JPS6347141B2 - - Google Patents

Info

Publication number
JPS6347141B2
JPS6347141B2 JP56036385A JP3638581A JPS6347141B2 JP S6347141 B2 JPS6347141 B2 JP S6347141B2 JP 56036385 A JP56036385 A JP 56036385A JP 3638581 A JP3638581 A JP 3638581A JP S6347141 B2 JPS6347141 B2 JP S6347141B2
Authority
JP
Japan
Prior art keywords
plasma
gas
raw material
film
generation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56036385A
Other languages
Japanese (ja)
Other versions
JPS57167631A (en
Inventor
Kanetake Takasaki
Kenji Koyama
Mikio Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56036385A priority Critical patent/JPS57167631A/en
Publication of JPS57167631A publication Critical patent/JPS57167631A/en
Publication of JPS6347141B2 publication Critical patent/JPS6347141B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は改善されたプラズマ気相成長法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved plasma vapor deposition process.

プラズマCVD(chemical vapor deposition)
法はその制御性が良く、成長皮膜の特性が優れて
いることから半導体装置の前記に必要なSiN、
SiO、PSG、BSG等各種皮膜の形成に利用され
る。
Plasma CVD (chemical vapor deposition)
The method has good controllability and the properties of the grown film are excellent, so it is suitable for SiN, which is necessary for semiconductor devices.
Used to form various films such as SiO, PSG, and BSG.

従来のプラズマCVD法に於てはプラズマ発生
領域は1ケ所であり、該領域に於て原料ガスをプ
ラズマ化すると共に反応を進行させるものであつ
た。また、プラズマ発生領域と反応領域を区分し
原料ガスをプラズマ化したのち、別なチエンバー
内に置かれた基板上にプラズマガスを導き、基板
上に目的とする皮膜を堆積させる方法も知られて
いるが、この技術の主な目的はプラズマ発生によ
る基板の損傷を避ける点にある。
In the conventional plasma CVD method, there is only one plasma generation region, in which the raw material gas is turned into plasma and the reaction proceeds. Another known method is to separate the plasma generation region and the reaction region, turn raw material gas into plasma, and then guide the plasma gas onto a substrate placed in a separate chamber to deposit a desired film on the substrate. However, the main purpose of this technology is to avoid damage to the substrate due to plasma generation.

本発明はこれらの従来技術とは異り、原料ガス
の種類によつてプラズマ化の際の活性化率が異
り、その結果成長膜の組成に偏りを生ずることが
ある点に着目し、原料ガスのうち比較的プラズマ
化され難い材料を、より有効な条件で予めプラズ
マ化しておくことにより、この偏りを是正せんと
するものである。
The present invention differs from these conventional techniques by focusing on the fact that the activation rate during plasma generation differs depending on the type of raw material gas, and as a result, the composition of the grown film may be biased. This bias is attempted to be corrected by preliminarily converting gases that are relatively difficult to convert into plasma into plasma under more effective conditions.

例えば窒化シリコン(SiN)膜の形成にモノシ
ラン(SiH4)と窒素ガス(N2)を原料として用
いる場合、此等の混合気体をプラズマ化し、反応
させると、N2ガスのプラズマ活性化率が低い為
にN成分の小なるSiN膜が生成する。
For example, when monosilane (SiH 4 ) and nitrogen gas (N 2 ) are used as raw materials to form a silicon nitride (SiN) film, when these gas mixtures are turned into plasma and reacted, the plasma activation rate of the N 2 gas increases. Because of the low N content, a SiN film with a small N component is produced.

単に原料中のN2分率を増すだけでこの偏りを
補償しようとするとSiH4分率が大幅に低下し、
SiN膜の成長速度が低下することになる。また
N2の代りにアンモニア(NH3)を用いればこの
偏りは軽減されるが、生成皮膜中に水素が混入す
るという問題が起る。
If we try to compensate for this bias by simply increasing the N2 fraction in the feedstock, the SiH4 fraction will drop significantly,
The growth rate of the SiN film will decrease. Also
If ammonia (NH 3 ) is used instead of N 2 , this bias can be alleviated, but the problem arises that hydrogen is mixed into the resulting film.

本発明の目的はN2ガスのようなプラズマ活性
化率の低い材料を用いても組成の偏りのない皮膜
を形成しうるプラズマCVD法を提供することで
あり、この目的を達成する為本発明は比較的周波
数の高い高周波電界を印加する第1のプラズマ発
生領域に原料ガスの一部を導入してプラズマ化
し、該プラズマガス及び原料ガスの残余を比較的
周波数の低い高周波電界を印加する第2のプラズ
マ発生領域に導入して皮膜を生成することを特徴
としている。
The purpose of the present invention is to provide a plasma CVD method that can form a film with a uniform composition even when using a material with a low plasma activation rate such as N 2 gas. A part of the raw material gas is introduced into a first plasma generation region to which a high-frequency electric field with a relatively high frequency is applied to turn it into plasma, and the remaining plasma gas and the raw material gas are transferred to a first plasma generation region where a high-frequency electric field with a relatively low frequency is applied. It is characterized in that it is introduced into the plasma generation area of No. 2 to generate a film.

本発明は第1図に示す如き装置によつて実施さ
れる。該装置はマイクロ波ガス励起部1及びプラ
ズマCVD反応部2により構成されている。
The present invention is implemented by an apparatus such as that shown in FIG. The apparatus is composed of a microwave gas excitation section 1 and a plasma CVD reaction section 2.

上述の場合のようにN2+SiH4によつてSiN膜
を形成する場合、N2ガスは導入口11から、第
1のプラズマ発生領域12に導入される。該プラ
ズマ発生領域はマイクロ波電源14に接続されて
いる導波管13内のガス流路に生ずる。15はマ
イクロ波遮蔽板である。
When forming a SiN film using N 2 +SiH 4 as in the case described above, N 2 gas is introduced into the first plasma generation region 12 from the introduction port 11 . The plasma generation region occurs in a gas flow path within the waveguide 13 that is connected to the microwave power source 14. 15 is a microwave shielding plate.

導波管13に例えば2.45GHzのマイクロ波電界
が導入されることによつて領域12内のN2ガス
はプラズマ化されるが通常のプラズマCVD法に
用いられる13.56MHzのような高周波に比べ、上
述のようなマイクロ波でN2ガスを励起するとプ
ラズマ活性化率は大幅に向上し、しかも発生した
プラズマガス(励起されたN原子)は長寿命であ
る。使用するマイクロ波は電波法により許されて
いる2.45GHzが適しているが、技術的にはこれに
限るものではなく、0.5GHz程度以上のマイクロ
波で同様の効果が得られる。
For example, by introducing a microwave electric field of 2.45 GHz into the waveguide 13, the N 2 gas in the region 12 is turned into plasma, but compared to the high frequency of 13.56 MHz used in normal plasma CVD method, When N 2 gas is excited by microwaves as described above, the plasma activation rate is greatly improved, and the generated plasma gas (excited N atoms) has a long life. The suitable microwave to use is 2.45 GHz, which is allowed by the Radio Law, but technically it is not limited to this, and similar effects can be obtained with microwaves of about 0.5 GHz or higher.

一方、プラズマCVD反応部2は、その主要部
は通常の平行平板電極型プラズマCVD装置と同
様に構成されており、原料ガス導入口21から送
り込まれたSiH4は上部電極22に設けられた小
孔から第2のプラズマ発生領域23に放出され
る。該領域でSiH4は上部電極22と下部電極2
4に印加される高周波電界(例えば13.56MHz)
によつてプラズマ化され、第1のプラズマ発生領
域12から導管16を経て送られてきたNプラズ
マと反応し、基板25上にSiN皮膜となつて堆積
する。上記13.56MHzは電波法に準拠して設定さ
れた周波数であるが、本発明のようにプラズマ活
性化率の周波数依存性を利用する場合には、原理
的には活性化率に有意の差を生ずる程度に周波数
が異なつていればよいものであり、0.5GHz以上
であるより高い周波数に対しては、より低い周波
数を例えば30MHz以下とすることで、十分な効果
を得ることが出来る。
On the other hand, the main part of the plasma CVD reaction section 2 is constructed in the same way as a normal parallel plate electrode type plasma CVD apparatus, and the SiH 4 fed from the raw material gas inlet 21 is passed through the small part provided in the upper electrode 22. The plasma is emitted from the hole into the second plasma generation region 23. In this region, SiH 4 is connected to the upper electrode 22 and the lower electrode 2.
High frequency electric field (e.g. 13.56MHz) applied to 4
The SiN plasma is turned into a plasma by the above process, reacts with the N plasma sent from the first plasma generation region 12 through the conduit 16, and is deposited as a SiN film on the substrate 25. The above 13.56MHz is a frequency set in accordance with the Radio Law, but when using the frequency dependence of the plasma activation rate as in the present invention, in principle there is no significant difference in the activation rate. It is sufficient that the frequencies differ to the extent that this occurs, and for higher frequencies of 0.5 GHz or higher, a sufficient effect can be obtained by setting the lower frequency to, for example, 30 MHz or lower.

Nプラズマは第2のプラズマ発生領域22を囲
むように設けられたプラズマガス導入リング26
に設けられた小孔から、該プラズマ領域に向つて
放出されるが、既述したようにマイクロ波で励起
されたNプラズマの寿命は長いので、特別な装置
によることはなく、導管内を輸送して反応に関与
せしめることが可能である。
The N plasma is supplied through a plasma gas introduction ring 26 provided to surround the second plasma generation region 22.
N plasma is emitted toward the plasma region from small holes provided in the pipe, but as mentioned above, N plasma excited by microwaves has a long lifespan, so there is no need for special equipment to transport it inside the pipe. It is possible to make it participate in the reaction.

単にNプラズマをSiH4に接触せしめるだけで
もSiNの生成は進行するが、その場合の成長速度
は小であり、制御性も劣るので実用性に乏しい。
本発明のようにSiH4もプラズマ励起してやるこ
とによつて始めて充分な成長速度と制御性が得ら
れる。
Although SiN generation proceeds simply by bringing N plasma into contact with SiH 4 , the growth rate in this case is low and the controllability is poor, so it is impractical.
Sufficient growth rate and controllability can only be obtained by plasma exciting SiH 4 as in the present invention.

本発明の方法では原料中のN2ガスのプラズマ
活性化率が向上するので従来法に比べて生成皮膜
組成に対する原料ガス成分比は変るが、圧力、高
周波電界、基板温度等の条件は変える必要がな
い。
In the method of the present invention, the plasma activation rate of N 2 gas in the raw material is improved, so the ratio of raw material gas components to the produced film composition changes compared to the conventional method, but conditions such as pressure, high frequency electric field, and substrate temperature need to be changed. There is no.

SiN以外の皮膜を形成する場合、第1のプラズ
マ化領域で励起すべき原料成分は、SiO膜の場合
O2、SiON膜の場合N2O等であるが、PSG、BSG
等の生成に於てもフオスフイン(PH3)、ジボラ
ン(B2H6)を予めプラズマ化して供給すること
により、P或はBの含有量をより大とすることが
できる。
When forming a film other than SiN, the raw material components to be excited in the first plasma region are:
O 2 , N 2 O in the case of SiON film, etc., but PSG, BSG
In the production of P or B, the content of P or B can be increased by supplying phosphine (PH 3 ) and diborane (B 2 H 6 ) in the form of plasma in advance.

その他の皮膜の形成に於てもプラズマ活性化率
の低い原料を予め、より有利な条件でプラズマ化
することによつて生成皮膜の組成を制御すること
が可能である。
In the formation of other films, it is also possible to control the composition of the resulting film by previously converting raw materials with a low plasma activation rate into plasma under more advantageous conditions.

なお、平行平板電極の側面、上面等を絶縁材料
で被覆し、プラズマ発生空間領域を限定せしめる
プラズマCVD装置が本発明者中の2名によつて
発明され別途特許出願されているが、本発明に於
てもそのような装置をプラズマCVD反応部に使
用することは有効である。
Note that two of the inventors invented a plasma CVD device in which the side surfaces, top surfaces, etc. of parallel plate electrodes are covered with an insulating material to limit the plasma generation space area, and a separate patent application has been filed. It is also effective to use such a device in a plasma CVD reaction section.

以上説明したように本発明によれば、プラズマ
CVD法による生成皮膜の組成を自由に制御する
ことができる。
As explained above, according to the present invention, plasma
The composition of the film produced by the CVD method can be freely controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する為の装置の一例であ
つて、1はマイクロ波ガス励起部、2はプラズマ
CVD反応部、11は低活性化率原料導入口、1
2は第1のプラズマ発生領域、13は導波管、1
4はマイクロ波電源、15はマイクロ波遮蔽板、
16はプラズマガス導管、21は高活性化率原料
導入口、22は上部電極、23は第2のプラズマ
発生領域、24は下部電極、25は基板、26は
プラズマ導入リング、27はヒータ、28は高周
波電源、29は反応室である。
FIG. 1 shows an example of an apparatus for carrying out the present invention, in which 1 is a microwave gas excitation part, 2 is a plasma
CVD reaction section, 11 is low activation rate raw material inlet, 1
2 is a first plasma generation region, 13 is a waveguide, 1
4 is a microwave power supply, 15 is a microwave shielding plate,
16 is a plasma gas conduit, 21 is a high activation rate raw material inlet, 22 is an upper electrode, 23 is a second plasma generation region, 24 is a lower electrode, 25 is a substrate, 26 is a plasma introduction ring, 27 is a heater, 28 29 is a high frequency power source and a reaction chamber.

Claims (1)

【特許請求の範囲】[Claims] 1 0.5GHz以上である第1の周波数の高周波電
界を印加する第1のプラズマ発生領域に原料ガス
の一部を導入してプラズマガスを発生せしめ、該
プラズマガス及び原料ガスの残余を、前記第1の
周波数よりも低い周波数の高周波電界を印加する
第2のプラズマ発生領域に導入して行うことを特
徴とするプラズマ気相成長法。
1. A part of the raw material gas is introduced into a first plasma generation region to which a high frequency electric field of a first frequency of 0.5 GHz or more is applied to generate plasma gas, and the remaining plasma gas and the raw material gas are A plasma vapor phase epitaxy method characterized in that it is carried out by introducing a high-frequency electric field having a frequency lower than that of the first plasma into a second plasma generation region.
JP56036385A 1981-03-13 1981-03-13 Plasma vapor-phase growing method Granted JPS57167631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56036385A JPS57167631A (en) 1981-03-13 1981-03-13 Plasma vapor-phase growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56036385A JPS57167631A (en) 1981-03-13 1981-03-13 Plasma vapor-phase growing method

Publications (2)

Publication Number Publication Date
JPS57167631A JPS57167631A (en) 1982-10-15
JPS6347141B2 true JPS6347141B2 (en) 1988-09-20

Family

ID=12468374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56036385A Granted JPS57167631A (en) 1981-03-13 1981-03-13 Plasma vapor-phase growing method

Country Status (1)

Country Link
JP (1) JPS57167631A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208059A (en) * 1989-02-07 1990-08-17 Kubota Ltd Color printer
JPH02208060A (en) * 1989-02-07 1990-08-17 Kubota Ltd Color printer
WO1997031391A1 (en) * 1996-02-23 1997-08-28 Ebara Corporation Chemical vapor deposition method and chemical vapor deposition apparatus

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148326A (en) * 1983-02-14 1984-08-25 Sumitomo Electric Ind Ltd Fabrication of thin film by cvd method
AU549376B2 (en) * 1983-02-25 1986-01-23 Toyota Jidosha Kabushiki Kaisha Plasma treatment
JPS59225517A (en) * 1983-06-06 1984-12-18 Nippon Denso Co Ltd Apparatus for manufacture of amorphous semiconductor
US6113701A (en) * 1985-02-14 2000-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method, and system
FR2584098A1 (en) * 1985-06-27 1987-01-02 Air Liquide Process for depositing a silicon coating on a metal article
JP2564482B2 (en) * 1985-07-23 1996-12-18 キヤノン株式会社 Deposition film forming equipment
US5433788A (en) * 1987-01-19 1995-07-18 Hitachi, Ltd. Apparatus for plasma treatment using electron cyclotron resonance
JPH0674503B2 (en) * 1987-05-30 1994-09-21 キヤノン株式会社 Photoconductive member
US4886570A (en) * 1987-07-16 1989-12-12 Texas Instruments Incorporated Processing apparatus and method
US4820377A (en) * 1987-07-16 1989-04-11 Texas Instruments Incorporated Method for cleanup processing chamber and vacuum process module
US4820378A (en) * 1987-07-17 1989-04-11 Texas Instruments Incorporated Process for etching silicon nitride selectively to silicon oxide
US4838990A (en) * 1987-07-16 1989-06-13 Texas Instruments Incorporated Method for plasma etching tungsten
EP0299245B1 (en) * 1987-07-16 1992-09-16 Texas Instruments Incorporated Processing apparatus and method
US4838984A (en) * 1987-07-16 1989-06-13 Texas Instruments Incorporated Method for etching films of mercury-cadmium-telluride and zinc sulfid
US4844773A (en) * 1987-07-16 1989-07-04 Texas Instruments Incorporated Process for etching silicon nitride film
JP2737909B2 (en) * 1988-03-08 1998-04-08 ソニー株式会社 Vapor growth method
DE3926023A1 (en) * 1988-09-06 1990-03-15 Schott Glaswerke CVD COATING METHOD FOR PRODUCING LAYERS AND DEVICE FOR CARRYING OUT THE METHOD
US5129359A (en) * 1988-11-15 1992-07-14 Canon Kabushiki Kaisha Microwave plasma CVD apparatus for the formation of functional deposited film with discharge space provided with gas feed device capable of applying bias voltage between the gas feed device and substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208059A (en) * 1989-02-07 1990-08-17 Kubota Ltd Color printer
JPH02208060A (en) * 1989-02-07 1990-08-17 Kubota Ltd Color printer
WO1997031391A1 (en) * 1996-02-23 1997-08-28 Ebara Corporation Chemical vapor deposition method and chemical vapor deposition apparatus

Also Published As

Publication number Publication date
JPS57167631A (en) 1982-10-15

Similar Documents

Publication Publication Date Title
JPS6347141B2 (en)
US5591494A (en) Deposition of silicon nitrides by plasma-enhanced chemical vapor deposition
KR20210094462A (en) Method for deposition of silicon nitride layer using pretreatment, structure formed using the method, and system for performing the method
KR20200143254A (en) Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
EP0074212B1 (en) Apparatus for forming thin film
US20050087140A1 (en) Remote plasma apparatus for processing substrate with two types of gases
EP1918967B1 (en) Method of forming a film by deposition from a plasma
IE50240B1 (en) A method of vapour phase growth and apparatus therefor
KR20030091733A (en) Method for passivating a semiconductor substrate
US4545328A (en) Plasma vapor deposition film forming apparatus
EP1376672A1 (en) Deposition method, deposition apparatus, insulating film and semiconductor integrated circuit
US4539934A (en) Plasma vapor deposition film forming apparatus
US7763551B2 (en) RLSA CVD deposition control using halogen gas for hydrogen scavenging
CN116779528A (en) Method of depositing gap-filling fluid and related systems and devices
JP7033999B2 (en) Boron-based film film forming method and film forming equipment
KR102157433B1 (en) Method of forming boron-based film, and film forming apparatus
RU2006538C1 (en) Diamond growing method
GB2194556A (en) Plasma enhanced chemical vapour deposition of films
JPH02205681A (en) Chemical vapor growth device
JPH02248038A (en) Manufacture of polycrystalline semiconductor substance layer
Alexandrov et al. A study of remote plasma enhanced CVD of silicon nitride films
JPH0380192A (en) Device for synthesizing diamond film by microwave plasma cvd
JPS60128612A (en) Plasma cvd apparatus
JPS62218575A (en) Plasma cvd method using microwave
JPS57134553A (en) Chemical vapor phase growing method