JPH0266975A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0266975A
JPH0266975A JP63218766A JP21876688A JPH0266975A JP H0266975 A JPH0266975 A JP H0266975A JP 63218766 A JP63218766 A JP 63218766A JP 21876688 A JP21876688 A JP 21876688A JP H0266975 A JPH0266975 A JP H0266975A
Authority
JP
Japan
Prior art keywords
main
mosfet
terminal
voltage
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63218766A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Fujihira
龍彦 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63218766A priority Critical patent/JPH0266975A/en
Priority to KR1019890011734A priority patent/KR920010818B1/en
Priority to DE3927307A priority patent/DE3927307A1/en
Priority to FR8911516A priority patent/FR2635929A1/en
Publication of JPH0266975A publication Critical patent/JPH0266975A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To perform current limiting operation only at the time of the short- circuit of a load and to manufacture the title device readily at a low cost by a method wherein the output voltage of a detecting resistor which is connected to one secondary element of a plurality of the same semiconductor elements that are connected in parallel is directly inputted to the control electrode of an auxiliary switching element. CONSTITUTION:A main element 13 and a secondary element 14 (both are IGBTs) are connected in parallel between main terminals 11 and 12. A MOSFET 18 which applies an output voltage V1 of a detecting resistor 15 into a gate is provided. The drain of the MOSFET is connected to a control terminal 19 for the element 13 and 14. The source is connected to the main terminal 12. When a load is short-circuited due to an accident, the voltage applied on the element 13 is increased, and the output voltage V1 of the detecting resistor 15 reaches the threshold voltage value of the MOSFET 18. Thus the MOSFET is turned ON, and the gate voltages of the elements 13 and 14 are decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力用MOS F ET絶縁ゲート型バイポ
ーラトランジスタ (以下I GBTと記す)パワート
ランジスタあるいは電力用静電誘導トランジスタなどの
電力用半導体素子を一つの半導体基板に複数個作成して
並列接続し、かつ負荷短絡状態において保護される半導
体装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to power semiconductor devices such as power MOSFET insulated gate bipolar transistor (hereinafter referred to as IGBT) power transistors or power static induction transistors. The present invention relates to a semiconductor device in which a plurality of semiconductor devices are fabricated on one semiconductor substrate and connected in parallel, and are protected in a load short-circuit condition.

〔従来の技術〕[Conventional technology]

並列接続された複数の電力用半導体素子を負荷短絡状態
において保護するためには、従来は第2図に示すように
、主端子11.12の間の並列接続素子(この場合はI
GET)の一つを主素子13と別に電流検出用副素子1
4として用い、これには比較的抵抗値の小さい検出抵抗
15を主婦子12との間に直列に挿入し、その出力電圧
v1を演算増幅器16を介して素子13.14の駆動回
路17に入力し、素子13.14の駆動電圧を制御する
。これにより、主素子13に加わっている電圧によらな
いで副素子14を流れる一定の電流で電流制限が行われ
る。
In order to protect a plurality of parallel-connected power semiconductor devices in a load short-circuit condition, conventionally, as shown in FIG.
GET) is connected to the current detection sub-element 1 separately from the main element 13.
4, a detection resistor 15 with a relatively small resistance value is inserted in series with the main element 12, and its output voltage v1 is input to the drive circuit 17 of the elements 13 and 14 via the operational amplifier 16. and controls the driving voltage of elements 13 and 14. As a result, current is limited by a constant current flowing through the sub-element 14 regardless of the voltage applied to the main element 13.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第2図の半導体装置には以下の問題がある。 The semiconductor device shown in FIG. 2 has the following problems.

(1)演算増幅器16を構成するために、例えばCMO
8の回路を形成する必要があり、製造プロセスが複雑と
なり、余計なチップ面積を必要とし、コストが大幅に上
昇する。
(1) In order to configure the operational amplifier 16, for example, a CMO
8 circuits need to be formed, complicating the manufacturing process, requiring extra chip area, and significantly increasing costs.

(2)例えばモータ負荷の起動時やロック時あるいはラ
ンプ負荷の点灯特等過大な電流が必要で、かつ半導体装
置に加わる電圧が小さい場合にも電流制限動作が行われ
てしまう。
(2) For example, when an excessive current is required when starting or locking a motor load, or when lighting a lamp load, and the voltage applied to the semiconductor device is small, the current limiting operation is also performed.

本発明の課題は、上記の問題を解決し、負荷の短絡時に
だけ電流制限動作が行われ、しかも容易に低コストで製
造可能な半導体装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, to provide a semiconductor device in which a current limiting operation is performed only when a load is short-circuited, and which can be easily manufactured at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明は、第一の主端子と
第二の主端子との間を流れる主電流を制御する制御端子
を有する半導体素子の複数個を一つの半導体基板に作成
し、各主端子および制御端子のいずれも並列に接続した
半導体装置において、並列接続された半導体素子の少な
くとも一つと第二の主端子の間にその半導体素子の動作
抵抗以上の大きさの抵抗値の検出抵抗が接続され、その
検出抵抗の両端の電圧が制ffl端子と第二の主端子と
を短絡可能の補助スイッチング素子の制御端子に入力さ
れるものとする。
In order to solve the above-mentioned problems, the present invention creates a plurality of semiconductor elements having a control terminal for controlling the main current flowing between a first main terminal and a second main terminal on one semiconductor substrate. However, in a semiconductor device in which both main terminals and control terminals are connected in parallel, there is a resistance value greater than the operating resistance of the semiconductor element between at least one of the parallel-connected semiconductor elements and the second main terminal. A detection resistor is connected, and the voltage across the detection resistor is input to the control terminal of the auxiliary switching element that can short-circuit the control ffl terminal and the second main terminal.

〔作用〕[Effect]

検出抵抗の両端の電圧が補助スイッチング素子のしきい
値電圧を越えたとき、スイッチング素子が並列接続主半
導体素子の制?!i@子と第二の主端子を短絡し、始め
て電流制限動作が行われるので、補助スイッチング素子
のしきい値電圧を適宜設定することにより、負荷短絡時
にのみ電流制限動作を行わせることができる。なお、検
出抵抗の値が副素子の動作抵抗値よりも低いと、主素子
に加わる電圧がかなり低いときにも動作してしまうので
、検出抵抗の値は副素子の動作抵抗値より大きくする。
When the voltage across the detection resistor exceeds the threshold voltage of the auxiliary switching element, does the switching element control the parallel-connected main semiconductor element? ! Since the current limiting operation is performed only when the i@ child and the second main terminal are short-circuited, by appropriately setting the threshold voltage of the auxiliary switching element, the current limiting operation can be performed only when the load is short-circuited. . Note that if the value of the detection resistor is lower than the operating resistance value of the sub-element, it will operate even when the voltage applied to the main element is quite low, so the value of the detection resistor is made larger than the operating resistance value of the sub-element.

〔実施例〕〔Example〕

第1図は本発明の一実施例の回路を示し、第2図と共通
の部分には同一の符号が付されている。
FIG. 1 shows a circuit according to an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals.

主素子13と副素子14(いずれもIGBT)ガ主端子
11.12間に並列接続されていることは第2図と同様
であるが、検出抵抗13の出力電圧■1がゲートに印加
されるMO3FET1Bが備えられている。
The main element 13 and the sub-element 14 (both IGBT) are connected in parallel between the main terminals 11 and 12, as shown in Fig. 2, but the output voltage 1 of the detection resistor 13 is applied to the gate. MO3FET1B is provided.

MOSFETのドレインは素子13.14の制御端子1
9に、ソースは主端子12に接続されている。この回路
の動作の要点を第3図を引用して説明する。
The drain of the MOSFET is the control terminal 1 of elements 13 and 14.
9, the source is connected to the main terminal 12. The main points of the operation of this circuit will be explained with reference to FIG.

第3図のたて軸は素子13と14との電流密度、横軸は
素子13と素子14および検出抵抗15の両端とに加わ
る電圧である0曲&131 、32は素子13.14の
保護回路が働かない場合の一定ゲート電圧下の動作曲線
、曲線33 、34は素子13.素子14の保護回路が
働いてI GBTのゲート電圧が下げられた場合の動作
曲線である。スイッチング素子18の動作点はbmに設
定されているものとする。すなわち副素子14に流れる
電流11が8゜からblを経てb!に達するまで、主素
子にもa、からatを経て飽和領域に達しa、に至るま
での大きな電流を流すことができる0次に事故により′
9L荷が短絡した場合、素子13に加わる電圧が上昇し
、電圧・電流曲m3i、32上を右上の方へ動く、この
とき、検出抵抗15の出力電圧v1がMO3FET18
のしきい値電圧に達するため、MOSFETがオンして
素子13.14のゲ・−ト電圧を下げる。これにより副
素子X4および検出抵抗25の両yit圧はb8から水
平に右方向へ移動し、外から加わる電圧で決まる動作点
Cに達する。主素子13はa工から右下方に移動し、や
はり0点に達する。このようにして、負荷短絡時にだけ
素子13.14の電流を制限することが可能である。な
お動作点Cを高電圧側に移動させたいときには、検出抵
抗15の値をさらに大きくすればよい。
In FIG. 3, the vertical axis is the current density of elements 13 and 14, and the horizontal axis is the voltage applied across elements 13 and 14 and the detection resistor 15. Curves 33 and 34 are operating curves under a constant gate voltage when the device 13. This is an operating curve when the protection circuit of the element 14 is activated and the gate voltage of the IGBT is lowered. It is assumed that the operating point of the switching element 18 is set to bm. In other words, the current 11 flowing through the sub-element 14 moves from 8° through bl to b! Due to the zero-order accident, a large current can be passed through the main element from a, through at, until reaching the saturation region, a.
When the 9L load is short-circuited, the voltage applied to the element 13 increases and moves toward the upper right on the voltage/current curve m3i, 32. At this time, the output voltage v1 of the detection resistor 15 increases to the MO3FET18.
reaches the threshold voltage of , the MOSFET turns on and lowers the gate voltage of elements 13 and 14. As a result, both the yit pressures of the sub-element X4 and the detection resistor 25 move horizontally to the right from b8, and reach the operating point C determined by the voltage applied from the outside. The main element 13 moves from point a to the lower right and also reaches the 0 point. In this way, it is possible to limit the current in element 13.14 only in the event of a load short-circuit. Note that when it is desired to move the operating point C to the high voltage side, the value of the detection resistor 15 may be further increased.

第4図は第1図に示した本発明の一実施例の半導体装置
を形成した1枚のシリコン基板の平面図であり、第5図
はそのA−A線、第6図はB−B線に沿っての断面図で
ある。シリコン基板の大部分には主I GBT素子13
が形成され、そのうちの一つは副I GBT素子14と
して働き、基板上に各素子のゲート電極と同様成膜され
る多結晶シリコンよりなる検出抵抗15に接続されてい
る。IGBT素子の設けられない部分にはMO3FET
18が作成され、ドレインは、一部が各I GBT素子
のゲート電極となる多結晶シリコン膜に、ソースは、検
出抵抗15の他端と共に各I GBT素子のソース電極
と共通のアルミニウム配線電極にそれぞれ接触する。こ
れらの接続の詳細については後述する。
FIG. 4 is a plan view of one silicon substrate on which a semiconductor device according to an embodiment of the present invention shown in FIG. 1 is formed, FIG. FIG. 3 is a cross-sectional view along the line. Most of the silicon substrate contains the main IGBT element 13.
are formed, one of which serves as a sub-IGBT element 14 and is connected to a detection resistor 15 made of polycrystalline silicon, which is formed on the substrate in the same manner as the gate electrode of each element. MO3FET is installed in the part where IGBT element is not provided.
18 is created, and the drain is connected to a polycrystalline silicon film, a part of which becomes the gate electrode of each IGBT element, and the source is connected to an aluminum wiring electrode that is common to the source electrode of each IGBT element together with the other end of the detection resistor 15. contact each. Details of these connections will be described later.

各主I GBT素子13の構造は第5図に示されている
、p+シリコン基板1の上にn4バッファ層2を介して
積層されたn−エピタキシャル層3に多数のpベース層
4が形成される。pベース層4の中には中央に環状にソ
ース層5が形成され、このソース層5とn−Wi3の間
のpベース層4にチャネルが形成されるよう、多結晶シ
リコン膜からなるゲー)を極7がゲート酸化膜6を介し
て設けられている。ゲート電極7はさらに絶縁膜8で覆
われ、その絶縁膜の開口部8】でベース層4およびソー
ス層5に接触するアルミニウム配線がソース電8i9を
形成している。別にp°基板1の下面にはドレイン電極
10が接触している。
The structure of each main IGBT element 13 is shown in FIG. 5, in which a large number of p base layers 4 are formed on an n- epitaxial layer 3 laminated on a p+ silicon substrate 1 via an n4 buffer layer 2. Ru. An annular source layer 5 is formed in the center of the p base layer 4, and a gate made of a polycrystalline silicon film is formed so that a channel is formed in the p base layer 4 between the source layer 5 and n-Wi3. A pole 7 is provided with a gate oxide film 6 interposed therebetween. The gate electrode 7 is further covered with an insulating film 8, and an aluminum wiring that contacts the base layer 4 and the source layer 5 at an opening 8 in the insulating film forms a source electrode 8i9. In addition, a drain electrode 10 is in contact with the lower surface of the p° substrate 1.

MO3FE718の構造は第6図に示されている。The structure of MO3FE718 is shown in FIG.

MO3FET18は、pベース層4にソース層51とド
レインFJ52を設けその中間上にゲート酸化膜6を介
してゲート電極71を設けることにより形成されててい
る。ソース層51.ドレイン層52とn°層3の間にチ
ャネルが形成されないようその上には厚い酸化膜61が
形成されている。多結晶シリコン膜を覆う絶縁膜8の開
口部82ではソース層51およびベース層4がM配線9
1に、開口部83ではドレイン層52がM配線92に接
触し、このM配線92の他端は絶縁膜8の開口部84で
ゲート電極7に接続されている。A7配線91の他端は
I GBT素子13のソース電極9に連結されている。
The MO3FET 18 is formed by providing a source layer 51 and a drain FJ 52 on the p base layer 4, and providing a gate electrode 71 therebetween with a gate oxide film 6 interposed therebetween. Source layer 51. A thick oxide film 61 is formed thereon to prevent a channel from being formed between the drain layer 52 and the n° layer 3. In the opening 82 of the insulating film 8 covering the polycrystalline silicon film, the source layer 51 and the base layer 4 are connected to the M wiring 9.
1, the drain layer 52 contacts the M wiring 92 in the opening 83, and the other end of the M wiring 92 is connected to the gate electrode 7 in the opening 84 of the insulating film 8. The other end of the A7 wiring 91 is connected to the source electrode 9 of the IGBT element 13.

このようなMO3FET18のベース層4は主素子13
のベース層4と、ソース層51およびドレイン層52は
ソース層5と同一工程で形成できることは明らかである
。なお、図示しないが副IGBT素子14は主IGBT
素子13と全く同一構造である。
The base layer 4 of such MO3FET 18 is the main element 13
It is clear that the base layer 4, the source layer 51, and the drain layer 52 can be formed in the same process as the source layer 5. Although not shown, the sub-IGBT element 14 is a main IGBT
It has exactly the same structure as element 13.

第4図において実線70は多結晶シリコン膜の領界を示
し、ゲート電8i7.71および検出抵抗15を構成し
ているが、各ゲート電極7は連続して形成されている。
In FIG. 4, a solid line 70 indicates the area of the polycrystalline silicon film, which constitutes the gate electrodes 8i7, 71 and the detection resistor 15, and each gate electrode 7 is formed continuously.

破線90はM膜の領界を示し、−点鎖線80は絶縁膜の
領界を示す、AI膜は絶縁膜の開口部8でシリコン板面
に接触して主素子13のソース電極9を、開口部81で
シリコン板面に接触して副素子14のソース電極9を、
開口部82でシリコン板面に接触してスイッチング素子
18のソース電極91を、開口部83でシリコン板面に
接触してスイッチング素子18めドレイン電極92を形
成する。抵抗15およびゲート71を形成する多結晶シ
リコン膜の一端は、絶縁膜9の開口部85で各主素子1
3のソース電極9、MO3FET18のソース電極91
とつながるM膜に接触し、他端は絶縁膜9の開口部86
で副素子14のソース電極とつながるM膜に接触してい
る。なお二点鎖線88は厚い酸化膜の領界を示す。
The broken line 90 indicates the area of the M film, and the dashed line 80 indicates the area of the insulating film. The source electrode 9 of the sub-element 14 is brought into contact with the silicon plate surface through the opening 81.
A source electrode 91 of the switching element 18 is formed in contact with the silicon plate surface through the opening 82, and a drain electrode 92 of the switching element 18 is formed in contact with the silicon plate surface through the opening 83. One end of the polycrystalline silicon film forming the resistor 15 and the gate 71 is connected to each main element 1 at the opening 85 of the insulating film 9.
3 source electrode 9, MO3FET 18 source electrode 91
The other end is in contact with the M film connected to the opening 86 of the insulating film 9.
and is in contact with the M film connected to the source electrode of the sub-element 14. Note that a two-dot chain line 88 indicates a region of a thick oxide film.

なお上記の実施例ではスイッチング素子18としてユニ
ポーラ型のMOSFETを用いたのは、バイポーラトラ
ンジスタやI GBTを用いるよりも寄生素子の動作を
抑制できるからであるが、これに限定されるものではな
い。
In the above embodiment, a unipolar MOSFET is used as the switching element 18 because the operation of parasitic elements can be suppressed more than using a bipolar transistor or an IGBT, but the present invention is not limited to this.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、同一半導体基板に作成され、並列接続
される複数の同一半導体素子の一つの副素子に接続され
た検出抵抗の出力電圧を直接補助スイッチング素子の制
御電極に入力し、負荷短絡時の主端子間の電圧上昇によ
り前記スイッチング素子をオンさせて並列接続の各素子
への制御入力を低下させ、電流の上昇を抑制することが
できる。
According to the present invention, the output voltage of the detection resistor connected to one sub-element of a plurality of identical semiconductor elements fabricated on the same semiconductor substrate and connected in parallel is inputted directly to the control electrode of the auxiliary switching element, thereby shorting the load. When the voltage between the main terminals increases, the switching element is turned on to reduce the control input to each element connected in parallel, thereby suppressing the increase in current.

検出抵抗の値を副素子の動作抵抗値以上とすることによ
り、電流制限動作が負荷短絡時でない低い主端子間電圧
で始まることが防止される。そして、このような保護回
路は主素子および副素子と同一半導体基板に、工程を増
すことなく、低コストで集積することができる。
By setting the value of the detection resistor to be equal to or greater than the operating resistance value of the sub-element, it is possible to prevent the current limiting operation from starting at a low voltage between the main terminals when the load is not short-circuited. Such a protection circuit can be integrated on the same semiconductor substrate as the main element and the sub-element at low cost without increasing the number of steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の半導体装置の回路図、第2
図は従来の保fi1回路付き半導体装置の回路図、第3
図は本発明の一実施例の電流制限動作を示す電流・電圧
線図、第4図は第1図に示した半導体装置のシリコン基
板の平面図、第5図、第6図はそれぞれ第4図のA−A
線、B−B線に沿っての断面図である。 11、12:主端子、13:主IGBT素子、14:副
IGBT素子、15:検出抵抗、18二補助MO3F第
4図 第1図 ]○ 第5図 一一一−3
FIG. 1 is a circuit diagram of a semiconductor device according to an embodiment of the present invention, and FIG.
The figure is a circuit diagram of a conventional semiconductor device with a FI1 circuit.
4 is a plan view of the silicon substrate of the semiconductor device shown in FIG. 1, and FIGS. A-A in the diagram
FIG. 3 is a cross-sectional view taken along line B-B. 11, 12: Main terminal, 13: Main IGBT element, 14: Sub IGBT element, 15: Detection resistor, 182 auxiliary MO3F Fig. 4 Fig. 1] ○ Fig. 5 111-3

Claims (1)

【特許請求の範囲】[Claims] 1)第一の主端子と第二の主端子の間を流れる主電流を
制御する制御端子を有する半導体素子の複数個を一つの
半導体基板に作成し、各主端子および制御端子のいずれ
も並列に接続したものにおいて、並列接続された半導体
素子の少なくとも一つと第二の主端子の間にその半導体
素子の動作抵抗以上の大きさの抵抗値の検出抵抗が接続
され、その検出抵抗の両端の電圧が制御端子と第二主端
子とを短絡可能の補助スイッチング素子の制御端子に入
力されることを特徴とする半導体装置。
1) A plurality of semiconductor elements having control terminals that control the main current flowing between a first main terminal and a second main terminal are created on one semiconductor substrate, and each main terminal and control terminal are connected in parallel. A detection resistor with a resistance value greater than the operating resistance of the semiconductor element is connected between at least one of the semiconductor elements connected in parallel and the second main terminal, and A semiconductor device characterized in that a voltage is input to a control terminal of an auxiliary switching element capable of short-circuiting a control terminal and a second main terminal.
JP63218766A 1988-09-01 1988-09-01 Semiconductor device Pending JPH0266975A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63218766A JPH0266975A (en) 1988-09-01 1988-09-01 Semiconductor device
KR1019890011734A KR920010818B1 (en) 1988-09-01 1989-08-18 Semiconductor devices
DE3927307A DE3927307A1 (en) 1988-09-01 1989-08-18 Short circuit protected transistor circuit - includes MOSFET and parallel resistance between control connection for auxiliary IGBT and one main connection
FR8911516A FR2635929A1 (en) 1988-09-01 1989-09-01 SEMICONDUCTOR DEVICE HAVING SHORT-CIRCUIT PROTECTION CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63218766A JPH0266975A (en) 1988-09-01 1988-09-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0266975A true JPH0266975A (en) 1990-03-07

Family

ID=16725064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63218766A Pending JPH0266975A (en) 1988-09-01 1988-09-01 Semiconductor device

Country Status (4)

Country Link
JP (1) JPH0266975A (en)
KR (1) KR920010818B1 (en)
DE (1) DE3927307A1 (en)
FR (1) FR2635929A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103571A (en) * 2010-02-08 2010-05-06 Renesas Technology Corp Semiconductor device
US7932553B2 (en) 2007-12-24 2011-04-26 Denso Corporation Semiconductor device including a plurality of cells
CN102570809A (en) * 2010-12-31 2012-07-11 意法半导体研发(深圳)有限公司 Short-circuit protection circuit and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0479758A (en) * 1990-07-19 1992-03-13 Fuji Electric Co Ltd Driving circuit of current sensing igbt
JP3180831B2 (en) * 1991-03-22 2001-06-25 富士電機株式会社 Insulated gate control semiconductor device
JPH04323863A (en) * 1991-04-23 1992-11-13 Toyota Autom Loom Works Ltd Semiconductor device
DE4122653C2 (en) * 1991-07-09 1996-04-11 Daimler Benz Ag Controllable semiconductor switching device with integrated current limitation and overtemperature shutdown
JPH05315852A (en) * 1992-05-12 1993-11-26 Fuji Electric Co Ltd Current limit circuit and constant voltage source for the same
JP3084982B2 (en) * 1992-11-25 2000-09-04 富士電機株式会社 Semiconductor device
CN111371080B (en) * 2018-12-25 2022-08-30 上海睿驱微电子科技有限公司 Equipment with overcurrent limiting function and construction method thereof
CN111370478B (en) * 2018-12-25 2022-04-01 上海睿驱微电子科技有限公司 Polycrystalline silicon with overcurrent limiting function and construction method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143450A (en) * 1985-12-18 1987-06-26 Hitachi Ltd Composite semiconductor device
JPS63318781A (en) * 1987-06-22 1988-12-27 Nissan Motor Co Ltd Mosfet with overcurrent protective function

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667121A (en) * 1986-05-27 1987-05-19 Motorola, Inc. Integrated circuit speed controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143450A (en) * 1985-12-18 1987-06-26 Hitachi Ltd Composite semiconductor device
JPS63318781A (en) * 1987-06-22 1988-12-27 Nissan Motor Co Ltd Mosfet with overcurrent protective function

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932553B2 (en) 2007-12-24 2011-04-26 Denso Corporation Semiconductor device including a plurality of cells
JP2010103571A (en) * 2010-02-08 2010-05-06 Renesas Technology Corp Semiconductor device
CN102570809A (en) * 2010-12-31 2012-07-11 意法半导体研发(深圳)有限公司 Short-circuit protection circuit and method

Also Published As

Publication number Publication date
KR900005446A (en) 1990-04-14
KR920010818B1 (en) 1992-12-17
FR2635929A1 (en) 1990-03-02
DE3927307A1 (en) 1990-04-05

Similar Documents

Publication Publication Date Title
US6541826B2 (en) Field effect semiconductor device and its production method
US6069396A (en) High breakdown voltage semiconductor device
JP2635828B2 (en) Semiconductor device
JP3730394B2 (en) High voltage semiconductor device
US5889310A (en) Semiconductor device with high breakdown voltage island region
JPH0266975A (en) Semiconductor device
US5005061A (en) Avalanche stress protected semiconductor device having variable input impedance
JP2005064472A (en) Semiconductor device
JP2946750B2 (en) Semiconductor device
JPH04216674A (en) Horizontal-type mos control-type thyristor
JPH08116051A (en) Semiconductor device
JPH07263641A (en) Insulated-gate semiconductor device having built-in protective circuit
US20210320195A1 (en) Semiconductor device
JP2000183282A (en) Device and module of semiconductor
US6208011B1 (en) Voltage-controlled power semiconductor device
EP0622854B1 (en) Semiconductor switch with IGBT and thyristor
JPS6336568A (en) Composite thyristor
JPH04132266A (en) Semiconductor device
JPS61174672A (en) Vmos transistor
JP2500938B2 (en) Semiconductor device
JP3342944B2 (en) Horizontal high voltage semiconductor device
JP2700026B2 (en) Insulated gate bipolar conduction transistor
JP3185558B2 (en) Insulated gate thyristor
JP3409718B2 (en) IGBT with built-in circuit and power converter using the same
JP2876832B2 (en) Semiconductor device having MISFET controlled thyristor