JPS63153278A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPS63153278A
JPS63153278A JP30037986A JP30037986A JPS63153278A JP S63153278 A JPS63153278 A JP S63153278A JP 30037986 A JP30037986 A JP 30037986A JP 30037986 A JP30037986 A JP 30037986A JP S63153278 A JPS63153278 A JP S63153278A
Authority
JP
Japan
Prior art keywords
film
substrate
thin film
plasma
film formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30037986A
Other languages
Japanese (ja)
Inventor
Nobuyuki Zumoto
信行 頭本
Toru Takahama
高浜 亨
Susumu Hoshinouchi
星之内 進
Noriko Morita
森田 訓子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30037986A priority Critical patent/JPS63153278A/en
Priority to US07/133,837 priority patent/US4986214A/en
Publication of JPS63153278A publication Critical patent/JPS63153278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To permit control to excellent film quality at a high speed by using a UV laser oscillator to dissociate film forming gases and using an electron cyclotron resonance plasma generator to generate ions for controlling film formation process. CONSTITUTION:The film forming gases in a reaction chamber 5 are photodissociated by two-photon absorption of UV laser light 2. The hydrogen ions in a plasma forming chamber 8 are given an adequate speed by a meshed electrode 12 for ion acceleration and arrive at the surface of a substrate 6. The hydrogen ions collide against the surface of the substrate 6 at the initial period of the film formation to facilitate crystal distortion so that the nucleus of diamond or the like is easily grown. An etching effect is intensified to suppress the growth of a graphite crystal when energy is applied to the hydrogen ions in the ensuing process. The plasma density is increased by the electron cyclotron resonance plasma generator 8 constituted of the plasma forming chamber 8, an air core coil 9 and microwave 10 generating source, by which the film formation process is executed at the high speed with good controllability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、レーザを利用した薄膜形成装置に関し、た
とえば熱伝導性、電気絶縁性をもつ高純度のダイヤモン
ド薄膜、立方晶窒化ホウ素薄膜を基板の平均温度をほぼ
室温に維持したまま膜質を制御しながら高速に形成する
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thin film forming apparatus using a laser, for example, by depositing a high purity diamond thin film or cubic boron nitride thin film with thermal conductivity and electrical insulation on a substrate. The present invention relates to an apparatus for forming films at high speed while controlling film quality while maintaining the average temperature at approximately room temperature.

〔従来の技術〕[Conventional technology]

薄膜形成技術の実用化のためには、熱による基板への悪
影響を避けるために、薄膜形成プロセスの低温化が望ま
れると同時に、製造コストを低減するために高速な薄膜
形成技術が望まれている。
In order to put thin film formation technology into practical use, it is desirable to lower the temperature of the thin film formation process in order to avoid the adverse effects of heat on the substrate, and at the same time, a high speed thin film formation technology is desired in order to reduce manufacturing costs. There is.

これに応える新技術として紫外レーザ光のもつ高光子エ
ネルギーにより成膜用ガスを光解離し、薄膜を形成する
いわゆるレーザCVD技術が提案されている。この技術
では高光子エネルギーのみによってガスを解離できるた
め、低温で高速に反応生成物を基板上に堆積することが
できるという優れた特長を備えているが、光子と成膜用
ガスとの反応による反応生成物組成の制御や、反応生成
物が基板上にF4膜を形成する過程の別個を行なう機構
を持たないため安定して品質の良い膜を得ることが困難
であった。
As a new technology to meet this demand, a so-called laser CVD technology has been proposed in which a film-forming gas is photodissociated using the high photon energy of ultraviolet laser light to form a thin film. This technology can dissociate gas using only high photon energy, so it has the excellent feature of being able to quickly deposit reaction products on the substrate at low temperatures. It has been difficult to stably obtain a film of good quality because there is no mechanism for controlling the composition of the reaction product or for separately performing the process in which the reaction product forms an F4 film on the substrate.

第2図は例えば刊行物(Applied Physic
s Leffers 第43巻第5号第454頁〜45
6頁)に示された、レーザを利用した従来のレーザCV
D装置を示す断面構成図である。
FIG. 2 shows, for example, a publication (Applied Physic
s Leffers Vol. 43 No. 5 No. 454-45
Conventional laser CV using a laser, shown on page 6)
FIG. 3 is a cross-sectional configuration diagram showing the D device.

図において、(1)は紫外レーザ発振器、(2)は紫外
レーザ光、(3)は紫外レーザ光(2)を成膜用ガスの
解離に必要なエネルギー密度に整形するためのシリンド
リカルテレスコープ、(4)Fi成膜用ガス雰囲気と大
気とを遮断しつつ紫外レーザ光(2)を反応チャンバ(
5)に導入するためのクインド、  (sr)FiIl
ilj膜用ガスの供給口、 (52)Viその排出口、
(6)は基板%(7)は基板(6)を加熱するためのヒ
ータ付サセプタである。
In the figure, (1) is an ultraviolet laser oscillator, (2) is an ultraviolet laser beam, (3) is a cylindrical telescope for shaping the ultraviolet laser beam (2) to the energy density required for dissociation of the film-forming gas, (4) The ultraviolet laser beam (2) is transmitted to the reaction chamber (
5) Quind for introduction into (sr)FiIl
ilj membrane gas supply port, (52) Vi its discharge port,
(6) is a substrate % (7) is a susceptor with a heater for heating the substrate (6).

紫外レーザ発振器(1)から出射された紫外レーザ光(
2) Iri、シリンドリカルテレスコープ(3)によ
り成膜用ガスの解離に適正なエネルギー密度に整形され
、クインド(4)と通してtc11!I用ガス雰囲気を
形成する反応チャンバ(5)に導入される。紫外レーザ
光(2) Fi反応チャンバ(5)に設置され九基板(
6)の数mm上を基板(6)に平行に通過し、成膜用ガ
スを解離する。
Ultraviolet laser light (
2) Iri is shaped by the cylindrical telescope (3) to an appropriate energy density for the dissociation of the film-forming gas, and passed through the quind (4) to tc11! A gas atmosphere for I is introduced into the reaction chamber (5). Ultraviolet laser light (2) is installed in the Fi reaction chamber (5) and nine substrates (
6) in parallel to the substrate (6) to dissociate the film-forming gas.

この解離反応によって得られた反応生成物は仏教により
基板(6)上に堆積する。
The reaction product obtained by this dissociation reaction is deposited on the substrate (6) according to Buddhism.

ところが、高光子エネルギーによる皮膜用ガス解離で生
じた反応生成物から成るPII#:t、成膜用ガスの種
類會こよっては不純物を含んだり、あるいけ結晶性が期
待通りにならないなどの問題があった。
However, depending on the type of film forming gas, PII#:t, which is composed of reaction products generated by dissociation of film gas due to high photon energy, may contain impurities or have problems such as crystallinity not being as expected. was there.

そのため、第2図に示す従来の装置では基板表面をヒー
タ付サセプタによりセ氏数百度に加熱し、基板上に堆積
する膜の品質を制御する方法をとっていた。
Therefore, in the conventional apparatus shown in FIG. 2, the surface of the substrate is heated to several hundred degrees Celsius by a susceptor equipped with a heater to control the quality of the film deposited on the substrate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のレーザ薄膜形成装置は反応生成物を!IJaJす
る機構を持たないため期待通りの膜質を得ることが困難
であった。また、膜の品質を制御するためには基板を数
百度に加熱する方法しか見い出されておらず、低温で膜
質制御が行えなかった。
Conventional laser thin film forming equipment produces reaction products! Since it does not have an IJaJ mechanism, it has been difficult to obtain the expected film quality. Furthermore, in order to control the quality of the film, the only method found was to heat the substrate to several hundred degrees, making it impossible to control the quality of the film at low temperatures.

この発明は上記のような問題点を解決するためになされ
たもので、高光子エネルギーによる成膜用ガス解離を利
用して低温でしかも高速な薄膜形成をおこなう際に皮膜
過程を制御して、期待通りの成膜品質を得ることのでき
る薄膜形成装置を提供することを目的としている。
This invention was made to solve the above-mentioned problems, and it controls the film process when forming a thin film at low temperature and at high speed by utilizing film-forming gas dissociation using high photon energy. The purpose is to provide a thin film forming apparatus that can obtain the expected film forming quality.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のW#膜形成装置は基板が収容され成膜用ガス
が充填された反応チャンバ、上記成膜用ガスを解離し上
記基板に薄膜を形成する紫外レーザ光を発振する紫外レ
ーザ発振器、及び成膜過程制御用イオンを発生する電子
サイクロトクン共鳴プラズマ発生装置を備えたものであ
る。
The W# film forming apparatus of the present invention includes a reaction chamber that accommodates a substrate and is filled with a film-forming gas, an ultraviolet laser oscillator that oscillates an ultraviolet laser beam that dissociates the film-forming gas and forms a thin film on the substrate, and It is equipped with an electron cyclotonic resonance plasma generator that generates ions for controlling the film-forming process.

〔作用」 この発明においては、成膜用ガスとtL護膜過程制御ガ
スとを別の系として構成し、前者に対しては紫外レーザ
光を作用させ、後者に対しては電子サイクロトロン共鳴
プラズマ発生装置(BCR(Electron Cyc
lotron Reaaonance )プラズマ発生
装置と略記する)でプラズマ化し、解離したtc映用ガ
スあるいけ基板表面に作用させることで期待息りの薄膜
を得る。
[Operation] In this invention, the film-forming gas and the tL film-protection process control gas are configured as separate systems, and the former is treated with ultraviolet laser light, and the latter is treated with electron cyclotron resonance plasma generation. Equipment (BCR (Electron Cyc)
A promising thin film is obtained by turning the TC film into plasma using a LOTON REAONANCE (abbreviated as "plasma generator") and applying the dissociated TC film gas to the surface of the substrate.

〔実施例」 以下、この発明の一実施例を、ダイヤモンド薄膜形成を
対象として図に従って説明する。第1図はこの発明の一
実施例による薄膜形成装置を示す断面構成図である。図
において、(1)は紫外レーザ発振器、(2)rri紫
外レーザ光、(3)はシリンドリカルテレスコープ、 
(4)けクインド、(5)#−を反応チャンバ、(6)
は基板、(7)は基板(6)を医持するサセプタ、(8
)はECRプラズマ発生装置のプラズマ生成室、(9)
はその磁場発生用空心コイル、(10) #−iマイク
ロ波(2、45CH2)、ECRプラズマ発生装置はプ
、i’ スマ生成室(8)、空心コイル(9)マイクロ
f!1(10)t−発生するマイクロ波源(図示せず)
により構成される。(ll) Fi水素プラズマ、  
(12)iイオン加速用メツシュ電極、 (51)け成
膜用ガスC)i4を供給する供給口、(52)R真空ポ
ンプ側の排出口、(53)けECR7”ラズマ源ガスH
2を導入する供給口である。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings, targeting diamond thin film formation. FIG. 1 is a sectional view showing a thin film forming apparatus according to an embodiment of the present invention. In the figure, (1) is an ultraviolet laser oscillator, (2) is an RRI ultraviolet laser beam, (3) is a cylindrical telescope,
(4) Kequind, (5) #- reaction chamber, (6)
is a substrate, (7) is a susceptor that holds the substrate (6), (8
) is the plasma generation chamber of the ECR plasma generator, (9)
is the air-core coil for magnetic field generation, (10) #-i microwave (2, 45CH2), ECR plasma generator is pu, i' sma generation chamber (8), air-core coil (9) microf! 1 (10) t-generating microwave source (not shown)
Consisted of. (ll) Fi hydrogen plasma,
(12) Mesh electrode for accelerating i ions, (51) Supply port for supplying film-forming gas C) i4, (52) Exhaust port on the R vacuum pump side, (53) ECR7" plasma source gas H
This is the supply port for introducing 2.

反発)チャンバ(5)内のメタン(: CH4)の成膜
用ガス(数十Torr) Id sシリンドリカルテレ
スコープ(3)により適正なエネルギー密度で整形され
たArFエキシマレーザ等の紫外レーザ光(2)(尖頭
出力10μm/d )の2光子吸収によって光解離され
る。一方、プラズマ生成室(8)中の水素プラズマ、す
なわち水素イオンはイオン加速用メツシュi1!極(1
2)によって適度の速度を与えられてチャンバ内基板(
6)表面に至る。成膜の初期の過程ではこの水素イオン
は基板表面に衝突して結晶歪みを形成し、ダイヤモンド
結晶成長の核形成を容易にする。核形成後の過程では水
素イオンは敗100eVのエネルギーを与えられると、
エツチング作用が強くなり、ダイヤモンド結晶成長と同
時におこる黒鉛結晶成長を抑制する働きをする。従って
不純物のない期待通りの膜質のダイヤモンド薄膜が得ら
れる。また、ECRプラズマ発生装置は通常のプラズマ
装置よりも1桁以上プラズマ密度を高くすることができ
るので、これらのriLs過程を高速にかつ制御よく行
なうことが可能となる。さらに、この成膜過程では基板
をほぼ室温に維持したまま加熱することなく行える。
Methane (CH4) film-forming gas (several tens of Torr) in the repulsion chamber (5) Ultraviolet laser light (2 ) (peak output: 10 μm/d ) and is photodissociated by two-photon absorption. On the other hand, the hydrogen plasma in the plasma generation chamber (8), that is, hydrogen ions, is generated by the ion acceleration mesh i1! pole (1
2), the substrate inside the chamber (
6) Reach the surface. During the initial process of film formation, these hydrogen ions collide with the substrate surface to form crystal distortions, facilitating the formation of nuclei for diamond crystal growth. In the process after nucleation, when hydrogen ions are given an energy of 100 eV,
The etching effect becomes stronger and works to suppress graphite crystal growth that occurs at the same time as diamond crystal growth. Therefore, a diamond thin film with the expected film quality and no impurities can be obtained. Furthermore, since the ECR plasma generator can increase the plasma density by one order of magnitude or more than a normal plasma device, it is possible to perform these riLs processes at high speed and with good control. Furthermore, this film formation process can be performed without heating the substrate while maintaining it at approximately room temperature.

な2、上記実施例ではダイヤモンド薄膜形成の場合に−
いて述べたが、他の薄all形成にも適用できる。例え
ば、プラズマ源ガス種としてN2とN2との混合ガス、
反応チャンバ内に流すガス種としてB2H,を用いれば
優れた膜質の立方晶窒化硼素膜が上記実施例と同様、は
ぼ室温に維持したまま、高速に得られる。
2. In the above example, in the case of forming a diamond thin film -
However, it can also be applied to other thin all formations. For example, a mixed gas of N2 and N2 as the plasma source gas species;
If B2H is used as the gas species flowing into the reaction chamber, a cubic boron nitride film of excellent film quality can be obtained at high speed while maintaining the temperature at approximately room temperature, as in the above embodiment.

c発明の効果J 以上のように、この発明によれば基板が収容され成膜用
ガスが充填された反応チャンバ、上記成膜用ガスを解離
し上記基板に薄膜を形成する紫外レーザ光を発振する紫
外レーザ発振器、及び改映過程制両用イオンを発生する
電子サイクロトロン共鳴プラズマ発生装置を備えたもの
にすることにより、所菫の結晶核の成長及び好ましくな
い結晶核の抑制を制御できるので、膜質の制御を容易に
行なうことができ、基板をほぼ室温に維持したまま、し
かも高速に優れた膜質の成膜が可能となる薄膜形成装置
が得られる効果がある。
c Effects of the Invention J As described above, according to the present invention, a reaction chamber containing a substrate and filled with a film-forming gas emits an ultraviolet laser beam that dissociates the film-forming gas and forms a thin film on the substrate. By using a device equipped with an ultraviolet laser oscillator that generates ion beams, and an electron cyclotron resonance plasma generator that generates ions that can control the film-reflecting process, it is possible to control the growth of specific crystal nuclei and the suppression of undesirable crystal nuclei, thereby improving film quality. This has the effect of providing a thin film forming apparatus that can easily control the temperature and form a film of excellent quality at high speed while maintaining the substrate at approximately room temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるレーザ薄膜形成装置
を示す断面a成因、第2凶は従来のレーザ41!I!形
成装置を示す断面構成図である。 図において、(υは紫外レーザ発振器、(2)は紫外レ
ーザ光、(5)Fi反応チャンバ、  (51)は成膜
用ガス供給口、(6)は基板、(8)はプラズマ生成室
、(9) r/i空心コイル、(10)Hマイクロ波で
ある。 この場合はECRプラズマ発生装置はプラズマ生成室(
8)、空心コイル(9)及びマイクOi (10)源で
構成されている。 なお1図中、同一符号は同−又は相当部分を示す。
FIG. 1 shows a cross section of a laser thin film forming apparatus according to an embodiment of the present invention.The second factor is a conventional laser 41! I! FIG. 2 is a cross-sectional configuration diagram showing a forming apparatus. In the figure, (υ is an ultraviolet laser oscillator, (2) is an ultraviolet laser beam, (5) is a Fi reaction chamber, (51) is a film-forming gas supply port, (6) is a substrate, (8) is a plasma generation chamber, (9) r/i air-core coil, (10) H microwave. In this case, the ECR plasma generator is a plasma generation chamber (
8), an air-core coil (9), and a microphone Oi (10) source. In addition, in FIG. 1, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)基板が収容され成膜用ガスが充填された反応チャ
ンバ、上記成膜用ガスを解離し上記基板に薄膜を形成す
る紫外レーザ光を発振する紫外レーザ発振器、及び成膜
過程制御用イオンを発生する電子サイクロトロン共鳴プ
ラズマ発生装置を備えた薄膜形成装置。
(1) A reaction chamber containing a substrate and filled with a film-forming gas, an ultraviolet laser oscillator that oscillates an ultraviolet laser beam that dissociates the film-forming gas and forms a thin film on the substrate, and ions for controlling the film-forming process. A thin film forming device equipped with an electron cyclotron resonance plasma generator that generates
(2)成膜過程制御用イオンはイオン加速用メッシュ電
極で加速されている特許請求の範囲第1項記載の薄膜形
成装置。
(2) The thin film forming apparatus according to claim 1, wherein the ions for controlling the film forming process are accelerated by a mesh electrode for ion acceleration.
JP30037986A 1986-12-16 1986-12-16 Thin film forming device Pending JPS63153278A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30037986A JPS63153278A (en) 1986-12-16 1986-12-16 Thin film forming device
US07/133,837 US4986214A (en) 1986-12-16 1987-12-16 Thin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30037986A JPS63153278A (en) 1986-12-16 1986-12-16 Thin film forming device

Publications (1)

Publication Number Publication Date
JPS63153278A true JPS63153278A (en) 1988-06-25

Family

ID=17884073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30037986A Pending JPS63153278A (en) 1986-12-16 1986-12-16 Thin film forming device

Country Status (1)

Country Link
JP (1) JPS63153278A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981717A (en) * 1989-02-24 1991-01-01 Mcdonnell Douglas Corporation Diamond like coating and method of forming
US5880563A (en) * 1996-03-06 1999-03-09 Denso Corporation Device for accurately detecting end of usage lifetime of a discharge lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981717A (en) * 1989-02-24 1991-01-01 Mcdonnell Douglas Corporation Diamond like coating and method of forming
US5880563A (en) * 1996-03-06 1999-03-09 Denso Corporation Device for accurately detecting end of usage lifetime of a discharge lamp

Similar Documents

Publication Publication Date Title
US4986214A (en) Thin film forming apparatus
JPH0422985B2 (en)
JPH05275345A (en) Plasma cvd method and its device
JPH06314660A (en) Method and apparatus for forming thin film
JPH01242141A (en) High pressure microwave plasma reactor
JPS63153278A (en) Thin film forming device
JPS6164124A (en) Thin film manufacturing equipment
JPH06316402A (en) Production of hard boron nitride by photoirradiation-assisted plasma cvd
JPH0521983B2 (en)
JPH0420985B2 (en)
JP2009035780A (en) Method for producing hydrogenated amorphous silicon and apparatus for forming film thereof
JP2660244B2 (en) Surface treatment method
JP2726149B2 (en) Thin film forming equipment
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPS63312978A (en) Thin film forming device
JPH0459769B2 (en)
JPH01208470A (en) Thin film-forming equipment
JPH0317274A (en) Film formation
JP2715277B2 (en) Thin film forming equipment
JPH031377B2 (en)
JPH05311429A (en) Thin film forming device
JP4782314B2 (en) Plasma source and compound thin film forming apparatus
JPS63107899A (en) Formation of thin film
JPH03115194A (en) Production of thin film of polycrystalline diamond
JPS5833830A (en) Plasma deposition apparatus