JPH0322410A - Formation of semiconductor thin film - Google Patents

Formation of semiconductor thin film

Info

Publication number
JPH0322410A
JPH0322410A JP15789389A JP15789389A JPH0322410A JP H0322410 A JPH0322410 A JP H0322410A JP 15789389 A JP15789389 A JP 15789389A JP 15789389 A JP15789389 A JP 15789389A JP H0322410 A JPH0322410 A JP H0322410A
Authority
JP
Japan
Prior art keywords
substrate
film
molecular beam
thin film
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15789389A
Other languages
Japanese (ja)
Inventor
Hideo Sugiura
杉浦 英雄
Takeshi Yamada
武 山田
Ryuzo Iga
龍三 伊賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15789389A priority Critical patent/JPH0322410A/en
Priority to PCT/JP1989/000827 priority patent/WO1990001794A1/en
Priority to US07/477,870 priority patent/US5186750A/en
Priority to EP89909240A priority patent/EP0394462B1/en
Publication of JPH0322410A publication Critical patent/JPH0322410A/en
Priority to US07/935,067 priority patent/US5273932A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a semiconductor film having a fine pattern without using lithographic technique by growing a GaAs film while irradiating a substrate with an argon laser beam from outside of a vacuum container in a metal organic molecular beam epitaxial process. CONSTITUTION:In an metal organic molecular beam epitaxial process(MOMBE), wherein a semiconductor thin film is formed on a single crystal substrate 5 by using a molecular beam of triethylgallium, which is an organic metal, and a molecular beam of a hydride obtained by heat decomposing arsine, a GaAs film is grown while irradiating a substrate 5 with an argon laser beam from outside of a vacuum container 1. In this MOMBE, the film is grown in a vacuum lower than 10<-4>Torr, so that the organic metal molecular beam reaches the substrate 5 without colliding on the residual gas, and individual organic metal molecules scarcely move on the substrate surface. Further, because a window 11 for introducing the laser beam is a flat plate, a fine optical pattern can be projected on the substrate without deformation. Thus, a semiconductor film with the fine pattern can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、基板上の任意の場所に組或が制御された化合
物半導体薄膜を形或する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for forming a compound semiconductor thin film with a controlled structure at any location on a substrate.

(従来の技術) 半導体素子の高度化、高機能化は時代の趨勢である。こ
れにともない、素子の構造はより細かくより複雑となっ
ている。この要求に答えるために従来は、面内に一様な
厚さ・組或の膜を形成したのち、高度なリソグラフ技術
を用いて面内に複雑な凹凸を有する素子構造を作製して
いた。最近、複雑なプロセス行程を簡素化するため、薄
膜形戒時に面内の一部の場所の厚さを制御しようとする
試みがなされている。たとえばアブライドフイジックス
レターズ( Applied Physics Let
ters) 47巻1985年p.95にあるように、
有機金属熱分解法(以下MOCVDと略す)を用いて、
GaAs膜を形成する際に基板にアルゴンレーザを照射
することにより、照射部分にのみ膜形或を行う技術が開
発されている。選択或長ずる理由は原料の有機金属が光
照射によって分解されるからである。光源としてはアル
ゴンレーザばかりでなく低圧水銀ランプ、エキシマレー
ザなどでも効果があることが報告されている。ただし、
エキシマレーザには2つの欠点がある。第一に、レーザ
の波長が有機金属の吸収波長に一致するので、有機金属
は基板上ばかりでなく、雰囲気中でも分解される。第二
に、パルス発振レーザであるためパルスのエネルギが非
常に大きく、レーザ照射にともなう温度上昇が顕著とな
る。このような欠点を有するため光分布どうりのパター
ンは得られていない。
(Conventional Technology) Semiconductor devices are becoming more sophisticated and highly functional as a trend of the times. Along with this, the structure of elements has become finer and more complex. In order to meet this demand, in the past, a film with a uniform thickness and composition was formed within the plane, and then an element structure having complex irregularities within the plane was fabricated using advanced lithography technology. Recently, attempts have been made to control the thickness at some locations within the plane of a thin film in order to simplify complex process steps. For example, Applied Physics Letters
ters) Volume 47, 1985, p. As stated in 95,
Using metal organic pyrolysis method (hereinafter abbreviated as MOCVD),
A technique has been developed in which when forming a GaAs film, the substrate is irradiated with an argon laser to form the film only on the irradiated area. The reason for this selection is that the organometallic material is decomposed by light irradiation. It has been reported that not only argon lasers but also low-pressure mercury lamps, excimer lasers, and the like are effective as light sources. however,
Excimer lasers have two drawbacks. First, since the wavelength of the laser matches the absorption wavelength of the organic metal, the organic metal is decomposed not only on the substrate but also in the atmosphere. Second, since it is a pulse oscillation laser, the energy of the pulse is very large, and the temperature rise due to laser irradiation is significant. Due to these drawbacks, a pattern with the same light distribution cannot be obtained.

(発明が解決しようとする課題) これまでの光照射による選択或長では膜威長法にもっぱ
らMOCVDが用いられてきた。このため細かいパター
ンを形成出来ないという欠点があった。
(Problems to be Solved by the Invention) Up to now, MOCVD has been exclusively used for the film length method for selection and length by light irradiation. For this reason, there was a drawback that fine patterns could not be formed.

その原因は、(a) Mocvo,法では数10−76
0 Torrの圧力の水素ガス雰囲気下で膜威長を行う
ため、基板上で有機金属の流れが生じ、その結果、選択
膜の形状がなだらかになる、(b)威長容器つまり反応
管はガラス製の円筒形であるため、微細な光干渉パター
ンを基板に投影出来ないからである。さらに、選択威長
の可否は基板の伝導型にも依存し、n型では可能である
が、半絶縁性基板では選択威長しない。これは、選択或
長をテバイスに応用するときに、おおきな制約となる。
The reason is (a) Mocvo, the number 10-76 in the method
Since the film lengthening is performed in a hydrogen gas atmosphere at a pressure of 0 Torr, a flow of organic metal occurs on the substrate, and as a result, the shape of the selective membrane becomes gentle. (b) The lengthening container, that is, the reaction tube is made of glass. This is because the cylindrical shape of the substrate makes it impossible to project a fine optical interference pattern onto the substrate. Furthermore, whether or not selective strength is possible depends on the conductivity type of the substrate; it is possible with n-type substrates, but not with semi-insulating substrates. This is a major constraint when applying selection or length to devices.

(発明の目的) 本発明は上記の欠点を改善するために提案されたもので
、その目的はリソグラフ技術を用いることなく微細なパ
ターンを有する半導体膜を形成できる半導体薄膜形或法
を提供することにある。
(Objective of the Invention) The present invention was proposed in order to improve the above-mentioned drawbacks, and its purpose is to provide a semiconductor thin film form or method that can form a semiconductor film having a fine pattern without using lithography technology. It is in.

(課題を゛解決するための手段) 上記の目的を達威するため本発明は真空容器内で有機金
属であるトリエチルガリウム( TEGa )の分子線
とアルシン( ASH3 )を熱分解した水素化物の分
子線を用いて単結晶基板上に半導体薄膜を形成する有機
金属分子線エピタキシ法において、真空容器外からアル
ゴンレーザビームを前記基板上に照射しながら、GaA
s膜威長を行うことを特徴とする半導体薄膜形或法を発
明の要旨とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention uses molecular beams of triethyl gallium (TEGa), an organic metal, and molecules of hydride obtained by thermally decomposing arsine (ASH3) in a vacuum container. In the organometallic molecular beam epitaxy method, in which a semiconductor thin film is formed on a single crystal substrate using a GaA
The gist of the invention is a semiconductor thin film structure or method that is characterized by performing S film lengthening.

(作 用) 本発明は膜威長法に有機金属分子線法(以後MOMBE
と略す)を用いており、MOMB[!では10−4To
rr以下の真空度で膜威長を行うため、有機金属分子線
は残留ガスに衝突することなく基板に到達し、個々の有
機金属分子は基板表面でほとんど移動しない。またレー
ザビームを導入する窓は平板であるため、微細な光学パ
ターンを変形すること3 なく基板上に投影できる作用を有する。換言すれば、本
発明はMO?IBEに^rレーザを照射させることによ
り、微細パターンの半導体薄膜かえられる特徴を有する
ものである。
(Function) The present invention combines the film length method with the organometallic molecular beam method (hereinafter referred to as MOMBE).
) is used, and MOMB[! Then 10-4To
Since film lengthening is performed at a vacuum degree of rr or less, the organometallic molecular beam reaches the substrate without colliding with residual gas, and individual organometallic molecules hardly move on the substrate surface. Furthermore, since the window through which the laser beam is introduced is a flat plate, it has the effect of projecting a minute optical pattern onto the substrate without deforming it. In other words, is the present invention MO? By irradiating an IBE with a ^r laser, a semiconductor thin film with a fine pattern can be changed.

(実施例) 次に本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

なお実施例は一つの例示であって、本発明の精神を逸脱
しない範囲で、種々の変更あるいは改良を行いうること
は云うまでもない。
It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements can be made without departing from the spirit of the present invention.

第l図は本発明の実施例を説明するための構威図であっ
て、図において、1は真空容器、2はアルシンボンベ、
3と7はマスフローコントローラ(以下MFCと略す)
、4は熱分解セル、5はGaAs基板、6は有機金属ボ
ンベ、8は有機金属用分子線セル、9はアルゴンレーザ
、IOはレンズ、llは窓である。
FIG. 1 is a structural diagram for explaining an embodiment of the present invention, and in the figure, 1 is a vacuum container, 2 is an arsine cylinder,
3 and 7 are mass flow controllers (hereinafter abbreviated as MFC)
, 4 is a pyrolysis cell, 5 is a GaAs substrate, 6 is an organometallic cylinder, 8 is an organometallic molecular beam cell, 9 is an argon laser, IO is a lens, and 11 is a window.

(実施例1) アルゴンレーザを用いてスポット状のGaAslliの
選択或長を行った例を述べる。まず真空容器lを1 0
−” Torrの高真空にひいた。ヒ素原料のハイ4 ドライドガスには100%の濃度のアルシンを用いた。
(Example 1) An example in which a spot-shaped GaAslli was selected or lengthened using an argon laser will be described. First, vacuum container l is 1 0
-'' Torr high vacuum. 100% arsine was used as the arsenic raw material Hi-4 dry gas.

ボンベ2からアルシンの流量をMFC3ヲ用いて6cc
/分に設定し、950℃に加熱した熱分解セル4でヒ素
分子線を形成した。熱分解のとき水素が生威されるため
真空容器の真空度は約10−4Torrまで増加した。
The flow rate of arsine from cylinder 2 is 6cc using MFC3.
An arsenic molecular beam was formed in the pyrolysis cell 4, which was set at 950°C and heated at 950°C. Since hydrogen was produced during thermal decomposition, the degree of vacuum in the vacuum vessel increased to about 10-4 Torr.

ヒ素分子線を照射しながらGaAs基板5を600℃ま
で加熱して基板表面を清浄化し、ヒ素分子線をあてなが
ら基板温度を425゜Cに降温した。ガリウムの原料の
有機金属にはトリエチルガリウム(以下TEGと略す)
を用い、TEGボンベ6を開けて、その流量を?lFC
 7でlcc/分で調整し、有機金属用分子線セル8か
らTEG分子線を基板にむけて照射した。このようにし
てGaAs膜の戒長を開始した。数分後に、アルゴンレ
ーザ9から強度500mWのレーザビームを出射した。
The GaAs substrate 5 was heated to 600° C. while being irradiated with an arsenic molecular beam to clean the substrate surface, and the substrate temperature was lowered to 425° C. while being irradiated with an arsenic molecular beam. Triethyl gallium (hereinafter abbreviated as TEG) is an organic metal used as a raw material for gallium.
Open TEG cylinder 6 using , and check the flow rate? lFC
7, and the TEG molecular beam was irradiated toward the substrate from the organometallic molecular beam cell 8. In this way, we began to refine the GaAs film. After several minutes, a laser beam with an intensity of 500 mW was emitted from the argon laser 9.

レーザビームはレンズ10を用いて集束し、窓11を通
してGaAs基板に垂直に照射した。その際、レーザビ
ームの直径が400μmになるように調整した。一時間
後にT[!Gの供給をとめて、GaAs膜の成長を終了
した。これと同時にレーザビ一ムの照射も停止した。こ
のようにして作製した膜のレーザ照射部分にはスポット
状の突起が見られた。
The laser beam was focused using a lens 10 and irradiated perpendicularly onto the GaAs substrate through a window 11. At that time, the diameter of the laser beam was adjusted to 400 μm. An hour later T[! The supply of G was stopped, and the growth of the GaAs film was completed. At the same time, the laser beam irradiation also stopped. Spot-like protrusions were observed in the laser irradiated portion of the film thus produced.

第2図はスポットの断面の高さ分布である。レーザの光
強度分布を反映して直径400μmのガウス型分布して
いる。
FIG. 2 shows the height distribution of the spot cross section. Reflecting the laser light intensity distribution, there is a Gaussian distribution with a diameter of 400 μm.

図に示すように、スポットの高さはレーザ強度に正比例
して増加する。これは、本方法によるGaAsの威長速
度の増加は光反応であることを意味する。なお、アルゴ
ンレーザ照射による威長速度の増加は、ガリウム原料に
TEG 、ヒ素原料にアルシンのかわりに金属ヒ素を用
いた場合にも、同様にみられた。
As shown in the figure, the spot height increases in direct proportion to the laser intensity. This means that the increase in the growth rate of GaAs by this method is a photoreaction. Incidentally, the increase in growth rate due to argon laser irradiation was similarly observed when TEG was used as the gallium raw material and metallic arsenic was used instead of arsine as the arsenic raw material.

第3図(イ)はレーザ照射部分と非照射部分の威長速度
の基板温度依存性を示す。(TI)図は基板上の薄膜の
威長速度を示す。上記の結果からレーザ照射の効果は基
板温度400−550℃範囲が好ましい。この温度依存
性はn型、p型および半絶縁性基板でまったく同一であ
った。
FIG. 3(A) shows the substrate temperature dependence of the elongation speed of the laser irradiated part and the non-irradiated part. The (TI) diagram shows the growth rate of the thin film on the substrate. From the above results, the effect of laser irradiation is preferably achieved when the substrate temperature is in the range of 400 to 550°C. This temperature dependence was exactly the same for n-type, p-type, and semi-insulating substrates.

第4図はレーザ電力と選択的威長速度との関係を示す。FIG. 4 shows the relationship between laser power and selective elongation velocity.

この場合のレーザビームの直径は400μmである。The diameter of the laser beam in this case is 400 μm.

(実施例2) 次に縞状のパターンを形成した例について述べる。第5
図に本発明に用いられた装置の構威図を示す。
(Example 2) Next, an example in which a striped pattern is formed will be described. Fifth
The figure shows a diagram of the configuration of the device used in the present invention.

図においてlは真空容器、2はアルシンボンベ、3はマ
スフローコントローラ) 、5 ハGaAsaFi、6
は有機金属ボンへ、7はマスフローコントローラ、8は
有機金属用分子線セル、9はアルゴンレーザ、10はレ
ンズ、11は窓、l2はビームエクスパンダ、  l3
はマスクを示す。
In the figure, l is a vacuum container, 2 is an arsine cylinder, 3 is a mass flow controller), 5 is GaAsaFi, 6
is an organometallic bomb, 7 is a mass flow controller, 8 is a molecular beam cell for organometallic, 9 is an argon laser, 10 is a lens, 11 is a window, l2 is a beam expander, l3
indicates a mask.

実施例1と同一の手順でGaAs基板を用意し、TEG
を照射してGaAsの膜を作製した。ただし、レーザビ
ームは、レーザビームをいったんビームエクスパンダ1
2を用いて直径5mに拡大し、その後1mmピッチの縞
状に金属が塗布されたガラス板、つまりマスクを通過さ
せることによってレーザビームを回折させ、さらにレン
ズ10を用いて、基板上に回折パターンを集束した。
A GaAs substrate was prepared in the same manner as in Example 1, and TEG
A GaAs film was fabricated by irradiating with . However, once the laser beam is transferred to the beam expander 1,
The laser beam is enlarged to a diameter of 5 m using a lens 10, and then is diffracted by passing through a glass plate coated with metal in stripes with a pitch of 1 mm, that is, a mask, and then a diffraction pattern is formed on the substrate using a lens 10. focused.

7 第6図(イ)図はレーザ照射部分の膜の断面形状で、幅
90μmの線が7本みられる。この形状は、([I)図
にしめした光強度分布とよく一致していた。
7 Figure 6(a) shows the cross-sectional shape of the film in the laser irradiated area, and seven lines with a width of 90 μm can be seen. This shape matched well with the light intensity distribution shown in Figure ([I).

したがって、所望のパターンを種々の光学機器を用いて
形成すれば、そのとうりのパターンを持つ膜を形或でき
る。実際、ホログラフ技術を用いて微細パターン形成し
た結果、4もクロンピッチの縞を持つ膜を得ることがで
きた。
Therefore, by forming a desired pattern using various optical devices, a film having the desired pattern can be formed. In fact, as a result of forming a fine pattern using holographic technology, we were able to obtain a film with stripes of 4 chron pitch.

(発明の効果) 以上説明したように、本発明によれば真空容器内で有機
金属であるトリエチルガリウム( TEGa )の分子
線とアルシン( ASH3 )を熱分解した水素化物の
分子線を用いて単結晶基板上に半導体薄膜を形或する有
機金属分子線エピタキシ法において、真空容器外からア
ルゴンレーザビームを前記基板上に照射しながら、Ga
As膜威長を行うことにより、基板上に所望な場所に複
雑な凹凸有するパターンを、リソグラフ技術を用いるこ
となく、形成できる。光・電子集積回路( OEIC 
)は、将来のキーデバイスとして期待されているが、こ
れを作製す8 るには、膜威長・プロセスを数回繰り返す必要がある。
(Effects of the Invention) As explained above, according to the present invention, a monomer is produced using a molecular beam of triethyl gallium (TEGa), which is an organic metal, and a molecular beam of a hydride obtained by thermally decomposing arsine (ASH3) in a vacuum container. In the organometallic molecular beam epitaxy method for forming a semiconductor thin film on a crystal substrate, Ga is
By performing As film lengthening, a pattern having complex irregularities at desired locations on the substrate can be formed without using lithography technology. Optical/electronic integrated circuit (OEIC)
) is expected to be a key device in the future, but to fabricate it, it is necessary to repeat the film lengthening process several times.

再或長の界面には多くの結晶欠陥が発生し、素子の性能
低下の最大の原因となっている。本発明方法をOEIC
に応用すれば、工程が大幅に削減できるばかりでなく、
界面に欠陥を発生することもないため、素子の性能向上
・信頼性向上におおいに役立つ。
Many crystal defects occur at the re-elongated interface, which is the biggest cause of deterioration in device performance. The method of the present invention is OEIC
If applied to
Since no defects are generated at the interface, it is extremely useful for improving the performance and reliability of devices.

なお実施例では、GaAsの作製例をしめしたが、In
P , GaP 、などの2元系化合物で選択威長を確
認している。これらの結果から3元、4元化合物の選沢
威長が可能であることは容易に予想される。
In the example, an example of manufacturing GaAs was shown, but In
Selective strength has been confirmed in binary compounds such as P and GaP. From these results, it is easily predicted that it is possible to select ternary and quaternary compounds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いられる装置、第2図はスポットの
断面の高さ分布、第3図(イ)はレーザ照射部分と非照
射部分の威長速度と基板温度との関係、([I)は基板
上の薄膜の成長速度、第4図はレーザ電力と選択的威長
速庫との関係、第5図は本発明の第2実施例に用いる装
置、第6図(イ)はレーザ照射部分の膜の断面形状、(
El)は光強度分布を示す。 1・・・真空容器、2・・・アルシンボンベ、3,7・
・・マスフロコントローラ、4・・・熱分解セル、5・
・・GaAs基板、6・・・有機金属ボンベ、8・・・
有機金属用ボンベ、9・・・アルゴンレーザ、10・・
・レンズ、11・・・窓、l2・・・ビームエクスパン
ダ、13・・・マスク。
Fig. 1 shows the apparatus used in the present invention, Fig. 2 shows the height distribution of the cross section of the spot, and Fig. 3 (a) shows the relationship between the elongation velocity of the laser irradiated part and the non-irradiated part and the substrate temperature, ([ I) is the growth rate of the thin film on the substrate, FIG. 4 is the relationship between laser power and selective growth rate, FIG. 5 is the apparatus used in the second embodiment of the present invention, and FIG. Cross-sectional shape of the film in the laser irradiated area, (
El) indicates the light intensity distribution. 1...Vacuum container, 2...Arsine cylinder, 3,7.
... Mass flow controller, 4... Pyrolysis cell, 5.
...GaAs substrate, 6...Organic metal cylinder, 8...
Organic metal cylinder, 9... Argon laser, 10...
・Lens, 11...Window, l2...Beam expander, 13...Mask.

Claims (1)

【特許請求の範囲】[Claims] 真空容器内で有機金属であるトリエチルガリウム(TE
Ga)の分子線とアルシン(AsH_3)を熱分解した
水素化物の分子線を用いて単結晶基板上に半導体薄膜を
形成する有機金属分子線エピタキシ法において、真空容
器外からアルゴンレーザビームを前記基板上に照射しな
がら、GaAs膜成長を行うことを特徴とする半導体薄
膜形成法。
Triethylgallium (TE), an organic metal, is
In the organometallic molecular beam epitaxy method, which forms a semiconductor thin film on a single crystal substrate using a molecular beam of Ga) and a molecular beam of hydride obtained by thermally decomposing arsine (AsH_3), an argon laser beam is applied to the substrate from outside the vacuum chamber. A semiconductor thin film forming method characterized by growing a GaAs film while irradiating the top.
JP15789389A 1988-08-15 1989-06-19 Formation of semiconductor thin film Pending JPH0322410A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15789389A JPH0322410A (en) 1989-06-19 1989-06-19 Formation of semiconductor thin film
PCT/JP1989/000827 WO1990001794A1 (en) 1988-08-15 1989-08-15 Method of forming a semiconductor thin film and apparatus therefor
US07/477,870 US5186750A (en) 1988-08-15 1989-08-15 Method and apparatus for forming semiconductor thin films
EP89909240A EP0394462B1 (en) 1988-08-15 1989-08-15 Method of forming a semiconductor thin film and apparatus therefor
US07/935,067 US5273932A (en) 1988-08-15 1992-08-25 Method for forming semiconductor thin films where an argon laser is used to suppress crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15789389A JPH0322410A (en) 1989-06-19 1989-06-19 Formation of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH0322410A true JPH0322410A (en) 1991-01-30

Family

ID=15659722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15789389A Pending JPH0322410A (en) 1988-08-15 1989-06-19 Formation of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0322410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236849A (en) * 1993-02-10 1994-08-23 Hikari Gijutsu Kenkyu Kaihatsu Kk Growth method of compound semiconductor crystal
WO2001023648A1 (en) * 1999-09-30 2001-04-05 Prowtech Inc. Apparatus and method for forming single crystalline nitride substrate using hydride vapor phase epitaxy and laser beam

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111322A (en) * 1982-12-16 1984-06-27 Agency Of Ind Science & Technol Manufacture of thin-film
JPS59148325A (en) * 1983-02-14 1984-08-25 Sanyo Electric Co Ltd Method and device for growing single crystal thin film of compound semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111322A (en) * 1982-12-16 1984-06-27 Agency Of Ind Science & Technol Manufacture of thin-film
JPS59148325A (en) * 1983-02-14 1984-08-25 Sanyo Electric Co Ltd Method and device for growing single crystal thin film of compound semiconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236849A (en) * 1993-02-10 1994-08-23 Hikari Gijutsu Kenkyu Kaihatsu Kk Growth method of compound semiconductor crystal
WO2001023648A1 (en) * 1999-09-30 2001-04-05 Prowtech Inc. Apparatus and method for forming single crystalline nitride substrate using hydride vapor phase epitaxy and laser beam
US6750121B1 (en) 1999-09-30 2004-06-15 Protech Inc. Apparatus and method for forming single crystalline nitride substrate using hydride vapor phase epitaxy and laser beam

Similar Documents

Publication Publication Date Title
US4615904A (en) Maskless growth of patterned films
US4608117A (en) Maskless growth of patterned films
JPH02144910A (en) Internal light induction evaporating enhancement method of compound thin-film during or after epitaxial growth
WO2013020423A1 (en) Manufacturing apparatus and manufacturing method for quantum dot material
CA1270070A (en) Fabrication of semiconductor devices utilizing patterned metal layers
JPH0322410A (en) Formation of semiconductor thin film
US5186750A (en) Method and apparatus for forming semiconductor thin films
JP2009527439A (en) Characteristic modification method for thin film growth
US7132202B2 (en) Mask for laser irradiation, method of manufacturing the same, and apparatus for laser crystallization using the same
US5273932A (en) Method for forming semiconductor thin films where an argon laser is used to suppress crystal growth
JPS59111322A (en) Manufacture of thin-film
JP3182584B2 (en) Compound thin film forming method
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPS6131392A (en) Vapor phase crystal growth device
JPH0474792A (en) Method for forming thin film of semiconductor
JPH07105348B2 (en) (III) -Method for manufacturing Group V compound semiconductor thin film
JPH06306616A (en) Production of semiconductor device
Maayan et al. The role of the substrate in photoenhanced metalorganic chemical vapor deposition
JPS631025A (en) Manufacture of semiconductor superlattice
JPH0251497A (en) Formation of semiconductor thin film
JPH05251369A (en) Organic metal chemical vapor growth method
JPH04363699A (en) Manufacturing of x-ray mirror
JPS649680A (en) Manufacture of semiconductor laser
Moreau et al. Nonresist Processes
JPS63200585A (en) Manufacture of quantum well laser