JPS6164124A - Thin film manufacturing equipment - Google Patents

Thin film manufacturing equipment

Info

Publication number
JPS6164124A
JPS6164124A JP59186955A JP18695584A JPS6164124A JP S6164124 A JPS6164124 A JP S6164124A JP 59186955 A JP59186955 A JP 59186955A JP 18695584 A JP18695584 A JP 18695584A JP S6164124 A JPS6164124 A JP S6164124A
Authority
JP
Japan
Prior art keywords
plasma
plasma chamber
thermal equilibrium
thin film
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59186955A
Other languages
Japanese (ja)
Inventor
Atsushi Sekiguchi
敦 関口
Hideo Mito
三戸 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP59186955A priority Critical patent/JPS6164124A/en
Publication of JPS6164124A publication Critical patent/JPS6164124A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To produce an excellent and better controlled quality thin film at a high speed by using both the advantages of locally thermal equilibrium plasma dissociation and/or film deposition of excitation and high frequency glow discharge plasma. CONSTITUTION:A reaction container 10 consists of a main plasma chamber 28 and an auxiliary plasma chamber 27 and the main plasma chamber 28 is made of quarts glass and has a construction of enabling water cooling. Local thermal equilibrium plasma 26 is generated in the plasma chamber 28 and is used for film forming. That is, a high frequency glow discharge 25 generated around the local thermal equilibrium plasma 26 in the main plasma chamber 28 is brought to the auxiliary plasma chamber 27 and is used to maintain the high frequency glow discharge 25 stably and deposits of a film on a substrate 7 placed in the chamber 27 utilizing the active seed of the main plasma.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はLS 1.太陽電池等の半導体装置の製造等に
用いる放電プラズマを利用する薄膜作成装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to LS 1. The present invention relates to a thin film forming apparatus that uses discharge plasma for manufacturing semiconductor devices such as solar cells.

(従来技術とその問題点) 第5図に従来一般に用いられているプラズマCVD装置
を示した。1は必要に応じて気密に保つことのできる反
応室であり、この反応室1内に設置された高周波印加電
極2へ、高周波用[5から気密封止用の絶縁体4を通し
て高周波電圧が印加される。一方基板ホルダー3は接地
電極を兼ねており、ヒーター6により基板7を所定の温
度まで加熱することができる。9は所定の気体の導入方
向を示しており、所定の気体はパルプ11を通して反応
室1内に導入される。
(Prior art and its problems) FIG. 5 shows a conventionally commonly used plasma CVD apparatus. Reference numeral 1 denotes a reaction chamber that can be kept airtight as required, and a high-frequency voltage is applied to a high-frequency application electrode 2 installed in the reaction chamber 1 through an insulator 4 for high-frequency application [5] for airtight sealing. be done. On the other hand, the substrate holder 3 also serves as a ground electrode, and the heater 6 can heat the substrate 7 to a predetermined temperature. 9 indicates the direction of introduction of a predetermined gas, and the predetermined gas is introduced into the reaction chamber 1 through the pulp 11.

一方、12は排気の方向であり1反応室lからバルブ1
3を通して気体が排気される。
On the other hand, 12 is the exhaust direction from 1 reaction chamber 1 to valve 1.
Gas is exhausted through 3.

この種の従来のプラズマCVD装置には次のような欠点
がある。
This type of conventional plasma CVD apparatus has the following drawbacks.

(11放電エネルギーが小さいため、ガスの分解率が小
さい。
(11) Since the discharge energy is small, the gas decomposition rate is small.

■高い励起状態の活性種を得ることがむずかしい。■It is difficult to obtain highly excited active species.

■カスノ分解率の格別大きいNMのガスを入れることが
必要となる場合があり、この分解率の大きいガスが膜質
の悪化をまねくことがある。
(2) It may be necessary to introduce NM gas, which has a particularly high decomposition rate, and this gas, which has a high decomposition rate, may lead to deterioration of film quality.

(至)放電エネルギーは小さいが、m子温度は4〜20
eVと高く、このプラズマで半導体素子に膜付けした場
合、放射損傷をその素子に与える。
(To) The discharge energy is small, but the m temperature is 4 to 20
The plasma is as high as eV, and when a film is applied to a semiconductor device using this plasma, radiation damage is caused to the device.

?= トL LiプラズマCVD装置を用いて窒化シリ
コン膜を作成する場合1反応ガスとして7ラン(SiH
4)ガスおよび窒素(N2)ガスを用いるが、この高周
波グロー放電では窒素の分解率が悪く、ンランガスの量
に比較して極めて多量の窒素ガスを必要とし、しかもそ
の成膜速度は小さい。また、大きい成膜速度を得ようと
してしばしばアンモニア(N Hj)ガスを混合するが
、この場合には生成膜中にN−H結合が残存し膜質の低
下が著るしい。
? = L When creating a silicon nitride film using a Li plasma CVD device, 7 runs (SiH
4) Nitrogen gas and nitrogen (N2) gas are used, but this high-frequency glow discharge has a poor decomposition rate of nitrogen, requires an extremely large amount of nitrogen gas compared to the amount of nitrogen gas, and the film formation rate is slow. Further, ammonia (NHj) gas is often mixed in an attempt to obtain a high film formation rate, but in this case, N--H bonds remain in the resulting film, resulting in a significant deterioration in film quality.

さて、放電エネルギー密度の高いプラズマの一つに1局
部的熱平衡プラズマあるいはLTE(Local Th
ermal Equ目1brlum)  プラズマと呼
ばれるプラズマ状態が存在するが、窒素の局部的熱平衡
プラズマにおいて、従来の高周波グロープラズマでは観
測できなかった窒素ラジカルの発光のこのことは1局部
的熱平衡プラズマでは窒素の分解および励起が進むこと
を示している。またこのプラズマはほぼ熱平衡状態にあ
り、電子およびイオン温度は〜1α000°K(〜7e
V)であり電子温度に関しては高周波グロー放電よりは
−はるかに小さい。このことは半導体素子への放射線損
傷が非常に軽減されることを示す。従って、このプラズ
マによれば高周波グロー放電の欠点を解決できることに
想到した。ちなみにこの局部的熱平衡プラズマを用いる
、SiN微粒子の作成や微粉床上への膜作成が報告され
ている。[T、YoshldaK、Nak’agava
+ T、[Iarada+に、Akashl、 Pla
s+*aChemistry and Plasma 
Pr0Cel!Sll1g+  1 (1) + 11
3(1981)、明石和夫、化学工学、±1−m、44
0(1983)、 T、Yoshlda、 T、Tat
+1. [1,NlshN15h1゜K、Akashl
、 J、Appl、 Phys、、54■、640(+
983)およびこれらの文献に引用されている分献等) しかし、この局部的熱平衡プラズマ中で行なう基板上へ
の藩校の作成は未だ報告されていない。
Now, one of the plasmas with high discharge energy density is local thermal equilibrium plasma or LTE (Local Th
There is a plasma state called plasma, but in a local thermal equilibrium plasma of nitrogen, the emission of nitrogen radicals, which could not be observed in a conventional high-frequency glow plasma, is caused by the decomposition of nitrogen in a local thermal equilibrium plasma. and the excitation progresses. Moreover, this plasma is almost in thermal equilibrium, with electron and ion temperatures of ~1α000°K (~7e
V), and the electron temperature is much smaller than that of high-frequency glow discharge. This indicates that radiation damage to semiconductor devices is greatly reduced. Therefore, we have come up with the idea that this plasma can solve the drawbacks of high-frequency glow discharge. Incidentally, the creation of SiN fine particles and the creation of a film on a fine powder bed using this local thermal equilibrium plasma have been reported. [T, Yoshlda K, Nak'agava
+ T, [Iarada+, Akashl, Pla
s+*aChemistry and Plasma
Pr0Cel! Sll1g+ 1 (1) + 11
3 (1981), Kazuo Akashi, Chemical Engineering, ±1-m, 44
0 (1983), Yoshlda, T., Tat, T.
+1. [1, NlshN15h1°K, Akashl
, J. Appl, Phys., 54■, 640 (+
(983) and the publications cited in these documents) However, the creation of a domain on a substrate in this local thermal equilibrium plasma has not yet been reported.

その理由は、この局部的熱平衡プラズマの中で薄膜を堆
積させるときは、プラズマ密度が高く、かつ放射光の輝
度が高いために、荷電粒子および/または放射光による
生成膜の損傷が大きくなることが予想され、また熱平衡
状態にあるため被生成膜基板が〜千度Cの高温となって
、良質の薄膜を得ることができないためと想像される。
The reason for this is that when depositing a thin film in this local thermal equilibrium plasma, the plasma density is high and the brightness of the synchrotron radiation is high, so the damage to the produced film due to charged particles and/or synchrotron radiation increases. It is assumed that this is because the substrate on which the film is to be formed reaches a high temperature of ~1,000 degrees Celsius due to the thermal equilibrium state, making it impossible to obtain a good quality thin film.

ここで9本願の発明者らは、所望のガスの分解および/
または励起をこの局部的熱平衡プラズマで行ない、膜化
反応を局部的熱平衡プラズマ部の外用部(主にガスの流
れ方向の下流)の高周波グロー伏放電によって行なうこ
とがことができれば、極めて良品質の薄膜を高い速度で
堆積できると予想した。
Here, the inventors of the present application have discovered that the desired gas decomposition and/or
Alternatively, if the excitation can be carried out in this local thermal equilibrium plasma and the film formation reaction can be carried out by high frequency glow discharge in the external part (mainly downstream in the gas flow direction) of the local thermal equilibrium plasma part, it is possible to achieve very high quality. We expected that thin films could be deposited at high rates.

(発明の目的) 本発明はこの理想を実現し、この局部的熱平衡プラズマ
の解離および/または励起と高周波グロー状放電プラズ
マの膜堆積との両長所を集約し膜質のよく制御された良
質の薄膜をご速で作成することのできる薄膜作成装置を
提供することを目的とする。
(Objective of the Invention) The present invention realizes this ideal and combines the advantages of the dissociation and/or excitation of the local thermal equilibrium plasma and the film deposition of the high-frequency glow-like discharge plasma to produce a high-quality thin film with well-controlled film quality. The purpose of the present invention is to provide a thin film forming device that can quickly form a thin film.

(発明の構成) 本発明は反応容器内に主、従二つの互に連通したプラズ
マ室を設け、主たるプラズマ室で局部的熱平衡プラズマ
を発生維持するとともに、そのプラズマを従たるプラズ
マ室に導き、かつ従たるプラズマ室の高周波グロー状放
電をも安定に維持せしめて、この従たるプラズマ室内に
設置した基板上に所定の薄膜を堆積させることで上記目
的を達成したものである。
(Structure of the Invention) The present invention provides a main plasma chamber and a secondary plasma chamber that communicate with each other in a reaction vessel, generates and maintains a local thermal equilibrium plasma in the main plasma chamber, and guides the plasma to the secondary plasma chamber. The above object is achieved by stably maintaining the high-frequency glow discharge in the secondary plasma chamber and depositing a predetermined thin film on a substrate placed in the secondary plasma chamber.

(実施例) 以下図に基いて本発明の詳細な説明する。(Example) The present invention will be explained in detail below based on the drawings.

第1図は本発明の一実施例であって、第5図に対応する
部材には同一符号を付している。
FIG. 1 shows one embodiment of the present invention, and members corresponding to those in FIG. 5 are given the same reference numerals.

反応容器10は主たるプラズマ室28と従たるプラズマ
室27からなっており、主たるプラズマ室28は石英ガ
ラス室でできていて水冷可能な構造となっている。24
は冷却水の流れる方向を示す。高周波電源5から発せら
れる高周波電圧がコイル23に印加されると、このコイ
ル23に囲まれた主たるプラズマ室28の内部には放電
が生じる。コイル23もまた必要に応じて水冷すること
ができる。
The reaction vessel 10 consists of a main plasma chamber 28 and a secondary plasma chamber 27, and the main plasma chamber 28 is made of a quartz glass chamber and has a water-cooled structure. 24
indicates the direction of cooling water flow. When a high frequency voltage emitted from the high frequency power supply 5 is applied to the coil 23, a discharge occurs inside the main plasma chamber 28 surrounded by the coil 23. Coil 23 can also be water cooled if desired.

この放電の形状はプ・ラズマ室28内のガスの種類、圧
力、高周波電力によって異なるが一般的に言って、圧力
が高く電力が小さい領域では高周波グロー放電となり、
圧力が低く電力が大きい領域では局部熱平衡プラズマと
なる。ただしここで言う高周波グロー放電状態とは、X
1度のあまり高くないプラズマが主たるプラズマ室内に
ほぼ−1表に広く発生している状態であり、一方間部熱
平衡プラズマ状態とは非常に輝度の高いプラズマがプラ
ズマ室の局所に閉じ込められた状態となっていて、その
外側に高周波グロー伏放電吠態が存在しているような状
態を指している。
The shape of this discharge varies depending on the type of gas in the plasma chamber 28, pressure, and high-frequency power, but generally speaking, in areas where the pressure is high and the power is low, it becomes a high-frequency glow discharge.
In regions where the pressure is low and the power is high, a local thermal equilibrium plasma occurs. However, the high frequency glow discharge state referred to here is
This is a state in which plasma with a temperature of not very high 1 degree Celsius is widely generated within the main plasma chamber, and on the other hand, an intermediate thermal equilibrium plasma state is a state in which plasma with very high brightness is confined locally in the plasma chamber. This refers to a state in which a high-frequency glow subdued discharge pattern exists outside of this.

高周波グロー放電状態と局部熱平衡プラズマ状態の二つ
の状態の間の遷移は、ガスの種類、主たるプラズマ室2
8の形状、圧力および電源の特性等で左右され9通常は
ヒステリシス的に変化する。
The transition between the two states, the high-frequency glow discharge state and the local thermal equilibrium plasma state, depends on the type of gas, the main plasma chamber 2
It depends on the shape of 8, pressure, power supply characteristics, etc. 9 and usually changes in a hysteresis manner.

高周波グロー放電状態と局部熱平衡プラズマ状態の区別
は、前述のように状態がヒステリシス的に変化するため
、放電の場所、r1度等を目視することによって容易に
区別できるが、高周波マツチングの状態および発光分光
分析のスペクトルパターン等によってもこれを区別でき
る。この例として第3図に、窒素ガスの高周波グロー放
電状態および局部熱平衡プラズマ状態の発光分光分析に
よる局部熱平衡プラズマでは、か(明らかに窒素の分解
、励起が進行して高周波グロー放電状態の発光分光分析
曲線aとははっきり区別できるものである。
The high-frequency glow discharge state and the local thermal equilibrium plasma state can be easily distinguished by visually observing the discharge location, r1 degree, etc., since the state changes hysterically as described above, but the high-frequency matching state and the light emission This can also be distinguished by the spectral pattern of spectroscopic analysis. As an example of this, Fig. 3 shows that in a local thermal equilibrium plasma, the emission spectroscopic analysis of the high-frequency glow discharge state of nitrogen gas and the local thermal equilibrium plasma state shows that (clearly, decomposition and excitation of nitrogen progresses and the emission spectroscopic analysis of the high-frequency glow discharge state It can be clearly distinguished from analysis curve a.

しかしまれに、高周波グロー放電状態と局部熱平衡プラ
ズマ状態とのra7の遷移がヒステリシス的とならず、
中間状態を経て連続的に遷移が進むことがある。この場
合は両者の区別を分光分析だけで明確につけることは困
難であるが1局部熱平衡プラズマが生じている場合には
目視でプラズマ室の輝度にムラを生ずるのがB 1fl
l+され、同時に1発光分光分析のスペクトルパターン
が局部熱平衡プラズマ型の傾向を示して来るので比較的
容易に確認できる。
However, in rare cases, the transition of ra7 between the high-frequency glow discharge state and the local thermal equilibrium plasma state does not become hysteretic;
Transitions may proceed continuously through intermediate states. In this case, it is difficult to clearly distinguish between the two by spectroscopic analysis alone, but when a local thermal equilibrium plasma is generated, it can be visually observed that the brightness of the plasma chamber becomes uneven.
1+, and at the same time, the spectral pattern of single emission spectrometry shows a local thermal equilibrium plasma type tendency, so it can be confirmed relatively easily.

本実施例では主たるプラズマ室28内に局部熱平衡プラ
ズマ26を発生させ、これを成膜に利用する点に特徴が
ある。
This embodiment is characterized in that a local thermally balanced plasma 26 is generated within the main plasma chamber 28 and used for film formation.

即ち、主たるプラズマ室28内で局部熱平衡プラズマ2
6の周辺に生じている高周波グa−伏放電ズマの活性種
を活用し、室27の内部に設置したされ、ドーナツ型容
器の内側に小穴を多数開けてできたガス排出口29から
反応容器10内に排出撒布されるが、この気体又はその
一部分を特に強あるいは一部を、直接、主たるプラズマ
室28内に導入し、目的を果すこ七ができる。
That is, the local thermal equilibrium plasma 2 is generated within the main plasma chamber 28.
Using the active species of the high-frequency Gua-Fu discharge Zuma occurring around the chamber 27, the reactor is discharged from the gas outlet 29, which is installed inside the chamber 27 and made by making many small holes inside the donut-shaped container. However, this gas, or a portion thereof, can be introduced directly into the main plasma chamber 28 to serve this purpose.

たとえば、シランガスと窒素ガスから窒化ンリコる。窒
素ガスは局部熱平衡プラズマ26内を通る際に励起およ
び/または解離が進み、その励起。
For example, nitriding is made from silane gas and nitrogen gas. As the nitrogen gas passes through the local thermal equilibrium plasma 26, excitation and/or dissociation progresses;

解離されたガスが従たるプラズマ室27に導かれること
になる。従来の第5図のプラズマCVD装置では窒素ガ
スの解離が少なく、また励起が進まないために窒素ガス
とシランガスのみでは高速な成膜は困難であるが1本実
施例の装置では窒素ガスとシランガスのみを用いて70
0Az’sln程度の高速な窒化シリコン膜の堆積を行
うことが可能である。
The dissociated gas will be led to the secondary plasma chamber 27. In the conventional plasma CVD apparatus shown in FIG. 5, it is difficult to form a film at high speed using only nitrogen gas and silane gas because the dissociation of nitrogen gas is small and excitation does not proceed, but in the apparatus of this embodiment, nitrogen gas and silane gas are used. 70 using chisel
It is possible to deposit a silicon nitride film at a high speed of about 0Az'sln.

従来の第5図のプラズマCVD装置では成膜速度を上げ
るために反応気体にアンモニアガスを混合して一定の成
果を挙げているが、これには次に説明するような欠点が
ある。
In the conventional plasma CVD apparatus shown in FIG. 5, ammonia gas is mixed with the reaction gas in order to increase the film formation rate, and certain results have been achieved, but this method has the following drawbacks.

第4図に:アンモニアガスを混合して従来型のプラズマ
CVD装置で成膜した窒化シリコン膜の赤外吸収スペク
トルaと1本実施例の装置で成膜した窒化/リコン膜お
赤外吸収スペクトルbを示す。両膜とも圧力はl To
rr、基板温度は300°C200A/1nの成膜速度
であり、またガス流岱は、a膜は5IH410SCCM
、 NH320SCCM、 N280 SCCM、  
l)膜はN2200 SCCM、5IH45SCCMの
条件で成膜したものである。
Figure 4: Infrared absorption spectrum a of a silicon nitride film formed using a conventional plasma CVD apparatus by mixing ammonia gas, and infrared absorption spectrum a of a nitride/licon film formed using the apparatus of this example. b. The pressure on both membranes is l To
rr, the substrate temperature is 300°C, the film formation rate is 200A/1n, and the gas flow rate is 5IH410SCCM for the a film.
, NH320SCCM, N280SCCM,
l) The film was formed under the conditions of N2200 SCCM and 5IH45SCCM.

窒化シリコン膜では、 5l−H結合およびN−11結
合の存在は、バッンベーション効果上、膜質低下の原因
となることが知られていて、従来装置で得た窒化シリコ
ン膜にはそれらが存在して問題があるが本発明の装置で
作成した膜の赤外吸収スペクトルbにはこれらが存在せ
ず、特にL180cm−’付近には吸収が全くみられず
ト「結合の極めて少ない膜が得られていることがわかる
In silicon nitride films, it is known that the presence of 5l-H bonds and N-11 bonds causes deterioration in film quality due to the banvanation effect, and these exist in silicon nitride films obtained using conventional equipment. However, these do not exist in the infrared absorption spectrum b of the film prepared using the apparatus of the present invention, and in particular, no absorption is observed near L180 cm-', indicating that a film with extremely low bonding was obtained. I can see that it is being done.

この膜質の向上は、アンモニアガスを用いず、窒素を局
部熱平衡プラズマで直接分解、励起して成膜したため得
られたものであり1本発明の効果を示す。電子温度が低
いため半導体素子への放射線損傷が非常に少ないことも
特筆すべき効果である。
This improvement in film quality was obtained because the film was formed by directly decomposing and exciting nitrogen with local thermal equilibrium plasma without using ammonia gas, and thus shows the effect of the present invention. Another noteworthy effect is that radiation damage to semiconductor devices is extremely small due to the low electron temperature.

また、窒化シリコン膜は、膜の513N、化学n論性が
良くなるにしたがってストレスが発生するがこの膜に水
素をある程度含有させるときは、そのストレスが緩和さ
れることが一般に知られている。
Furthermore, it is generally known that stress occurs in a silicon nitride film as the 513N stoichiometry of the film improves, but that stress is alleviated when this film contains a certain amount of hydrogen.

従って、パフシベーシコン作用を悪化させず、しかも大
トレスの少ない膜をうるためには、Hの含有が適度であ
ることが必要となる。更にまた。そのHはトHの結合型
よりも5l−Hの結合型の形で含有されるのが適当であ
るとも言われているが1本実施例で作成された膜は上記
の条件を良く滴定していることが判明した。従って本発
明はLSI等の製造上極めて重要な手段を提出するもの
である。
Therefore, in order to obtain a film with less large stress without worsening the puff basicon effect, it is necessary that the content of H is appropriate. Yet again. It is said that it is more appropriate for H to be contained in the 5l-H bonded form than in the 5-H bonded form, but the membrane prepared in this example satisfactorily titrated under the above conditions. It turned out that Therefore, the present invention provides extremely important means for manufacturing LSIs and the like.

ただし、上記とは別の理由などで膜が酸量のトH結合を
必要とするという場合には、木実施例の装置でアンモニ
アを適n混合した反応ガスを用いてその目的を達成する
ことができ、しかもト)結合の含有全をかなり自由に制
御することが可能である。本発明の装置はこの面でも従
来型に見られない能力を発揮する。
However, if the membrane requires an acidic amount of H bonds for reasons other than those mentioned above, the purpose can be achieved using the reactor gas mixed with ammonia appropriately using the apparatus described in the wood example. Furthermore, (g) it is possible to control the total amount of bonds fairly freely. The device of the present invention exhibits capabilities not seen in conventional types in this respect as well.

上記と同様に本発明は、酸化レリフン膜、炭化シリコン
膜、アモルファスシリコン膜の成膜に、更にこれらの膜
へ必要な成分をドーピングした膜の成膜等に本発明の装
置は特に威力を現わし、超LS 1.太陽電池などの半
導体装置の製造に広範囲の用途をもつ。
Similarly to the above, the apparatus of the present invention is particularly effective in forming oxidized relief films, silicon carbide films, and amorphous silicon films, as well as films in which these films are doped with necessary components. I, super LS 1. It has a wide range of applications in the manufacture of semiconductor devices such as solar cells.

第2図は本発明の他の実施例である。第1図と同一機能
をもつ部材には同じ符号を付しである、第2図にて、3
0は高周波印加電極、31は接地電極であり、高周波電
源Sから発せられた高周波電圧を高周波印加電極30に
印加し、高周波容量結合によって主たるプラズマ室28
の内部に局部熱平衡プラズマ26を発生する。その他の
構成は第1図と変らない。
FIG. 2 shows another embodiment of the invention. Components with the same functions as in Fig. 1 are given the same reference numerals. In Fig. 2, 3
0 is a high frequency application electrode, 31 is a ground electrode, which applies the high frequency voltage emitted from the high frequency power supply S to the high frequency application electrode 30, and connects the main plasma chamber 28 by high frequency capacitive coupling.
A local thermal equilibrium plasma 26 is generated inside the . Other configurations are the same as in Figure 1.

局部熱平衡プラズマ26の特性は放電かだ周波誘導結合
型であっても高周波容量結合型であっても全く同様であ
り、主たるプラズマ室の形状・材質その他によって利用
し易い方をその都度選択すればよい。
The characteristics of the local thermal equilibrium plasma 26 are exactly the same whether it is a discharge raft inductively coupled type or a high frequency capacitively coupled type, and the one that is easier to use depending on the shape, material, etc. of the main plasma chamber can be selected each time. good.

なお、主たるプラズマ室28の材質を石英ガラスにした
場合は、プラズマによる5102スパツタリング効果に
より、まれに、膜内に酸素の混入が見られる。酸素混入
を避けるには石英ガラスの代りにA1□03材のセラミ
クスあるいは成膜すべき材質と同じ材質のセラミク、ス
材等を使用するのがを効であった。
Note that when the main plasma chamber 28 is made of quartz glass, oxygen is rarely mixed into the film due to the 5102 sputtering effect caused by the plasma. In order to avoid oxygen contamination, it is effective to use ceramics of A1□03 material, ceramics of the same material as the material to be formed, stainless steel, etc. instead of quartz glass.

なお、これら第1図、第2図の実施例のほかにも放電電
極の形状、構造1反応容器の材質、形状を変えて局部熱
平衡プラズマを発生させ、その周辺の高周波グロー状放
電を従たるプラズマ室に導き出して従たるプラズマ室の
高周波グロー状放電により、基板上に膜を堆積させる装
置は様々に構成できる。本発明は上記実施例の各構造に
とられれるものではない。
In addition to the examples shown in FIGS. 1 and 2, the shape of the discharge electrode and the material and shape of the structure 1 reaction vessel are changed to generate a local thermal equilibrium plasma, and the high-frequency glow-like discharge in the surrounding area is generated. The apparatus for depositing a film on a substrate by means of a high-frequency glow-like discharge led into a plasma chamber and a secondary plasma chamber can be configured in various ways. The present invention is not limited to each structure of the above embodiments.

(発明の効果) 本発明は以上説明した通りであって、薄膜製造プロセス
において半導体素子への放射線損傷を極めて少な(しな
がら良質の薄膜を制御性良く生成するものである。本発
明が半導体装置および他の成膜装置に寄与するところは
大きく、工業上何為の発明と言うことができる。
(Effects of the Invention) The present invention is as described above, and is capable of producing high-quality thin films with good controllability while minimizing radiation damage to semiconductor elements in the thin film manufacturing process. The present invention greatly contributes to other film forming apparatuses, and can be said to be an industrially useful invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明による装置の一実施例を示した
図である。第3図は窒素ガスの高周波グロー放電状Ba
および局部熱平衡プラズマ状態すの発光分光分析による
スペクトルパターンを示した図である。第4図は従来の
プラズマCVD装置により作成した膜の赤外吸収スペ、
tトルaと9本発明装置により作成した膜の赤外吸収ス
ペクトルbを示した図である。第5図は従来のプラズマ
CVD装置を示した図である。 1・・・反応室、3・・・基板ホルダ、5・・・高周波
T源6・・・ヒーター、7・・・基板、8・・・高周波
グロー放電、10・・・反応容器、23・・・コイル、
25・・・高周波グロー状放電、26・・・局部熱平衡
プラズマ27・・・従たるプラズマ室、28・・・主た
るプラズマ−室。 代理人  弁理士 村 上 健 次 WAVENtJMBER(cri−’)FIG、4
1 and 2 are diagrams showing an embodiment of the apparatus according to the present invention. Figure 3 shows the high-frequency glow discharge of nitrogen gas
FIG. 3 is a diagram showing a spectral pattern obtained by emission spectroscopic analysis of a local thermal equilibrium plasma state. Figure 4 shows the infrared absorption spectra of a film created using a conventional plasma CVD device.
9 is a diagram showing an infrared absorption spectrum b of a film produced by the apparatus of the present invention. FIG. 5 is a diagram showing a conventional plasma CVD apparatus. DESCRIPTION OF SYMBOLS 1... Reaction chamber, 3... Substrate holder, 5... High frequency T source 6... Heater, 7... Substrate, 8... High frequency glow discharge, 10... Reaction container, 23... ··coil,
25... High frequency glow discharge, 26... Local thermal equilibrium plasma 27... Secondary plasma chamber, 28... Main plasma chamber. Agent Patent Attorney Kenji Murakami WAVENtJMBER (cri-') FIG, 4

Claims (5)

【特許請求の範囲】[Claims] (1)所定の気体を反応容器内に導入し、放電によって
生ずる該気体のプラズマを用いて薄膜を作成する薄膜作
成装置において、主たるプラズマ室で安定した局部的熱
平衡プラズマを発生維持するとともに、そのプラズマを
従たるプラズマ室に導き出してこの従たるプラズマ室で
も従たる放電を維持せしめ、該従たるプラズマ室に設置
した基板上に所定の薄膜を堆積させることを特徴とする
薄膜作成装置。
(1) In a thin film forming apparatus that introduces a predetermined gas into a reaction vessel and uses the plasma of the gas generated by electric discharge to form a thin film, a stable local thermal equilibrium plasma is generated and maintained in the main plasma chamber, and A thin film forming apparatus characterized in that a plasma is led to a secondary plasma chamber, a secondary discharge is maintained in the secondary plasma chamber, and a predetermined thin film is deposited on a substrate placed in the secondary plasma chamber.
(2)該局部的熱平衡プラズマの発生機構が、高周波誘
導結合型であることを特徴とする特許請求の範囲第1項
記載の薄膜作成装置。
(2) The thin film forming apparatus according to claim 1, wherein the local thermal equilibrium plasma generation mechanism is of a high frequency inductively coupled type.
(3)該局部的熱平衡プラズマの発生機構が高周波容量
結合型であることを特徴とする特許請求の範囲第1項記
載の薄膜作成装置。
(3) The thin film forming apparatus according to claim 1, wherein the local thermal equilibrium plasma generation mechanism is of a high frequency capacitive coupling type.
(4)該局部的熱平衡プラズマにふれる該主たるプラズ
マ室の内壁の少なくとも一部に石英ガラスおよび/また
はセラミクスを用いることを特徴とする特許請求の範囲
第1、2または3項記載の薄膜作成装置。
(4) The thin film forming apparatus according to claim 1, 2 or 3, characterized in that quartz glass and/or ceramics are used for at least a part of the inner wall of the main plasma chamber that is exposed to the local thermal equilibrium plasma. .
(5)該主たるプラズマ室に、該所定の気体の少なくと
も一部を導入しかつ、前記従たるプラズマ室に該所定の
気体の他部を導入したことを特徴とする特許請求の範囲
第1、2、3または4項記載の薄膜作成装置。
(5) At least a part of the predetermined gas is introduced into the main plasma chamber, and another part of the predetermined gas is introduced into the secondary plasma chamber. The thin film forming apparatus according to item 2, 3 or 4.
JP59186955A 1984-09-06 1984-09-06 Thin film manufacturing equipment Pending JPS6164124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59186955A JPS6164124A (en) 1984-09-06 1984-09-06 Thin film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59186955A JPS6164124A (en) 1984-09-06 1984-09-06 Thin film manufacturing equipment

Publications (1)

Publication Number Publication Date
JPS6164124A true JPS6164124A (en) 1986-04-02

Family

ID=16197646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59186955A Pending JPS6164124A (en) 1984-09-06 1984-09-06 Thin film manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS6164124A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990229A (en) * 1989-06-13 1991-02-05 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5010842A (en) * 1988-10-25 1991-04-30 Mitsubishi Denki Kabushiki Kaisha Apparatus for forming thin film
US5304250A (en) * 1991-07-11 1994-04-19 Sony Corporation Plasma system comprising hollow mesh plate electrode
US5346578A (en) * 1992-11-04 1994-09-13 Novellus Systems, Inc. Induction plasma source
WO1997003224A1 (en) * 1995-07-10 1997-01-30 Watkins Johnson Company A plasma enhanced chemical processing reactor and method
US5620523A (en) * 1994-04-11 1997-04-15 Canon Sales Co., Inc. Apparatus for forming film
US5681393A (en) * 1995-01-24 1997-10-28 Anelva Corporation Plasma processing apparatus
US5690050A (en) * 1995-05-10 1997-11-25 Anelva Corporation Plasma treating apparatus and plasma treating method
US6217721B1 (en) 1995-08-07 2001-04-17 Applied Materials, Inc. Filling narrow apertures and forming interconnects with a metal utilizing a crystallographically oriented liner layer
US6225744B1 (en) 1992-11-04 2001-05-01 Novellus Systems, Inc. Plasma process apparatus for integrated circuit fabrication having dome-shaped induction coil

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5010842A (en) * 1988-10-25 1991-04-30 Mitsubishi Denki Kabushiki Kaisha Apparatus for forming thin film
US4990229A (en) * 1989-06-13 1991-02-05 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5304250A (en) * 1991-07-11 1994-04-19 Sony Corporation Plasma system comprising hollow mesh plate electrode
US5605599A (en) * 1992-11-04 1997-02-25 Novellus Systems, Inc. Method of generating plasma having high ion density for substrate processing operation
US5405480A (en) * 1992-11-04 1995-04-11 Novellus Systems, Inc. Induction plasma source
US5346578A (en) * 1992-11-04 1994-09-13 Novellus Systems, Inc. Induction plasma source
US6225744B1 (en) 1992-11-04 2001-05-01 Novellus Systems, Inc. Plasma process apparatus for integrated circuit fabrication having dome-shaped induction coil
US5620523A (en) * 1994-04-11 1997-04-15 Canon Sales Co., Inc. Apparatus for forming film
US5681393A (en) * 1995-01-24 1997-10-28 Anelva Corporation Plasma processing apparatus
US5690050A (en) * 1995-05-10 1997-11-25 Anelva Corporation Plasma treating apparatus and plasma treating method
WO1997003224A1 (en) * 1995-07-10 1997-01-30 Watkins Johnson Company A plasma enhanced chemical processing reactor and method
US5792272A (en) * 1995-07-10 1998-08-11 Watkins-Johnson Company Plasma enhanced chemical processing reactor and method
US6375750B1 (en) 1995-07-10 2002-04-23 Applied Materials, Inc. Plasma enhanced chemical processing reactor and method
US6217721B1 (en) 1995-08-07 2001-04-17 Applied Materials, Inc. Filling narrow apertures and forming interconnects with a metal utilizing a crystallographically oriented liner layer

Similar Documents

Publication Publication Date Title
US9966251B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
US7192626B2 (en) Methods for producing silicon nitride films and silicon oxynitride films by thermal chemical vapor deposition
US7758920B2 (en) Method and apparatus for forming silicon-containing insulating film
US6326064B1 (en) Process for depositing a SiOx film having reduced intrinsic stress and/or reduced hydrogen content
JPS6324923B2 (en)
JP2006294816A (en) Film forming method, film forming apparatus, and computer program
JP4252749B2 (en) Substrate processing method and substrate processing apparatus
US20120153442A1 (en) Silicon nitride film and process for production thereof, computer-readable storage medium, and plasma cvd device
JPS6347141B2 (en)
JPS6164124A (en) Thin film manufacturing equipment
KR101254986B1 (en) Silicon nitride film and process for production thereof, computer-readable storage medium, and plasma cvd device
US20060214224A1 (en) Semiconductor device and process for producing the same
JP2006176859A (en) Method for producing silicon nano-crystal structure
Iyer et al. Kinetics of low pressure CVD growth of SiO2 on InP and Si
JP4051619B2 (en) Silicon oxide film fabrication method
JPH0543393A (en) Method for preparing carbon material
JPS63104340A (en) Method for forming silicon nitride film
JPWO2010038888A1 (en) Silicon nitride oxide film and method for forming the same, computer-readable storage medium, and plasma CVD apparatus
JPH04173976A (en) Thin film forming device
JP2558457B2 (en) Method for forming silicon oxide film
JPS6027124A (en) Method of photo plasma gas phase reaction
JPH04154970A (en) Method for synthesizing cubic boron nitride
WO2007026876A1 (en) Thin layer formation equipment and process for formation of thin layers
JPS5893242A (en) Formation of nitride film
JPS63153278A (en) Thin film forming device