JPS59121917A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS59121917A
JPS59121917A JP22901782A JP22901782A JPS59121917A JP S59121917 A JPS59121917 A JP S59121917A JP 22901782 A JP22901782 A JP 22901782A JP 22901782 A JP22901782 A JP 22901782A JP S59121917 A JPS59121917 A JP S59121917A
Authority
JP
Japan
Prior art keywords
gas
reaction tube
cracker
substrate
exciting light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22901782A
Other languages
Japanese (ja)
Inventor
Kunihiko Washio
鷲尾 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP22901782A priority Critical patent/JPS59121917A/en
Publication of JPS59121917A publication Critical patent/JPS59121917A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To enable to attain epitaxial growth of high quality with high efficiency, and to reduce sharply supply of a harmful V group element hydrogen compound at a vapor growth device by a method wherein material gas generators are discriminated according to stability of gas, and exciting light projected from an ultraviolet exciting light source guided into a cracker. CONSTITUTION:III group element compound gas, dopant gas and carrier gas are generated from a first material gas generator 1. V group element compound gas such as FH3, AsH3, etc., and carrier gas are generated from a second material gas generator 4. Gases thereof are introduced into a gas supply tube 2 through a cracker 5, and the mixed gas thereof is introduced into a reaction tube 3. A substrate 7 is set on a substrate holder 6 in the reaction tube 3, a shaft 8 is rotated, and the substrate is heated up to the proper temperature according to a reaction tube heating coil 9. Moreover, a cracker heating coil 10 is provided, exciting light 12 projected from an ultraviolet exciting light source 11 is introduced into the cracker 5 through a reflecting mirror 13, a lens 14, and a window material 15, and gas is excited in the cracker 5 coaxially along the direction of the gas current.

Description

【発明の詳細な説明】 この発明は、反応性ガスを輸送するキャリヤガスを用い
る開管系の気相成長装置に係り、とくに所望の元素の析
出比率を高め、良質なエピタキシャル結晶成長が得られ
るようにした高性能な気相成長装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an open-tube type vapor phase growth apparatus that uses a carrier gas to transport a reactive gas, and is particularly capable of increasing the precipitation ratio of desired elements and obtaining high-quality epitaxial crystal growth. The present invention relates to a high-performance vapor phase growth apparatus.

気相成長技術は、比較的高純度の結晶面を量産するのに
適しているため、牛導体工業上不可欠な技術となってき
ている。一般にl−■族化合物の気相成長技術は、I族
元素ガスにGaCl、InClなどのハロゲン化物を用
いる/蔦ロゲン輸送法と、Ga (CH3) 3、I 
n (02H5ン、などのI族元素のアルキ化合物吻を
用いる有機金属法とがある。
Vapor-phase growth technology is suitable for mass-producing relatively high-purity crystal planes, and has therefore become an indispensable technology in the conductor industry. In general, the vapor phase growth technology for I-III group compounds uses halides such as GaCl and InCl as the I-group element gas.
There is an organometallic method that uses an alkyl compound of a group I element such as n (02H5n).

Ga/AsCl3/H2系によるハ0グン輸送法は(3
aAsマイクロ波素子のはとんと大半を製造する手法に
なっている。一方有機金属法は、ハログ/輸送法が反応
管の全体を加熱しなければならないのに対し、この方法
は、反応管内に設置された基板以外には反応管を加熱し
ないですますことができるため、原料ガスやドーピング
ガスの0N10FF だけで極めて急峻な界面が形成で
きることなどの優れた特徴がある。有機金属法は、従来
MBE(分子線エピタキシャル成長法)でなけれは困難
とされていた量子井戸レーザ用つエノ)の成長や超格子
ジノζイスの形成に有用であることが判明するや、各種
光デバイスや超高速半導体デバイスの製造に必須の技術
として、現在盛んに研究開発されるに至つ有機金属法の
場合、vJ元素にも有機金属ガスを用いる全有機金属ガ
ス法も可能であるが、原料ガスの純度の問題や、プロセ
ス上の問題などのため、現在のところV族元素ガスには
、A s H3PH3などの水素化物を用いI族元素ガ
スならびにドーパントガスに有機金属を用いる方法が主
に採用されている。
The transport method using Ga/AsCl3/H2 system is (3
This is the method used to manufacture the vast majority of aAs microwave devices. On the other hand, with the organometallic method, whereas the halog/transport method requires heating the entire reaction tube, this method does not require heating of the reaction tube other than the substrate installed inside the reaction tube. It has excellent features such as the ability to form extremely steep interfaces with only 0N10FF of source gas and doping gas. The organometallic method was found to be useful for the growth of quantum well lasers and the formation of superlattice dino In the case of the organometallic method, which is currently being actively researched and developed as an essential technology for manufacturing devices and ultra-high-speed semiconductor devices, an all-organometallic gas method that uses an organometallic gas for the vJ element is also possible. Due to problems with the purity of the raw material gas and process problems, currently the main methods are to use hydrides such as A s H3PH3 for the group V element gas and organic metals for the group I element gas and dopant gas. has been adopted.

そこで、ここでは有機金属法を用いたI−V族の化合物
の気相成長を例にとシ、従来の気相成長法についてまず
説明し、あわせて従来法の有する欠点について述べる。
Therefore, by taking as an example the vapor phase growth of a group IV compound using an organometallic method, the conventional vapor phase growth method will first be explained, and the drawbacks of the conventional method will also be described.

■−■族化合物の有機金属気相成長法においては、■族
元素ガスならびに一部のドーパントガスに有機金属ガス
に用い、■族元素ガスにはPH3、AsH3などの水素
化物を用いる方法が主に採用されている。キャリヤガス
としては、不素ガスないしは窒素ガスやアルコ゛ンガス
などの不活性ガス、ないしはこれらの混合物が用いられ
る。常温で液状の原料物質については、これらキャリヤ
ガスを用いて該原料物質中を7(ブリングさせ、これら
を気化させて用いるようにしている。■−v族化合物の
中では光デノくイスや超高速デバイス用としてG a 
A s系やInP系などの化合物が有用であるが、従来
の報告例は大部分がG a A s系のu狛に限られて
おシ、I n P−?InGaAsPなど、InP系の
化合物の成長は実現がなかなか困難であった。その理由
は、一つにはV族原料化合物として用いられるPH3(
ホスフィン)が非常に安定であるため、加熱てれた基板
上での熱分解比率が小さいこと、またさらには、■族原
料化合物として用いられるIn(C2H5)3 (トリ
エチルインジウム)などが熱的に不安定なため、原料輸
送領域のガス温度の上昇によって、原料ガスが基板に達
する前に反応物が発生してしまい、基板上でのエピタキ
シャル成長が阻害されることなどである この原料輸送領域をできるだけ低温に保つためにも、ま
た、界面の急峻な高品質な結晶成長を行なうためにも、
結晶成長の温度は低い方が望ましい。このため結晶成長
温度(基板温度)は、非晶質や多結晶が生じない範囲内
でできるだけ低温側に設定される。例えば、InAsP
や工n G a A s Pなどでは成長温度は550
〜600°C程度に設定される。しかし、PH3は37
5°Cから分解が始まるとされているものの、その分解
速度はそれ程速くないため、たとえ基板を700°C以
上としてもまだかなシの量のPH3が反応せずに排気さ
れてしまうという問題が生じる。このため、比較的に低
い成長温度でも結晶成長に必要なPの分圧を実現するた
めには何らかの対策が必要である。
In the organometallic vapor phase epitaxy method for group ■-■ compounds, the main method is to use an organic metal gas as a group-■ element gas and some dopant gases, and to use a hydride such as PH3 or AsH3 as a group-■ element gas. has been adopted. As the carrier gas, a nitrogen gas, an inert gas such as nitrogen gas, or an alcohol gas, or a mixture thereof is used. For raw materials that are liquid at room temperature, these carrier gases are used to cause the raw materials to bubble and to be used by vaporizing them. Ga for ultra high speed devices
Compounds such as As-based and InP-based compounds are useful, but most of the reported examples have been limited to Ga-As-based compounds, and InP-? Growth of InP-based compounds such as InGaAsP has been difficult to achieve. One reason for this is PH3 (PH3), which is used as a group V raw material compound.
Because phosphine) is very stable, the rate of thermal decomposition on a heated substrate is small, and furthermore, In(C2H5)3 (triethyl indium), etc. Because of its instability, an increase in the gas temperature in the raw material transport region may generate reactants before the raw material gas reaches the substrate, inhibiting epitaxial growth on the substrate. In order to maintain low temperature and to grow high quality crystals with steep interfaces,
It is desirable that the crystal growth temperature be lower. Therefore, the crystal growth temperature (substrate temperature) is set as low as possible within a range that does not cause amorphous or polycrystalline formation. For example, InAsP
The growth temperature is 550 for
The temperature is set at ~600°C. However, PH3 is 37
Although it is said that decomposition begins at 5°C, the decomposition rate is not that fast, so even if the substrate is heated to 700°C or higher, a small amount of PH3 will still be exhausted without reacting. arise. Therefore, some kind of countermeasure is required to achieve the P partial pressure necessary for crystal growth even at a relatively low growth temperature.

その対策の一つはPH3の供給量を極めて大幅に増加さ
せることである。しかし、PH3は許容濃度0.3pp
m という強烈な毒性がある上、わずかな刺激でも空気
があると発火するなどの危険性もあるため、PI■3を
大量に供給することはその排ガス上に問題があシ、大量
生産を目的とした結晶成長にP4  を生成しておき、
これを反応管に供給することである(P2やP4は基板
上で容易にPに分解され析出する)。このような目的の
PH3分解炉を備えた気相成長装置が最近開発され、減
圧成長法と組合せてようや< InP/InGaAsP
ヘテロ接合レーザなどの試作がなされるようになった。
One of the countermeasures is to significantly increase the supply of PH3. However, the permissible concentration of PH3 is 0.3pp.
In addition to being extremely toxic, it is also dangerous to ignite in the presence of air even with the slightest stimulation, so supplying large amounts of PI3 would pose problems in the exhaust gas, and the aim was to mass produce it. P4 is generated during crystal growth,
This is supplied to the reaction tube (P2 and P4 are easily decomposed into P and precipitated on the substrate). A vapor phase growth apparatus equipped with a PH3 decomposition furnace for this purpose has recently been developed, and it can be used in combination with the reduced pressure growth method.
Prototypes such as heterojunction lasers have begun to be produced.

しかし、この従来の気相成長装置にはまだ次のような欠
点が残されていたため、これを天川化することができな
いでいた。即ち、従来の気相成長装置に用いられていた
PH3分解炉はPH3の分解比率がまだ低いため、上述
したような問題点をごくわずか緩和したにすぎなかった
という点である。従来のPH3分解炉は、分解炉の温度
を800°C程度にまで高めて用いていたが、これでも
まだPH3の熱分解は不充分でらった。また、PH3を
含んだキャリヤガスの流速が1〜5 m/ sと高速な
ため、ガスと充分な熱交換を行なうにはかなシ長尺の加
熱炉が必要であ少年経済であった。
However, this conventional vapor phase growth apparatus still had the following drawbacks, so it was not possible to use it as Tenkawa. That is, since the PH3 decomposition furnace used in the conventional vapor phase growth apparatus has a still low decomposition ratio of PH3, the above-mentioned problems have only been slightly alleviated. Conventional PH3 decomposition furnaces were used with the temperature of the decomposition furnace raised to about 800°C, but even this was still insufficient to thermally decompose PH3. In addition, since the flow rate of the carrier gas containing PH3 is as high as 1 to 5 m/s, a long heating furnace is required to perform sufficient heat exchange with the gas, which is disadvantageous.

さらに分解炉の温度を高めるとか、分解炉内の表面積を
増すなどの方策を施せばPH3の分解比率は高められる
が、これに伴ない、分解炉材に用いられる8 i 02
ないしはステンレス配管などの管材からの不純物の発生
が急増することや、より高温のガスがガス供給管2等に
導入される結果、原料ガスが基板に達する前に、■族原
料化合物との混合接触によって好ましくない反応物が発
生してしまうこと、などのため、基板上でのエピタキシ
ャル成長が阻讐され、良質でかつ均一な結晶成長を得る
ことができなくなってしまう。
Furthermore, the decomposition ratio of PH3 can be increased by increasing the temperature of the decomposition furnace or increasing the surface area inside the decomposition furnace.
Or, as a result of a rapid increase in the generation of impurities from pipe materials such as stainless steel piping, or as a result of higher temperature gas being introduced into the gas supply pipe 2, etc., the raw material gas may come into contact with the Group III raw material compound before it reaches the substrate. As a result, epitaxial growth on the substrate is inhibited, making it impossible to obtain high-quality and uniform crystal growth.

この発明の目的は、上述した従来の欠点を除去し、高品
質なエピタキシャル成長を高効率に行うことのできる経
済的かつ高性能な気相成長装置を提供することにある。
An object of the present invention is to provide an economical and high-performance vapor phase growth apparatus that can eliminate the above-mentioned conventional drawbacks and perform high-quality epitaxial growth with high efficiency.

この発明によれば、熱的に安定な元素(とくにP)の析
出比率が高められるのでPH3などの有害なV族元素水
素化合物の供給量が大幅に低減でき、工業上不可欠な排
ガス処理対策が容易になる利点も得られる。
According to this invention, since the precipitation ratio of thermally stable elements (especially P) is increased, the supply amount of harmful Group V element hydrogen compounds such as PH3 can be significantly reduced, and this is an industrially essential exhaust gas treatment measure. It also has the advantage of being easier.

次にこの発明について、図面を用いて詳細に説明する。Next, this invention will be explained in detail using the drawings.

図は、この発明の気相成長装置の一実施例の概略構成図
である。
The figure is a schematic diagram of an embodiment of the vapor phase growth apparatus of the present invention.

第1の原料ガス発生装置1からIn(02H5)3、G
a(C2H5)3などのI族元素化合物気体ならびにH
2S、zn(C2Hs)zなどのドーパントガスと、水
素ガスを含む不活性ガス(キャリヤガス)とを発生させ
、ガス供給管2にガスを導入する、一方、第2の原料ガ
ス発生装置4からはP H3、A s H3な1どの■
族元素化合物気体と、水素ガスを含む不活性ガス(キャ
リヤガス)を発生させ、分解F5を介してガス供給管2
に導入し、該ガス供給管内2で、前記第1の原料ガス発
生装置1から発生してきたガスとよく混合させて、この
混合ガスを反応管3に導入する。
In(02H5)3,G from the first raw material gas generator 1
Group I element compound gases such as a(C2H5)3 and H
A dopant gas such as 2S, zn(C2Hs)z and an inert gas (carrier gas) containing hydrogen gas are generated, and the gases are introduced into the gas supply pipe 2. is P H3, A s H3, etc.■
A group element compound gas and an inert gas (carrier gas) containing hydrogen gas are generated and passed through the decomposition F5 to the gas supply pipe 2.
In the gas supply pipe 2, the mixed gas is thoroughly mixed with the gas generated from the first raw material gas generator 1, and this mixed gas is introduced into the reaction tube 3.

反応管3の中には、基板保持A(?セグタ)6上に基板
7が設置されてお〕、この基板7はシャフト8を回転式
せることによって反応管3の中で等速度の回転ができる
ようになっている。
Inside the reaction tube 3, a substrate 7 is installed on a substrate holding A (?segment) 6], and this substrate 7 is rotated at a constant speed inside the reaction tube 3 by rotating a shaft 8. It is now possible to do so.

9は反応管加熱コイルでめ夛、これによって基板を適当
な温度まで加熱するようにしている。
9 is a reaction tube heating coil, which heats the substrate to an appropriate temperature.

10は分解炉加熱コイルである。11は紫外励起光源で
アシ、該光源11から出射した励起光12、は、反射鏡
13、レンズ14、窓材15、を介して分解炉5内に導
入され、該分解炉5内でガスを、ガスの流れの方向に沿
って同軸状に励起する。紫外励起光源としては分解せん
とする所望の■族元素化合物気体の吸収のピークに主要
な発光波長が一致していることが望ましいが、この実施
例のように、ガスの流れの方向に沿って同軸状に励起す
れば、励起に有効な長さを長くできるため、ガスの吸収
のピーク波長から多少ずれた発光波長を有する光源でも
支障なく使用できるようになる。
10 is a cracking furnace heating coil. Reference numeral 11 denotes an ultraviolet excitation light source. Excitation light 12 emitted from the light source 11 is introduced into the decomposition furnace 5 via a reflecting mirror 13, a lens 14, and a window material 15. , excitation coaxially along the direction of gas flow. As an ultraviolet excitation light source, it is desirable that the main emission wavelength coincides with the absorption peak of the desired group Ⅰ element compound gas to be decomposed. If the excitation is carried out coaxially, the length effective for excitation can be increased, so that even a light source having an emission wavelength slightly shifted from the absorption peak wavelength of the gas can be used without any problem.

紫外励起光源工1としては、高圧水銀ランプなどのイン
コヒーレント光源や、193nm A r F −r−
キシマーレーザや249nmKrFエキシマーレーザな
どの紫外域高出力レーザ光源が用いられる。高圧水銀ラ
ンプを用いる場合、光源の指向性は良くないので、出力
IKW以上のかなシ高出力なランプを用いる必要がある
。   ゛−1゛エキシマ−レーザを用いる場合、 平均出力は数+W程度あれば十分であるが、レーザ発振
動作がパルス動作しか得られないため、ガスが分解炉中
に流れている間に光励起するには毎秒100  パルス
程肛以上の高速繰多返しが必要であるQ 分解炉5中では、ガスは600’C程度にまで加熱され
ているため、振動状態の基底状態からだけでなく、尚い
励起状態からも紫外光の吸収が生じ、これによシ効率よ
く光解離が生じるので、従来の分解炉による熱分解単独
では到底不可能であったような高い分解比率でもって、
■族元素化合物気体の分解を行うことができる。ただし
V族元素元素ガスのうちA s H3はPH3などに比
べ熱分解は比較的容易なため、これは分解炉5を通さず
に、第1の原料発生装置1から供給するようにしてもよ
い。
As the ultraviolet excitation light source 1, an incoherent light source such as a high-pressure mercury lamp, or a 193 nm A r F -r-
A high-power ultraviolet laser light source such as an eximer laser or a 249 nm KrF excimer laser is used. When using a high-pressure mercury lamp, the directivity of the light source is not good, so it is necessary to use a lamp with a high output of at least IKW.゛-1゛When using an excimer laser, an average output of several + W is sufficient, but since the laser oscillation operation can only be performed in pulses, it is difficult to optically excite the gas while it is flowing through the cracking furnace. It is necessary to repeat the gas at a high speed of about 100 pulses per second or higher.In the decomposition furnace 5, the gas is heated to about 600'C, so the gas is not only vibrated from the ground state but also excited. The absorption of ultraviolet light also occurs due to the state, and this causes efficient photodissociation, resulting in a high decomposition rate that would have been impossible with thermal decomposition alone in a conventional decomposition furnace.
It is possible to decompose group (2) element compound gases. However, among group V element gases, A s H3 is relatively easy to thermally decompose compared to PH3, etc., so it may be supplied from the first raw material generator 1 without passing through the decomposition furnace 5. .

以上説明したように、この発明によれば、従来よシも低
い分解湿度で効率よく■族元素化合物気体の分解を行う
ことができるため、PH3などの有害なV族元素水素化
物の供#量を少なくしても■族元素を高い析出比率で析
出させられる。また、従来よシも低い温度で分解できる
ため、分解炉や途中の配管中における不純物などの発生
を極力抑制することができ、良質なエピタキシャル成長
が得られるようになる。
As explained above, according to the present invention, it is possible to efficiently decompose a group (I) element compound gas at a lower decomposition humidity than before, so that the amount of supply of harmful group V element hydrides such as PH3 can be reduced. Even if the amount is reduced, group (I) elements can be precipitated at a high precipitation ratio. Furthermore, since the decomposition can be performed at a lower temperature than in the past, the generation of impurities in the decomposition furnace and intermediate piping can be suppressed as much as possible, making it possible to obtain high-quality epitaxial growth.

上述した実施例においては、分解炉5から排出される原
料ガスをガス供給管2に導入するようにしたが、反応管
3の上流でも十分な混合効果が得られるならば該反応管
3に第2の開口を設けて、第1の原料ガス発生装置1か
ら供給される原料ガスとは独立にして直接原料ガスを反
応管3に導入してもよい。しかし、反応管内はかなシ高
温なため、ここで反応性のガスが長時間滞留することは
決して好゛ましいことではないので、反応管上流から基
板までの距離はできるだけ短くするようにした方がよい
。このため、反応管内でI族元素ガスとV族元素ガスと
を混合することはできれば避けた方がよい。ガス供給管
2内でI族元素ガスとV族元素ガスを混合させる場合、
不必要な反応が進行しないようにガス供給管2を冷却し
ておくことが好ましく、管内を流れるガスが液滴になら
ない程度にまで低く抑えておくとよい。
In the above embodiment, the raw material gas discharged from the cracking furnace 5 was introduced into the gas supply pipe 2, but if a sufficient mixing effect can be obtained upstream of the reaction tube 3, a 2 openings may be provided to directly introduce the raw material gas into the reaction tube 3 independently of the raw material gas supplied from the first raw material gas generator 1. However, since the temperature inside the reaction tube is extremely high, it is never desirable for reactive gases to remain there for a long time, so it is better to keep the distance from the upstream side of the reaction tube to the substrate as short as possible. Good. For this reason, it is better to avoid mixing the Group I element gas and the Group V element gas in the reaction tube if possible. When mixing Group I element gas and Group V element gas in the gas supply pipe 2,
It is preferable to keep the gas supply pipe 2 cooled so that unnecessary reactions do not proceed, and it is preferable to keep the gas flowing in the pipe so low that it does not become droplets.

この発明によるM−V族化合物の気相成長製放によシ形
成したInP  結晶では、バッフ7層のキャリヤ濃度
は実用上問題なく十分に低下しておシ、77°Kにおけ
る#勤度は40,000 G1!/ V −S以上が得
られた。
In the InP crystal formed by vapor phase growth and release of M-V group compounds according to the present invention, the carrier concentration in the buffer 7 layer is sufficiently reduced without any practical problems, and the 40,000 G1! /V-S or higher was obtained.

また、この発明はInP  だけでな(、InGaAs
Pなとの多元の1−■化合物の多層構造のエピタキシャ
ル成長に広く適用できる。
Moreover, this invention is applicable not only to InP (, InGaAs
It can be widely applied to the epitaxial growth of multilayer structures of multi-element 1-■ compounds with P.

なお、この発明の実施例においては、励起光12を分解
炉5内に、ガスの流れに沿って同軸状に入射させたが、
もし分解P5の壁面を鏡面とするならば、例えば斜め入
射するなどして、分解炉5内で励起光全ジグザグに進行
させ実効的な励起の長さを長くすることも可能である。
In the embodiment of the present invention, the excitation light 12 is coaxially incident into the decomposition furnace 5 along the gas flow.
If the wall surface of the decomposition P5 is made into a mirror surface, it is also possible to make the entire excitation light travel in a zigzag manner within the decomposition furnace 5 by, for example, making it obliquely incident, thereby increasing the effective excitation length.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の構成を示す概略構成図である。 図において、lは第1の原料ガス発生装置、2はガス供
給管、3は反応管、4は第2の原料ガス発生装置、5は
分解炉、6は基板保持具、7は基板、8はシャフト、9
は反応管加熱コイル、10は分解炉加熱コイル、11は
紫外励起光源、12は#l起光、13は反射鏡、14は
レンズ、15は窓材である。
The figure is a schematic configuration diagram showing the configuration of an embodiment of the present invention. In the figure, l is a first raw material gas generator, 2 is a gas supply pipe, 3 is a reaction tube, 4 is a second raw material gas generator, 5 is a decomposition furnace, 6 is a substrate holder, 7 is a substrate, 8 is shaft, 9
10 is a reaction tube heating coil, 10 is a decomposition furnace heating coil, 11 is an ultraviolet excitation light source, 12 is a #l light emitter, 13 is a reflecting mirror, 14 is a lens, and 15 is a window material.

Claims (1)

【特許請求の範囲】[Claims] 上流側から下流側へガスが流通される反応管と、該反応
管内の上流側に開口するガス供給管と、該ガス供給管に
接続される熱的に不安定な化合物気体を含む第1の原料
ガス発生装置と、分解炉を介して前記ガス供給管に接続
される熱的に安定な化合物気体を含む第2の原料ガス発
生装置とを備え、前記反応管内に設置てれた基板上にガ
スを導きエピタキシャル成長させる気相成長装置におい
て、さらに紫外励起光源と、該光源から出射する励起光
を前記分解炉内に導く導光手段とを備えたことを特徴と
する気相成長装置。
A reaction tube through which gas flows from the upstream side to the downstream side, a gas supply tube opening on the upstream side within the reaction tube, and a first gas supply tube containing a thermally unstable compound gas connected to the gas supply tube. comprising a raw material gas generation device and a second raw material gas generation device containing a thermally stable compound gas connected to the gas supply pipe via a decomposition furnace, and on a substrate installed in the reaction tube. A vapor phase growth apparatus for guiding gas and performing epitaxial growth, further comprising an ultraviolet excitation light source and a light guiding means for guiding excitation light emitted from the light source into the decomposition furnace.
JP22901782A 1982-12-28 1982-12-28 Vapor growth device Pending JPS59121917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22901782A JPS59121917A (en) 1982-12-28 1982-12-28 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22901782A JPS59121917A (en) 1982-12-28 1982-12-28 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS59121917A true JPS59121917A (en) 1984-07-14

Family

ID=16885447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22901782A Pending JPS59121917A (en) 1982-12-28 1982-12-28 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS59121917A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185333A (en) * 1985-02-12 1986-08-19 Ulvac Corp Optically promoted surface chemical reaction apparatus
JPS62199014A (en) * 1986-02-27 1987-09-02 Canon Inc Formation of deposited film
JPS62219917A (en) * 1986-03-14 1987-09-28 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Manufacture of hydride
EP0389718A2 (en) * 1989-03-30 1990-10-03 Mitsubishi Denki Kabushiki Kaisha A method of crystal growing a semiconductor thin film and an apparatus therefor
EP0452006A2 (en) * 1990-03-30 1991-10-16 Atsushi Ogura A composite film and method of manufacturing the same
EP1268186B1 (en) * 1999-12-29 2015-09-02 nGimat Co. Chemical vapor deposition method and system.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185333A (en) * 1985-02-12 1986-08-19 Ulvac Corp Optically promoted surface chemical reaction apparatus
JPS62199014A (en) * 1986-02-27 1987-09-02 Canon Inc Formation of deposited film
JPS62219917A (en) * 1986-03-14 1987-09-28 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Manufacture of hydride
EP0389718A2 (en) * 1989-03-30 1990-10-03 Mitsubishi Denki Kabushiki Kaisha A method of crystal growing a semiconductor thin film and an apparatus therefor
EP0452006A2 (en) * 1990-03-30 1991-10-16 Atsushi Ogura A composite film and method of manufacturing the same
US5340604A (en) * 1990-03-30 1994-08-23 Ogura Atsushi Method for manufacturing a composite vapor deposition film
EP1268186B1 (en) * 1999-12-29 2015-09-02 nGimat Co. Chemical vapor deposition method and system.

Similar Documents

Publication Publication Date Title
US6066204A (en) High pressure MOCVD reactor system
DenBaars et al. Atomic layer epitaxy of compound semiconductors with metalorganic precursors
JPS59121917A (en) Vapor growth device
US6334901B1 (en) Apparatus for forming semiconductor crystal
US5389396A (en) InGaAsP/GaAs diode laser
JP2008024544A (en) Germanium-doped gallium nitride crystal and method for producing the same
RU2100477C1 (en) Process of deposition of films of hydrogenized silicon
Hayashi Photoassisted doping of nitrogen into ZnSe using ethyl azide
CN115679443B (en) Light-assisted metal organic compound chemical vapor deposition device and implementation method
JPS6223107A (en) Photo-vapor phase epitaxy method
JPH09171966A (en) N-type doping to compound semiconductor, chemical beam deposition using the same, metal organic molecular beam epitaxial growth, gas source moleculer beam epitaxial growth, and metal organic vapor phase deposition
EP0707097A1 (en) MBE apparatus and MBE method
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
JPH0431391A (en) Epitaxial growth
JPS59121918A (en) Vapor growth device for compound
JP2732622B2 (en) (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method
JPS59111322A (en) Manufacture of thin-film
JPH08139025A (en) Method of forming crystalline silicon
JPH01158721A (en) Method and apparatus for light irradiation type low temperature mocvd
JPH07105348B2 (en) (III) -Method for manufacturing Group V compound semiconductor thin film
JPH05251369A (en) Organic metal chemical vapor growth method
JPH05175145A (en) Crystal growth method
JP2006225676A (en) Vapor deposition apparatus
Yoshimoto et al. In-situ RHEED observation on surface reactions in laser-triggered chemical beam epitaxy of GaP
JPS6328030A (en) Method for crystal growth of compound semiconductor