JPH026053A - Electric heating member - Google Patents

Electric heating member

Info

Publication number
JPH026053A
JPH026053A JP15128088A JP15128088A JPH026053A JP H026053 A JPH026053 A JP H026053A JP 15128088 A JP15128088 A JP 15128088A JP 15128088 A JP15128088 A JP 15128088A JP H026053 A JPH026053 A JP H026053A
Authority
JP
Japan
Prior art keywords
heating member
film
solder
base material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15128088A
Other languages
Japanese (ja)
Inventor
Mutsuki Yamazaki
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15128088A priority Critical patent/JPH026053A/en
Publication of JPH026053A publication Critical patent/JPH026053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

PURPOSE:To prevent the shunting of a current and the deposition of solder on the heating member by covering the contact part of the heating member with a material to be worked with a coating film having a specified contact angle to the melt of a metal consisting essentially of one out of lead and tin. CONSTITUTION:At least the contact part of the electric heating member with a lead wire on the surface of a base material consisting of a conductive material is covered with a coating film consisting of a material having resistivity higher than that of the base material at 10<-2>OMEGAcm and >=10 deg. contact angle to the melt of a metal consisting essentially of one out of lead and tin. Since at least the contact part of the heating member with the lead wire of an IC is thus covered with the insulating coating film having poor solder wettability and on which solder is hardly deposited, the breaking of wiring due to the shunting of a current from the heating member to the wiring of the substrate and the deposition of solder on the heating member are prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、通電性物質に通電し、ジュール熱を発生させ
、リード線等の被加工物を加工する通電加熱部材に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a current-carrying heating member that processes a workpiece such as a lead wire by applying current to a conductive substance to generate Joule heat. .

(従来の技術) 近年、ファク1〜リーオートメーションの進歩は著しい
。その−例として集積回路(IC)を4板にはんだ付け
をする装置がある。この装置ではFe、Mo、’W、T
a、Cu、AI、ステンレスなどの導電性物質からなる
母材を加工した加熱部材に通電し、ジュール熱を発生さ
V、前記加熱部材で一度に複数のリード線を基板に押付
けることにより、はんだ付けを行なっている。通常、I
Cはニガ又は四方にリード線が出ているので、加熱部材
は二個又は四個を平行あるいは四方取囲むように設置さ
れ、電気的に直列に接続されている。
(Prior Art) In recent years, there has been remarkable progress in factory automation. An example of this is a device that solders four integrated circuits (ICs) onto four boards. In this device, Fe, Mo, 'W, T
By applying electricity to a heating member made of a base material made of a conductive material such as a, Cu, AI, or stainless steel and generating Joule heat, the heating member presses multiple lead wires against the board at once. Performing soldering. Usually I
C has lead wires coming out on all sides, so two or four heating members are installed in parallel or surrounding them on all sides, and are electrically connected in series.

並列でもよいが、この場合には、装置全体で必要な電流
の各間が多くなる。
They may be connected in parallel, but in this case the number of currents required for the entire device increases.

こうした、導電性物質からなる加熱部材を直接ICのリ
ード線に接触さしてはんだ付けを行なうと基板の配線が
直列に接続された加熱部材同志を結ぶ箇所では、加熱部
材から基板の配線への電流の分流が起こり、基板の配線
が切れるという不具合があった。また、加熱部材にはん
だが付着しやすいという不具合も生じた。
When a heating member made of a conductive material is soldered by directly contacting the lead wires of an IC, current flows from the heating member to the wiring on the board at the point where the wiring on the board connects the heating members connected in series. There was a problem in which the current shunted and the wiring on the board broke. Further, there was also a problem that solder easily adhered to the heating member.

(発明が解決しようとする課題) 以上述べたように、導電性物質からなる加熱部材を直接
ICのリード線に接触さけ−てはんだ付(ブを行なうど
、加熱部材力口ら基板の配線への電流の分流が起って、
配線が切れる、加熱部材にはんだが付着する等の不具合
があった。
(Problems to be Solved by the Invention) As described above, it is important to avoid direct contact of the heating member made of a conductive material with the lead wires of the IC, and to connect the heating member to the circuit board wiring by soldering (such as soldering). A current shunt occurs,
There were problems such as wires breaking and solder adhering to the heating member.

本発明では、加熱部材の少なくともICのリード線に接
する部分に絶縁性でかつはんだとのぬれ性が悪くはんだ
が付着しにくい材質からなる被膜で被Mしたことにより
加熱部材から基板の配線への電流の分流による配線切れ
及び加熱部材へのはんだの付ごを防ぎ良好な加工を流ず
ことを目的とし lこ 。
In the present invention, at least the portion of the heating member in contact with the IC lead wires is coated with a coating made of a material that is insulative and has poor wettability with solder, making it difficult for solder to adhere to the wiring from the heating member to the wiring on the board. The purpose is to prevent wire breakage and solder adhesion to heating components due to current shunting, and to ensure good processing.

[発明の構成] (課題を解決するための手段) 本発明の通電加熱部材は、導電性材料からなる母材の表
面で、少なくともリード線に接する部分に、比抵抗が前
記母材の10−2Ωcm以上を右しかつ鉛又は錫の少な
くとし一方を主成分とする金属の溶融物との接触角が1
0度以上の材質からなる被膜で被覆したことを特徴とづ
る。この場合接触角とは、その材質の固体に金属溶融物
が接触している時の接触線においてなす角度をいう。
[Structure of the Invention] (Means for Solving the Problems) The electrical heating member of the present invention has a surface of a base material made of an electrically conductive material, at least a portion in contact with a lead wire, which has a specific resistance of 10- 2 Ωcm or more, and the contact angle with a molten metal containing lead or tin as the main component is 1.
It is characterized by being coated with a film made of a material with a temperature of 0 degrees or higher. In this case, the contact angle refers to the angle formed at the contact line when the molten metal is in contact with the solid material.

従って接触角が大ぎい材質のものほど金属溶lII!吻
とのぬれ性が悪く、金属溶融物が付着しにくいことを示
ず。
Therefore, the larger the contact angle of the material, the better the metal melt! It has poor wettability with the snout and does not show that molten metal is difficult to adhere to.

前記被膜の材料としてはより具体的には、C90、Nの
中から選ばれる少なくとら一秤以上の元素を成分とする
ものが使われる。その理由は以下に述べる通りである。
More specifically, as the material for the coating, a material containing at least one element selected from C90 and N is used. The reason is as described below.

まず前記被膜は約150℃から300℃程度までのピー
1−サイクルにおいて母材から剥離しない材料で構成さ
れていなければならない。また、オートメーション化さ
れたはんだ付は装置では、加熱部材は数秒程度の周期で
昇温、降温が行なわれるので、前記被膜の材料は熱伝導
率の高いものでなければならない。従って前記被膜の膜
厚1μmを越える場合には熱伝S率はiWm−tk−を
以上でなければならない。1)り述した元素を含む材料
はすべて熱伝導率の高い材料である。
First, the coating must be made of a material that does not peel off from the base material during a P-1 cycle at temperatures from about 150°C to about 300°C. Furthermore, in automated soldering equipment, the temperature of the heating member is raised and lowered in cycles of several seconds, so the material of the coating must have high thermal conductivity. Therefore, when the thickness of the coating exceeds 1 μm, the heat conductivity S must be greater than iWm-tk-. 1) All materials containing the above-mentioned elements have high thermal conductivity.

また、加熱材11は接地電位に対し1〜10V程度の電
位差を有するので、前記被膜は、この電圧に対し絶縁被
膜が起こらない程度の膜厚を必要とする。従って前記第
2の被膜の膜厚は500A以上好ましくは100OA以
上は必要であり、耐摩耗性も考慮すると2μm程度は必
要である。熱伝導率を考に!すると5μm以上にするこ
とは好ましくない。前記被膜をfu月の表面に被覆する
方法としては、スパッタリング、イオンブレーティング
Further, since the heating material 11 has a potential difference of about 1 to 10 V with respect to the ground potential, the coating needs to have a thickness that does not cause an insulating coating to occur with respect to this voltage. Therefore, the thickness of the second coating needs to be 500A or more, preferably 100OA or more, and when wear resistance is also considered, it needs to be about 2 μm. Consider thermal conductivity! Therefore, it is not preferable to make the thickness 5 μm or more. Methods for coating the surface of the moon with the film include sputtering and ion blasting.

(゛4空蒸着、77ズ?CVD、ECR75,2”VC
VD、熱CVD、光CVDなどがある。この中でも、摸
の密着性がよいこと、比較的低温でα叩でき膜の特性が
損われないこと、膜の電気的特性が制御しやずいことを
考慮するとプラズマCVD法、ECRブラズCVD法が
特に適当である。
(゛4 blank evaporation, 77?CVD, ECR75, 2”VC
There are VD, thermal CVD, optical CVD, etc. Among these, the plasma CVD method and the ECR Blaze CVD method are suitable, considering that the adhesion of the film is good, the film can be α-beated at a relatively low temperature without damaging its properties, and the electrical properties of the film are difficult to control. Particularly appropriate.

(作用) 加熱muの少なくともICのリード線に接する部分に絶
縁性でかつはんだとのぬれ性の悪い第2の被膜を被覆す
ることにより加熱部材にはんだが付着するという不具合
がなくなった。
(Function) By coating at least the portion of the heating mu in contact with the lead wire of the IC with the second film which is insulating and has poor wettability with solder, the problem of solder adhering to the heating member is eliminated.

(実施例) 本発明の加熱部材は導電性物質を第1図に示すように加
工し、表面に絶縁性でかつはんだとのぬれ性の悪い被膜
でi11覆してなる。
(Example) The heating member of the present invention is formed by processing a conductive material as shown in FIG. 1, and covering the surface with a film that is insulating and has poor wettability with solder.

オートメーション化されたはんだ付は装置においてはこ
の加熱部材を第2図に示すように四方を取囲むように設
置し、これらを電気的に直列に501−1 zの交流電
源へ接続して使用される。
Automated soldering is performed by installing the heating members on all sides as shown in Figure 2, and connecting them electrically in series to a 501-1z AC power source. Ru.

加工工程は以下に示す通りである。tL根板上ICが載
せられ、自動搬送されてきた後、加熱部材が降りてきて
ICのリード線を約2Kg重/ cm2の圧力で押付け
るのと同時に、加熱部材に約500△の電流を供給し、
300℃程度まで加熱する。
The processing steps are as shown below. After the IC on the tL base plate is placed and automatically transported, the heating member comes down and presses the IC lead wire with a pressure of approximately 2 kg/cm2, and at the same time, a current of approximately 500△ is applied to the heating member. supply,
Heat to about 300℃.

はんだが溶けてリード線と基板の回路が接続された後、
通電を止め、はんだが固まったところで、加熱部材が上
貸し、この−工程が終了する。
After the solder is melted and the lead wires and the circuit on the board are connected,
When the electricity is turned off and the solder hardens, the heating member is turned on and this process is completed.

以下に、導電性物質からなる母材の表面に前述の絶縁性
かつはんだどのぬれ性の悪い被膜を被覆することにより
、本発明の加熱部材を¥J造した実施例について記載す
る。
Below, an example will be described in which a heating member of the present invention was manufactured by coating the surface of a base material made of a conductive substance with the above-mentioned insulating film and poor wettability with solder.

一実施例1− 本実施例では、プラズマCVD法により第1表に示した
成分の被膜を母材の表面に被覆した。
Example 1 In this example, a film containing the components shown in Table 1 was coated on the surface of a base material by plasma CVD.

第3図は平行平板型の容量結合型プラズマCVD装置の
略図である。真空チャンバー6内には、平板状接地電極
7と高周波電極8が対向して設置されている。また、真
空チャンバー6にはガス導入口12が設けられている。
FIG. 3 is a schematic diagram of a parallel plate type capacitively coupled plasma CVD apparatus. Inside the vacuum chamber 6, a flat ground electrode 7 and a high frequency electrode 8 are installed facing each other. Further, the vacuum chamber 6 is provided with a gas introduction port 12 .

接地電極7にはヒーター9が取付けられ高周波電力8に
はマツチングボックス10を介して高周波電極11に接
続されている。
A heater 9 is attached to the ground electrode 7, and a high frequency power source 8 is connected to a high frequency electrode 11 via a matching box 10.

この装置によりまず導電性加熱部材に前記被膜を被覆し
た。導電性加熱部材13を、接地電極7に置き、図示8
しない真空ポンプによってチャンバー6内を1O−6T
orr程度に排気した。次に接地電極7に取付けたヒー
ター9により、加熱部材13を150’Cから459℃
程度に加熱しガス導入口12ヨリsi H4、N2 、
 Cl−1,s等の原v1ガスをチャンバー6内に供給
して、チャンバー6内の真空度を0.05〜1.0To
rrに保つように排気した。高周波電極8に電力を投入
すると、電極間にてグロー放電が起こり、原料ガスがプ
ラズマ化し絶縁性77Q膜が加熱部材13に被覆された
被膜の成分、原料ガス及び成膜条件は第1表に示す通り
である。例えばSi CN組成のmvAを成膜するJJ
J合には、原料ガスとしTSi t−14100SCC
M 、 N 2500 S CG M 、 CH、+ 
4003 CCMをガス導入口12より導入し、チャン
バー6内の反応圧力を1.0Torrに保持し、高周波
電極8に500Wの電圧を印加して成膜を行なった。
Using this apparatus, the conductive heating member was first coated with the film. The conductive heating member 13 is placed on the ground electrode 7, as shown in FIG.
The inside of the chamber 6 is heated to 1O-6T by a vacuum pump that does not
It was exhausted to about orr. Next, the heating member 13 is heated from 150'C to 459°C by the heater 9 attached to the ground electrode 7.
Heat to a moderate level and connect gas inlet 12 with H4, N2,
A raw v1 gas such as Cl-1,s is supplied into the chamber 6, and the degree of vacuum in the chamber 6 is set to 0.05 to 1.0To.
It was evacuated to keep it at rr. When power is applied to the high-frequency electrode 8, a glow discharge occurs between the electrodes, the raw material gas becomes plasma, and the insulating 77Q film is coated on the heating member 13.The components, raw material gas, and film forming conditions of the coating are shown in Table 1. As shown. For example, JJ deposits mvA of Si CN composition.
For J, the source gas is TSi t-14100SCC.
M, N 2500 S CG M, CH, +
4003 CCM was introduced through the gas inlet 12, the reaction pressure in the chamber 6 was maintained at 1.0 Torr, and a voltage of 500 W was applied to the high frequency electrode 8 to form a film.

この場合、成膜時間40分で3.0μn1の膜厚の被膜
が形成された。
In this case, a film with a thickness of 3.0 μn1 was formed in a film forming time of 40 minutes.

以下、他成分の被膜でも同様に成膜された絶縁性wl膜
の成分、原料ガスとその流出、チャンバー内の反応圧力
、高周波電極8に印加される電力。
Below, the components of the insulating wl film formed in the same way for films of other components, the raw material gas and its outflow, the reaction pressure in the chamber, and the power applied to the high-frequency electrode 8 will be described.

成膜時間、膜厚は第1表に示す通りである。The film formation time and film thickness are as shown in Table 1.

(以下余白) プラズマCVD法にJ:れば、加熱部材を150℃乃至
450℃の比較的低温で処理τ−きるため、加熱部材の
特性を損うことなく母材との密着強度の強い良好なi1
!膜が1!7られる。
(Left below) When using the plasma CVD method, the heating member can be processed at a relatively low temperature of 150°C to 450°C, which results in a strong bond with the base material without impairing the properties of the heating member. na i1
! The membrane is 1!7.

−実流例2 本実施例では、スパッタリング法により第2表に示した
成分の被膜を成膜した。使用されるスパッタ装置は第4
図に示す通りである。真空チ↑・シバ−6内には平板状
接地型ViA7と高周波m l& 8とが対向して設置
されており、平板状接地電床7にはヒーター9が取付け
られている。高周波電極8はマツチングボックス10を
介して高周波電極11に接続されている。真空チャンバ
ー6の側壁にはガス導入口12が設けられている。この
ようにスパッタリング装ばは前述のプラズマCVD装置
と煩似しているが、高周波電極8に原料の固体をターゲ
ット14として設けている点のみが異なっている。この
装置により第1の絶縁性被膜を成膜するには、まずター
ゲット14として原料の固体を設置し、ガス導入口12
よりArガス、場合により反応ガスを同時に流入した。
- Actual Flow Example 2 In this example, a film containing the components shown in Table 2 was formed by a sputtering method. The sputtering equipment used is the fourth
As shown in the figure. A flat ground type ViA 7 and a high frequency ml&8 are installed facing each other in the vacuum chamber 6, and a heater 9 is attached to the flat grounded electric bed 7. The high frequency electrode 8 is connected to a high frequency electrode 11 via a matching box 10. A gas inlet 12 is provided in the side wall of the vacuum chamber 6 . In this way, the sputtering apparatus is similar to the plasma CVD apparatus described above, but the only difference is that the high-frequency electrode 8 is provided with a solid raw material as the target 14. In order to form the first insulating film using this device, first, a solid raw material is placed as the target 14, and the gas inlet 12 is
Ar gas and, if necessary, reaction gas were simultaneously introduced.

これらのガスがプラズマ化しΔrイオンがターゲット1
4の物質を原子状あるいは分子状にしてたたき出した後
、反応ガスのプラズマ中で反応しながら加熱部材13の
表面に絶縁性被膜を成膜した。第3表には成膜された被
膜の成分、原料及び成膜条件等が記載されている。例え
ば、非晶質シリコンからなる被膜を成膜するには、ター
ゲットとして単結晶又は多結晶シリコンを設置し、ガス
導入口12よりAr jjガス 0SCCM、1−12
 ガ、’、1003CCMを導入しチャンバー内圧力を
1X10−3Torrに保ち高周波電極8に500Wの
電圧をかけて成膜を行なった。
These gases turn into plasma and Δr ions reach target 1.
After the substance No. 4 was knocked out in the form of atoms or molecules, an insulating film was formed on the surface of the heating member 13 while reacting in the plasma of the reaction gas. Table 3 lists the components, raw materials, film forming conditions, etc. of the film formed. For example, in order to form a film made of amorphous silicon, single crystal or polycrystalline silicon is set as a target, and Ar jj gas 0SCCM, 1-12 is injected from the gas inlet 12.
1003 CCM was introduced, the pressure inside the chamber was maintained at 1×10 −3 Torr, and a voltage of 500 W was applied to the high frequency electrode 8 to form a film.

この場合、成膜時間60分で3.Oflmの膜厚の非晶
質シリコン被膜が成膜された。また、原料ガスとしてA
rガス、H2ガスと同時にB2 H6ガスISCCM又
はP l−13ガス18CCMを導入させてもよい。以
下他の成分の被膜についても同様にターゲットの固体、
原料ガスとその流量、チャンバー6内の反応圧力、高周
波電極8に印加された電力。
In this case, 3. An amorphous silicon film having a thickness of Oflm was formed. In addition, A as a raw material gas
B2 H6 gas ISCCM or 18 CCM of Pl-13 gas may be introduced simultaneously with r gas and H2 gas. Similarly, for coatings of other components, the target solid,
The raw material gas and its flow rate, the reaction pressure in the chamber 6, and the electric power applied to the high frequency electrode 8.

記載した。Described.

成膜時間及び成膜の膜厚を第3表中に (以下余白) スパッタリング法は原料として固体が使用できるため扱
いやすく、また、加熱部材の形状により装置の形状を変
える必要がなく汎用的な方法といえる。
The film formation time and film thickness are shown in Table 3 (blank below). Sputtering is easy to handle because it can use solids as raw materials, and there is no need to change the shape of the equipment depending on the shape of the heating member, making it a versatile method. It can be said to be a method.

実施例3 本実施例では、ECRプラズマCVD法により母材の表
面に被膜を成膜した。この方法に使われる装置は、第5
図に示す通りである。成膜室15の側壁にはガス導入口
12が設けられている。
Example 3 In this example, a film was formed on the surface of the base material by the ECR plasma CVD method. The equipment used in this method is
As shown in the figure. A gas inlet 12 is provided in the side wall of the film forming chamber 15 .

また、成膜室15上方にはプラズマ形成室16が配設さ
れ、この成膜室16とは、仕切り板17に設けられたプ
ラズマ導入口18によって連通している。プラズマ形成
室16の土壁には石英板19が配設され、石英板19の
上方にはマイク[1波力波管20が配設されている。ま
た、プラズマ形成室16″土壁にはガス導入口21が設
けられ、プラズマ形成室16の周囲には、電磁石22が
設けられている。
Further, a plasma forming chamber 16 is arranged above the film forming chamber 15, and communicates with this film forming chamber 16 through a plasma inlet 18 provided in a partition plate 17. A quartz plate 19 is disposed on the earthen wall of the plasma formation chamber 16, and a microphone [1 wave power wave tube 20] is disposed above the quartz plate 19. Further, a gas inlet 21 is provided in the earthen wall of the plasma forming chamber 16, and an electromagnet 22 is provided around the plasma forming chamber 16.

この装置により加熱部材に絶縁性被膜を被覆するには、
加熱部材13を成膜室15内底部に設置し以下の通り成
膜を行なった。成膜室15内を真空ポンプにより排気し
、1X10−5乃至1×10−3の真空度に保持した。
To coat the heating member with an insulating film using this device,
The heating member 13 was installed at the bottom of the film forming chamber 15, and film formation was performed as follows. The inside of the film forming chamber 15 was evacuated by a vacuum pump and maintained at a degree of vacuum of 1.times.10@-5 to 1.times.10@-3.

導入管12より成膜室15に原料ガス、導入管21より
プラズマ形成室、反応ガス(N2.02 、CH4等)
または、それ自身は反応ぎずにエネルギーを他に供給す
るガス、(Ar 、He 、1−12 )をそれぞF′
L導入した。
Source gas is introduced into the film forming chamber 15 through the introduction pipe 12, and reaction gas (N2.02, CH4, etc.) is introduced into the plasma formation chamber through the introduction pipe 21.
Alternatively, gases (Ar, He, 1-12) that do not react themselves but supply energy to others can be F'
L was introduced.

マイクロ波導波惰20J、す2.45GHzのマイクロ
波をプラズマ形成室16に導入すると、このマイクロ波
に」、す、電QEが生じる。また、電磁石22に電流を
流してプラズマ形成室16内に875ガウスIn 、l
J2 Bを形成する。プラズマ形成室16内の電子が共
鳴し励起される。この電子の共鳴にJ、り導入管21か
ら導入されると、N2、またはA rガスにそのエネル
ギーが供給され、これらのガスのプラズマを形成づ−る
。このプラズマは限場の発散に伴い、プラズマ導出管1
8より、成膜室15に引出される。成膜室15中に導入
管12より導入された原料ガスの成分が成膜室15内の
平、板状の加熱部材13の表面に成膜された。各被膜に
ついて原料ガス、成膜条件Sを第5表に記載した。例え
ば、sr@N成分の成膜をづる場合には、原料としてS
t t1410SCCMをガス導入口により導入し、反
応ガスとして、N2503CCMをガス導入口により導
入した。チャンバー内の圧力は3X 10”” Tor
rに保らマイクロ波電力を500Wとした。この場合、
成膜時間40分で膜厚3.Omの被膜を得た。以下、他
の成分の被膜についても同様に第5表中に、原料ガスと
その流量、成膜室15内の反応圧力、マイクロ波電力、
成膜時間、膜厚を2或した。
When a 20J microwave waveguide and a 2.45 GHz microwave are introduced into the plasma formation chamber 16, an electric current QE is generated in the microwave. In addition, a current of 875 Gauss In, l is applied to the electromagnet 22 in the plasma formation chamber 16.
Form J2 B. Electrons within the plasma formation chamber 16 resonate and are excited. When the electrons are introduced from the inlet pipe 21 into resonance, their energy is supplied to the N2 or Ar gas, forming a plasma of these gases. Due to the divergence of the limited field, this plasma
8 into the film forming chamber 15. The components of the raw material gas introduced into the film forming chamber 15 through the introduction pipe 12 were deposited on the surface of the flat, plate-shaped heating member 13 in the film forming chamber 15 . The raw material gas and film forming conditions S for each film are listed in Table 5. For example, when forming a film with sr@N component, S
tt1410SCCM was introduced through the gas inlet, and N2503CCM was introduced as a reaction gas through the gas inlet. The pressure inside the chamber is 3X 10”” Tor
The microwave power was set at 500 W. in this case,
The film thickness was 3.5 minutes after the film formation time was 40 minutes. A coating of Om was obtained. Hereinafter, for coatings of other components, the raw material gas and its flow rate, the reaction pressure in the film forming chamber 15, the microwave power,
The film formation time and film thickness were set to 2.

(以下余白) このようにECIIプラズマCVD法によれば加熱部材
を加熱することなく処理でき、成分が均で部材に密着し
た被膜が成膜できる。
(Left below) As described above, according to the ECII plasma CVD method, the process can be performed without heating the heating member, and a film having uniform components and adhering to the member can be formed.

以上の実施例1乃至3に示した成膜を行なう前に△rイ
オンボンバード処理を行なうと、被膜と母材の密着度を
高くすることができる。この処理を行なうにはプラズマ
CVD法、ECRプラズマCVO法の場合は、被膜とな
る原料ガスを供給せずに八rを流してプラズマを形成す
ればに<、スパックリング法の場合には、ターゲットで
はなく丹Hに電力を印加ずればよい。
If the Δr ion bombardment treatment is performed before the film formation shown in Examples 1 to 3 above, the degree of adhesion between the film and the base material can be increased. To perform this treatment, in the case of the plasma CVD method and the ECR plasma CVO method, plasma is formed by flowing 8r without supplying the raw material gas that forms the film, and in the case of the spackling method, the target Instead, the power should be applied to Dan H instead.

さらに被膜と母材との密着度を高めるには、被膜と母材
の界面に、窒素、炭素、酸素笠を母材より多く含有する
領域を形成するとよい。そのためには予めイオン窒化、
浸炭処理等を行なった母材に絶縁性被膜を被覆させたり
、前記イオンボンバードの際にArガスにN2.02 
、CH4等を混合してもよい。また、N2.02 、C
l−14等のガスのイオンボンバードを行なってもよい
Furthermore, in order to increase the degree of adhesion between the coating and the base material, it is preferable to form a region containing nitrogen, carbon, and oxygen in a larger amount than the base material at the interface between the coating and the base material. For this purpose, ion nitriding,
The base material that has been carburized is coated with an insulating film, or N2.02 is added to the Ar gas during the ion bombardment.
, CH4, etc. may be mixed. Also, N2.02, C
Ion bombardment with a gas such as l-14 may also be performed.

このように、導電性物質からなる母材の表面に絶縁性か
つはんだとのぬれ性の悪い材質の被膜を被覆することに
より、加熱部材から基板の回路への電流の分流がな(な
り、良好な加工を施すことができ、また、はんだが付着
しにくく、かつ耐摩耗性、耐酸化性に優れ、数万回の使
用にも耐えることができる加熱部材を提供することがで
きる。
In this way, by coating the surface of the base material made of a conductive substance with a film made of a material that is insulating and has poor wettability with solder, there is no shunting of current from the heating member to the circuit on the board. It is possible to provide a heating member that can be subjected to various processing, is difficult to adhere to solder, has excellent wear resistance and oxidation resistance, and can withstand tens of thousands of uses.

[究明の効果] 以上詳述したように、本発明の絶縁性でかつはんだとの
ぬれ性の悲い材質の被膜で被覆した加熱部材によれば、
加熱部材から被加工物への電流の分流がなく、かつはん
だが付着しにくく、良好な加工がなされる。
[Effects of Investigation] As detailed above, according to the heating member of the present invention coated with a film made of a material that is insulating and has poor wettability with solder,
There is no current flow from the heating member to the workpiece, and solder is less likely to adhere, resulting in good processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図はすべて本発明の実施例に関するもの
であり、第1図は1個の加熱部材の斜視図、第2図は4
個の加熱部材を直列に繋いだ様子を示した様式図、第3
図乃至第5図は加熱部材を製造するための装置の概略図
であり、第3図はプラズマCVD法に用いられる装置の
概略図、第4図はスパッタリング法に用いられる装置の
概略図、第5図はECRプラズマCVD法に用いられる
装置の概略図である。 13・・・加熱部材
1 to 5 all relate to embodiments of the present invention, FIG. 1 is a perspective view of one heating member, and FIG. 2 is a perspective view of one heating member.
Form drawing showing how several heating members are connected in series, No. 3
5 to 5 are schematic diagrams of an apparatus for manufacturing a heating member, FIG. 3 is a schematic diagram of an apparatus used in plasma CVD method, FIG. 4 is a schematic diagram of an apparatus used in sputtering method, and FIG. FIG. 5 is a schematic diagram of an apparatus used in the ECR plasma CVD method. 13... Heating member

Claims (1)

【特許請求の範囲】[Claims] 導電性物質からなる母材に通電することで加熱せしめ被
加工物に加工を施す部材において、少なくとも母材の被
加工物と接する部分は比抵抗が母材の10^−^2Ωc
m以上でかつ鉛または錫の少なくとも一方を主成分とす
る金属の溶融物との接触角が10度以上である被膜で被
覆されたことを特徴とする通電加熱部材。
In a member that processes a workpiece by heating it by applying electricity to a base material made of a conductive substance, at least the part of the base material in contact with the workpiece has a specific resistance of 10^-^2Ωc of the base material.
1. An electrically heated member characterized in that it is coated with a film having a contact angle of 10 degrees or more with a molten metal whose main component is at least one of lead and tin.
JP15128088A 1988-06-21 1988-06-21 Electric heating member Pending JPH026053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15128088A JPH026053A (en) 1988-06-21 1988-06-21 Electric heating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15128088A JPH026053A (en) 1988-06-21 1988-06-21 Electric heating member

Publications (1)

Publication Number Publication Date
JPH026053A true JPH026053A (en) 1990-01-10

Family

ID=15515231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15128088A Pending JPH026053A (en) 1988-06-21 1988-06-21 Electric heating member

Country Status (1)

Country Link
JP (1) JPH026053A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129534A1 (en) 2013-02-20 2014-08-28 古河電気工業株式会社 Structure for fixing battery post terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129534A1 (en) 2013-02-20 2014-08-28 古河電気工業株式会社 Structure for fixing battery post terminal

Similar Documents

Publication Publication Date Title
EP0144055B1 (en) Process and apparatus for producing a continuous insulated metallic substrate
JP2010103455A (en) Plasma processing apparatus
JPH10275694A (en) Plasma processing device and processing method
JPH026053A (en) Electric heating member
JPH0237963A (en) Electrical heating member
JPH026052A (en) Electric heating member
JPH01239919A (en) Method and apparatus for plasma treatment
JPH01266964A (en) Electroheating member
JPH01273669A (en) Electroheating member
US4967058A (en) Power heating member
JP3071657B2 (en) Thin film forming apparatus and thin film forming method
JPS6247472A (en) Formation of cubic boron nitride film
JP2646582B2 (en) Plasma CVD equipment
JP3615919B2 (en) Plasma CVD equipment
JP2669249B2 (en) Plasma processing apparatus and method for cleaning the apparatus
JPH0119467B2 (en)
JPH01273668A (en) Electroheating member
JPS6091629A (en) Plasma vapor growing device
KR950003958B1 (en) Thin film manufacturing method by flasma chemical deposition
JPH01278960A (en) Electric heating member
JP3291737B2 (en) Activation method and device
JP2951564B2 (en) Thin film formation method
JPH10312965A (en) Plasma chemical deposition system
JPH0247252A (en) Production of composite material film
JPH01262068A (en) Heating member by electrification