be grown without taking them out from the container.
111)原料ガスは常に流れていて、圧力、流量の変動
は避は難く、従来法ではこれが直接に成長結晶の組成に
強い影響を与えていた。即ち流量変動により、成長した
薄膜内で、例えば先の実施例ではGαとAsの比率に変
動が生じてしまい、この意味からも完全なGaAg単結
晶は得られなかった。これに対して、本発明においては
、レーザ出力強度は既存の技術で自由に迅速に制御でき
るので、時々刻々のTMG。111) The raw material gas is constantly flowing, and fluctuations in pressure and flow rate are unavoidable, and in conventional methods, this directly has a strong influence on the composition of the grown crystal. That is, due to variations in the flow rate, the ratio of Ga to As in the grown thin film, for example, varied in the previous example, and in this sense as well, a perfect GaAg single crystal could not be obtained. On the other hand, in the present invention, the laser output intensity can be controlled freely and quickly using existing technology, so TMG can be controlled from time to time.
AsHsの流量を見なからレーザ強度をそれに追従させ
、GαとAsの生成速度を完全に一定にすることも可能
である。勿論、要すれば、逆にGαとAsの比率を任意
に変えることも容易である。It is also possible to make the generation rate of Gα and As completely constant by adjusting the laser intensity to follow the flow rate of AsHs. Of course, if necessary, it is also easy to arbitrarily change the ratio of Gα and As.
1■)要すれば、所要パターンの薄膜を基板上に成長さ
せることも同−木工程で容易にできる。1) If necessary, a thin film with a desired pattern can be easily grown on the substrate using the same process.
第1図は従来のMO−CVD法用の装置の概略構成図、
第2図は本発明方法を実施するだめの装置の一例の概略
構成図、第5図は原料ガスの一例としてのTMG及びA
sH3の赤外吸収スペクトラムの特性図、第4図は本発
明方法に用いる他の装置の要部の説明図、である。
図中、lは基板、コは容器、raJbはレーザ、IOは
窓、である。FIG. 1 is a schematic diagram of a conventional MO-CVD device;
FIG. 2 is a schematic configuration diagram of an example of a device for carrying out the method of the present invention, and FIG. 5 is a diagram showing TMG and A as an example of raw material gas.
A characteristic diagram of the infrared absorption spectrum of sH3, and FIG. 4 is an explanatory diagram of the main parts of another apparatus used in the method of the present invention. In the figure, l is a substrate, c is a container, raJb is a laser, and IO is a window.
Claims (1)
収線に応じた波長のレーザビームを、上記薄膜を成長さ
せるべき基板の該薄膜成長予定位置に照射することを特
徴とする薄膜の製造法。[Claims] A method for producing a thin film by chemical vapor deposition, wherein the thin film is grown using a laser beam having a wavelength corresponding to the absorption line of the raw material gas as a heating source for decomposing the raw material gas used. A method for producing a thin film, which comprises irradiating a target position on a substrate where the thin film is to be grown.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22071682A JPS59111322A (en) | 1982-12-16 | 1982-12-16 | Manufacture of thin-film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22071682A JPS59111322A (en) | 1982-12-16 | 1982-12-16 | Manufacture of thin-film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59111322A true JPS59111322A (en) | 1984-06-27 |
Family
ID=16755388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22071682A Pending JPS59111322A (en) | 1982-12-16 | 1982-12-16 | Manufacture of thin-film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59111322A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0153468A2 (en) * | 1984-02-27 | 1985-09-04 | Siemens Aktiengesellschaft | Process and apparatus for light-induced photolytic deposition |
JPS6232587A (en) * | 1985-08-06 | 1987-02-12 | Nec Corp | Character recognizing system |
JPS62224019A (en) * | 1986-03-26 | 1987-10-02 | Seiko Epson Corp | Manufacture of compound semiconductor thin film |
JPH0322410A (en) * | 1989-06-19 | 1991-01-30 | Nippon Telegr & Teleph Corp <Ntt> | Formation of semiconductor thin film |
-
1982
- 1982-12-16 JP JP22071682A patent/JPS59111322A/en active Pending
Non-Patent Citations (1)
Title |
---|
APPL.PHYS.LETT=1982 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0153468A2 (en) * | 1984-02-27 | 1985-09-04 | Siemens Aktiengesellschaft | Process and apparatus for light-induced photolytic deposition |
JPS6232587A (en) * | 1985-08-06 | 1987-02-12 | Nec Corp | Character recognizing system |
JPS62224019A (en) * | 1986-03-26 | 1987-10-02 | Seiko Epson Corp | Manufacture of compound semiconductor thin film |
JPH0322410A (en) * | 1989-06-19 | 1991-01-30 | Nippon Telegr & Teleph Corp <Ntt> | Formation of semiconductor thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5106453A (en) | MOCVD method and apparatus | |
US4911102A (en) | Process of vapor growth of gallium nitride and its apparatus | |
JPS59111322A (en) | Manufacture of thin-film | |
JPH03196643A (en) | Vapor phase epitaxy | |
JPS60260125A (en) | Selective formation of semiconductor substrate | |
JPS59121917A (en) | Vapor growth device | |
JP2549835B2 (en) | Method for manufacturing compound semiconductor thin film | |
JPS63188932A (en) | Method for vapor growth of gallium nitride compound semiconductor | |
JPS56164523A (en) | Vapor phase growth of semiconductor | |
JP3182584B2 (en) | Compound thin film forming method | |
JPH0322410A (en) | Formation of semiconductor thin film | |
JPH05251369A (en) | Organic metal chemical vapor growth method | |
JPH0267721A (en) | Manufacture of compound semiconductor thin film | |
JPS60216556A (en) | Manufacture of semiconductor of semiconductor device | |
JP2586592B2 (en) | Photochemical vapor deposition method | |
JP2004047865A (en) | Method and device for manufacturing indium nitride thin film and indium nitride alloy thin film | |
JPH01184981A (en) | Manufacture of semiconductor laser | |
JPS62183111A (en) | Laser cvd device | |
JPH05206035A (en) | Apparatus for manufacturing compound semiconductor | |
JPS6386880A (en) | Photochemical reaction utilizing device | |
JPH06248438A (en) | Laser abrasion device and formation of semiconductor by using the device | |
JPH0251497A (en) | Formation of semiconductor thin film | |
JPS6328030A (en) | Method for crystal growth of compound semiconductor | |
JPS627692A (en) | Selective growth method for semiconductor | |
JPS61156723A (en) | Manufacture of semiconductor device |