JPH01273668A - Electroheating member - Google Patents

Electroheating member

Info

Publication number
JPH01273668A
JPH01273668A JP10271288A JP10271288A JPH01273668A JP H01273668 A JPH01273668 A JP H01273668A JP 10271288 A JP10271288 A JP 10271288A JP 10271288 A JP10271288 A JP 10271288A JP H01273668 A JPH01273668 A JP H01273668A
Authority
JP
Japan
Prior art keywords
film
base metals
heating member
solder
insulating region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10271288A
Other languages
Japanese (ja)
Inventor
Mutsuki Yamazaki
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10271288A priority Critical patent/JPH01273668A/en
Publication of JPH01273668A publication Critical patent/JPH01273668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PURPOSE:To improve the working quality of the heating member by forming an area having the specific resistance higher by specific times than the specific resistance of base metals to the parts of the base metals which come into contact with a work and forming a film which has a prescribed contact angle or above with the molten metal of a solder, etc. thereon. CONSTITUTION:The ions which are made into high energy by a magnetic field and electric field are implanted into the conductive base metals 13 by an ion implantation device, etc. The insulating region having the specific resistance higher by >=100 times the specific resistance of the base metals 13 is formed to the parts of the base metals 13 which come into contact with the work. The film which has >=10 deg. contact angle with molten solder is then formed to the insulating region of the base metals 13 via a capacity coupling type plasma CVD device and soldering of IC lead wires is executed. Since the insulating region is formed on the base metals, the shunting of electric current from the heating members 13 to a circuit board is eliminated and the sticking of the solder is prevented by the film having the large contact angle. The quality of the heating members is, therefore, improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野ン 本発明は、導電性物質に通電し、ジュール熱を発生させ
、リード線等の被加工物を加工する通電加熱部材に関す
る。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to an energizing heating member for processing workpieces such as lead wires by applying electricity to a conductive substance to generate Joule heat. .

(従来の技術) 近年、ファクトリ−オートメーションの進歩は著しい。(Conventional technology) In recent years, factory automation has made remarkable progress.

その−例として集積回路(IC)を基板にはんだ付けを
する装置がある。この装置ではFe、Mo、W、Ta、
Cu、AI 、ステアVスなどの導電性物質からなる母
材を加工した加熱部材に通電し、ジュール熱を発生させ
、前記加熱部材で一度に複数のリード線を基板に押付け
ることによシ、はんだ付けを行っている。通常、ICは
三方又は四方にリード線が出ているので、加熱部材は二
個又は四個を平行あるいは四方取囲むように設置され、
電気的に直列に接続されている。並タリでもよいが、こ
の場合には、装置全体で心安な電流の養血が多くなる。
An example of this is a device for soldering integrated circuits (ICs) to substrates. In this device, Fe, Mo, W, Ta,
A heating member made of a base material made of a conductive material such as Cu, AI, or Stair Vs is energized to generate Joule heat, and the heating member presses multiple lead wires against the board at once. , doing soldering. Usually, ICs have lead wires coming out on three or four sides, so the heating members are installed in parallel or surrounding two or four of them.
electrically connected in series. Although it may be possible to use an average current, in this case, the entire device receives a large amount of blood feeding with a safe current.

こうした、導電性物質からなる加熱部材を直接ICのリ
ード線に接触させてはんだ付けを行うと基板の配線が直
列に接続された加熱部材同志を結ぶ箇所では、加熱部材
から基板の配線への電流の分流が起こシ、基板の配線が
切れるという不具合があった。そこで、本発明者は41
!性物質からなる母材の表面に絶縁性領域を形成するこ
とにより、加熱部材から基板の配線への電流の分流を防
ぐことを以前に提案した。
When soldering is performed by directly contacting the heating member made of a conductive material with the lead wires of the IC, current flows from the heating member to the wiring on the board at the point where the wiring on the board connects the heating members connected in series. There was a problem that the current shunted and the wiring on the board broke. Therefore, the inventor of the present invention
! It has previously been proposed to prevent the shunting of current from the heating element to the wiring of the substrate by forming an insulating region on the surface of a matrix made of a magnetic substance.

(発明が解決しようとする課題) しかし、このような加熱部材では、この絶縁性の領域の
材質および表面の伏態によってははんだが加熱部材に付
着しやすいという欠点があった。
(Problem to be Solved by the Invention) However, such a heating member has a drawback in that solder tends to adhere to the heating member depending on the material of the insulating region and the state of the surface being exposed.

本発明では、加熱部材の少なくともICのリード線に接
する部分に絶縁性の領域を形成し更にこの絶縁性の領域
の表面にはんだとのぬれ性が悪くはんだが付着しにくい
材質からなる被膜で被覆したことによシ加熱部材にはん
だが付着するのを防ぎ良好な加工を施すことを目的とし
た。
In the present invention, an insulating region is formed at least in the part of the heating member that is in contact with the IC lead wire, and the surface of this insulating region is further coated with a coating made of a material that has poor wettability with solder and is difficult for solder to adhere to. The purpose was to prevent solder from adhering to the heating member and to provide good processing.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の通電加熱部材は、導電性材料からなる母材の表
面で、少なくともリード線に接する部分に、比抵抗が前
記母材の100倍以上を有する領域を形成し、更にこの
si性の領域の表面に鉛または錫の少なくとも一方を主
成分とする金属の熔融物との接触角が10(f以上の材
質からなる被膜で被覆したことを特徴とする。
(Means for Solving the Problems) The electrically heating member of the present invention has a region on the surface of a base material made of a conductive material, at least in a portion in contact with a lead wire, having a specific resistance of 100 times or more that of the base material. Furthermore, the surface of this Si region is coated with a film made of a material having a contact angle of 10(f or more) with a molten metal containing at least one of lead or tin as a main component.

前記はんだの付着しにくい被膜の材料としてはよシ具体
的には、T i、W、Ag、Au、Cr。
Preferred materials for the film to which solder does not easily adhere include Ti, W, Ag, Au, and Cr.

C,0,Nの中から選ばれる少なくとも一種以上の元素
を成分とするものが使われる。その理由は以下に述べる
通電である。まず前記被膜は約150℃から300℃程
度までのヒートサイクルにおいて母材から剥離しない材
料で構成されていなければならない。又、オートメ−7
ヨン化されたはんだ付は装置では、加熱部材は数秒程度
の周期で昇温、降温か行われるので、前記被膜の材料は
熱伝導率の高いものでなげればならない。従って前記被
膜の膜厚1μmを越える場合には熱伝導率は1wm−’
に−1以上でなげればならない。前述した元素を含む材
料はすべて熱伝導率の高い材料である。
A material containing at least one element selected from C, 0, and N is used. The reason for this is the energization described below. First, the coating must be made of a material that does not peel off from the base material during heat cycles from about 150°C to about 300°C. Also, autome-7
In a soldering device, the temperature of the heating member is raised and lowered in cycles of several seconds, so the material of the coating must have high thermal conductivity. Therefore, if the thickness of the film exceeds 1 μm, the thermal conductivity is 1 wm-'
You must roll with -1 or higher. All materials containing the above-mentioned elements have high thermal conductivity.

又、加熱材料は接地電位に対し1〜IOV程度の電位差
を有するので、前記被膜は、この電圧に対し絶縁破壊が
起こらない程度の膜厚を必要とする。従って前記被膜の
膜厚は500λ以上好ましくは100OA以上は必要で
あシ、耐摩耗性も考慮すると2μm程度は必要である。
Further, since the heating material has a potential difference of about 1 to IOV with respect to the ground potential, the film needs to have a thickness that does not cause dielectric breakdown with respect to this voltage. Therefore, the thickness of the coating is required to be 500λ or more, preferably 100OA or more, and when wear resistance is also taken into account, it is necessary to be about 2 μm.

熱伝導率を考慮すると5μm以上にすることは好ましく
はない。この被膜を被覆する方法としては、スパッタリ
ング、イオングレーティング、真空蒸着、グラスvCV
D、ECR;y”ラズマcVD、 熱CVD。
Considering thermal conductivity, it is not preferable to make the thickness 5 μm or more. Methods for coating this film include sputtering, ion grating, vacuum evaporation, glass vCV
D, ECR; y” lasma cVD, thermal CVD.

光CvDなどがある。この中でも、膜の密層性がよいこ
と、比較的低温で処理でき膜の特性が損われないこと、
膜の電気的特性が制御しやすいことを考慮するとプラズ
マCVD法、ECRプラズマCVD法が特に適当である
There is optical CvD, etc. Among these, the film has good layer density, can be processed at relatively low temperatures, and its properties are not impaired.
Considering that the electrical characteristics of the film can be easily controlled, plasma CVD method and ECR plasma CVD method are particularly suitable.

(作用) 刃口熱部材の少なくともICのリード線に接する部分に
絶縁性の領域を形成し、更に、この絶縁性領域の表面に
はんだとのぬれ性の悪い被膜を被覆することによシ加熱
部材にはんだが付着するという不具合がなくなった。
(Function) An insulating region is formed at least in the part of the cutting edge heating member that is in contact with the IC lead wire, and the surface of this insulating region is further coated with a film that has poor wettability with solder to perform heating. The problem of solder adhering to parts has been eliminated.

(実施例) 本発明の加熱部材は導電性物質を第1図に示すように加
工し、表面に絶縁性領域を形成しさらにこの絶縁性領域
の表面圧はんだとのぬれ性の悪い第2の被膜で被覆して
なる。
(Example) In the heating member of the present invention, a conductive material is processed as shown in FIG. It is coated with a film.

オートメーション化されたはんだ付は装置においてはこ
の加熱部材を第2図に示すように四方を取囲むように設
置し、これらを電気的に直列に50Hzの交流電源へ接
続して使用される。
Automated soldering is used in an apparatus in which the heating members are installed so as to surround them on all sides as shown in FIG. 2, and they are electrically connected in series to a 50 Hz AC power source.

加工工程は以下に示す過多である。基板上にICが乗せ
られ、自動搬送されてきた後、加熱部材が降りてきてI
Cのリード線を°約2Kg重/ cm 2の圧力で押付
けるのと同時に、加熱部材に約50OAの電流を供給し
、300″C程度まで加熱する。
The processing steps are numerous as shown below. After the IC is placed on the board and automatically transported, the heating member comes down and
At the same time, the lead wire of C is pressed with a pressure of about 2 kg/cm2, and at the same time, a current of about 50 OA is supplied to the heating member to heat it to about 300''C.

はんだが溶けてリード線と基板の回路が接続された後、
通電を止め、はんだが固まったところで、加熱部材が上
昇し、この−工程が終了する。
After the solder is melted and the lead wires and the circuit on the board are connected,
When the electricity is turned off and the solder hardens, the heating member is raised and this process is completed.

以下に、4電性物質からなる母材の表面に前述の絶縁性
の領域を形成しはんだの付着しにくい被膜を被覆するこ
とにより、本発明の加熱部材を製造した実施例について
記載する。
Below, an example will be described in which a heating member of the present invention was manufactured by forming the above-mentioned insulating region on the surface of a base material made of a tetraelectric substance and coating it with a film to which solder does not easily adhere.

一実施例1− 本実施例では第3図に示すようなイオン注入装置により
母材表面に比抵抗の高い部分を形成した。まず、原料の
固体14をオープン15申に入れ、反工己ガスを導入し
た。次にフィラメント17に電流を流すことによシ加熱
し、原料の固体〒の元素を反応ガスによってたたき出し
イオン化させた。たたき出されたイオンはフォーカス1
8によって収束され、更に力U連語19によシ加速され
た。
Example 1 In this example, a high resistivity portion was formed on the surface of the base material using an ion implantation apparatus as shown in FIG. First, the raw material solid 14 was placed in an open 15 tube, and an anti-oxidant gas was introduced. Next, the filament 17 was heated by passing an electric current through it, and the solid elements of the raw material were ionized by being knocked out by the reaction gas. The ejected ions are focus 1
8, and further accelerated by force U collocation 19.

続いてマグネット20により、たたき出されたイオンの
うち所望のイオンのみがスリット21より引き出される
ように磁場をかけ、更にY−スキャナ22.X−スキャ
ナ23によシミ場をかけた。
Next, a magnetic field is applied by the magnet 20 so that only desired ions out of the ejected ions are extracted from the slit 21, and then a Y-scanner 22. A stain field was applied to the X-scanner 23.

こうして磁場とt場によシ高エネルギとなったイオンを
導電性母材13に照射することによシ、イオンを導電性
母材13に注入した。
Ions were injected into the conductive base material 13 by irradiating the conductive base material 13 with ions that had become highly energetic due to the magnetic field and the t-field.

このようなイオン注入法により注入されるイオンとして
は、窒素、炭素、酸素、リン、ホウ素。
Ions implanted by this ion implantation method include nitrogen, carbon, oxygen, phosphorus, and boron.

インジウム、イツトリウム、硅素、ケルマニウムなどが
あげられる。
Examples include indium, yttrium, silicon, and kermanium.

一実施例2− 本実施例では、プラズマCVD法によシ第1表に示した
成分の被膜を絶縁性領域の表面に被覆した。第4図は平
行平板型の容量結合型プラズマ(、VD装置の略図であ
る。真空チャンバー26内には、平板法接地電極27と
高周波電極28が対向して設置されている。又、真空チ
ャンバー26にはガス導入口32が設げられ℃いる。接
地電極27にはヒーター29が取シ付けられ高周数電力
28にはマツチングボックス30を介して高周波電極3
1に接続されている。
Example 2 In this example, a film containing the components shown in Table 1 was coated on the surface of an insulating region by plasma CVD. FIG. 4 is a schematic diagram of a parallel plate type capacitively coupled plasma (VD device).In the vacuum chamber 26, a flat plate method ground electrode 27 and a high frequency electrode 28 are installed facing each other. 26 is provided with a gas inlet 32.A heater 29 is attached to the ground electrode 27, and the high frequency power 28 is connected to the high frequency electrode 3 via a matching box 30.
Connected to 1.

この装置によりまず導電性加熱部材の絶縁性領域の表面
にはんだの付着しにくい被膜を被覆した。加熱部材13
を、接地電極27上に置き、図示しない真空ボンダによ
ってチャンバー26内を10  ’Torr  程度に
排気した。次に接地電極27に取を寸けたヒーター29
により、加熱部材13を150 ’Oから450°C程
度に加熱しガス導入口32よりTiCl4.N!、CH
,等の原料ガスをチャンバー26内に供給して、チャン
バー26内の真空度を0.05〜1.0Torrに保つ
ように排気した。高周波電極28に電力を投入すると、
電極間にてグロー放電が起こシ、原料ガスがグラズマ化
し薄膜が加熱部材13に被覆された被膜の成分、原料ガ
スとその流量、チャンバー26内の反応圧力、高周波電
極28に電力0される電力、成膜時間、膜厚は第1表に
示す通りである。例えば、TiN成分の被膜を被覆する
場合には、原料ガスとしてTiC1420SCCM、N
l 300SCCM、 H。
Using this device, the surface of the insulating region of the conductive heating member was first coated with a film to which solder was difficult to adhere. Heating member 13
was placed on the ground electrode 27, and the inside of the chamber 26 was evacuated to about 10' Torr using a vacuum bonder (not shown). Next, a heater 29 with a hole attached to the ground electrode 27
The heating member 13 is heated from 150'O to about 450°C, and TiCl4. N! , C.H.
, etc. were supplied into the chamber 26, and the chamber 26 was evacuated so as to maintain the degree of vacuum within the chamber 26 at 0.05 to 1.0 Torr. When power is applied to the high frequency electrode 28,
Glow discharge occurs between the electrodes, the raw material gas becomes a glazoma, and the thin film is coated on the heating member 13. The raw material gas and its flow rate, the reaction pressure in the chamber 26, and the electric power applied to the high-frequency electrode 28. , film forming time, and film thickness are as shown in Table 1. For example, when coating a film of TiN component, the source gas is TiC1420SCCM, N
l 300SCCM, H.

200SCCMをガス尋人口32よシ導入し、チャフ 
バー 25内の反応圧力を1.0Torrに保持し、高
周波電極28に500Wの電圧を電力日して成膜を行っ
た。この場合、成膜時間30分で1.0 μmの膜厚の
被膜が形成された。以下、他成分の被膜でも同様に成膜
された被膜の成分、原料ガスとその流量、チギンバー内
の反応圧力、尚周波電極28に印加される電力、成膜時
間、膜厚は第1表に示す通りである。
200 SCCM was introduced to the gas population of 32, and chaff
The reaction pressure in the bar 25 was maintained at 1.0 Torr, and a voltage of 500 W was applied to the high frequency electrode 28 to form a film. In this case, a film with a thickness of 1.0 μm was formed in 30 minutes. Table 1 below shows the components of the film formed in the same way for films of other components, the raw material gas and its flow rate, the reaction pressure in the chigin bar, the power applied to the frequency electrode 28, the film formation time, and the film thickness. As shown.

以下余白 プラズマCVD法によれば、加熱部材を150°0乃至
450°Cの比較的低温で処理できるため、加熱部材の
特性を損うことなく密着強度の強い良好な被膜が得られ
る。
According to the blank plasma CVD method, since the heating member can be treated at a relatively low temperature of 150°C to 450°C, a good coating with strong adhesion strength can be obtained without impairing the properties of the heating member.

一実施例3− 本実施例では、スパッタリング法によシ第2表に示した
成分の被膜を成膜した。使用されるスパッタ装置は第5
図に示す通りである。真空チャンバー26内には平板犬
接地電極27と高周波電極28とが対向して設置されて
おシ、平扱伏接地電極27にはヒーター29が取付けら
れている。
Example 3 In this example, a film containing the components shown in Table 2 was formed by sputtering. The sputtering equipment used is the fifth
As shown in the figure. Inside the vacuum chamber 26, a flat ground electrode 27 and a high frequency electrode 28 are installed facing each other, and a heater 29 is attached to the flat ground electrode 27.

高周波電極28はマツチングボックス30を介して高周
波電極11に接続されている。真空チャ/パー26の側
壁にはガス導入口32が設けられている。このようにス
パッタリング法置は前述のグブズマCVD装置と類似し
ているが、高周波電極28に原料の固体をターゲット2
4として設けている点のみが異なっている。
The high frequency electrode 28 is connected to the high frequency electrode 11 via a matching box 30. A gas inlet 32 is provided in the side wall of the vacuum chamber/par 26. In this way, the sputtering method is similar to the above-mentioned Gubudsma CVD equipment, but the solid material is transferred to the high frequency electrode 28 as the target 2.
The only difference is that it is provided as 4.

この装置によυ絶縁性の領域の表面にはんだの付着しに
くい被膜を成膜した。第2表には成膜された被膜の成分
、原料及び成膜条件等が記載されている。例えば、Ti
N成分からなる被膜を成膜するには、ターゲット24と
して金jiB’l’iを設置し、ガス導入口32よ1)
Arガ、1.1105CC。
Using this equipment, a film was formed on the surface of the υ insulating region to which solder was difficult to adhere. Table 2 lists the components, raw materials, film forming conditions, etc. of the film formed. For example, Ti
To form a film made of N component, gold is set as the target 24, and the gas inlet 32 is opened (1).
Arga, 1.1105CC.

N、ガス50SCCMを尋人しチャンバー26内圧力を
I X 10−3Torrに保ち高周波電極28にso
owの電圧をかげて成膜を行った。この場合、成膜時間
60分で3.0μmの膜厚のTiNの被膜が成膜された
。以下、他の成分の被膜についても同様にターゲットの
固体、原料ガスとその渡世。
50 SCCM of nitrogen gas was applied to the high frequency electrode 28 while keeping the pressure inside the chamber 26 at I x 10-3 Torr.
Film formation was performed with a voltage of OW. In this case, a TiN film having a thickness of 3.0 μm was formed in a film forming time of 60 minutes. Below, we will discuss the target solid, raw material gas, and its transition in the same way for coatings of other components.

チャンバー26内の反応圧力、高周波を極28に印加さ
れた電力、成膜時間及び被膜の膜厚を第2表中に記載し
た。
The reaction pressure in the chamber 26, the power applied to the high frequency pole 28, the film forming time, and the film thickness of the film are listed in Table 2.

以下余白 スパッタリング法は原料として固体が使用できるため扱
いやすく、また、加熱部材の形伏によシ装置の形伏を変
える必要がなく汎用的な方法といえる。
The blank space sputtering method is easy to handle because a solid material can be used as a raw material, and there is no need to change the shape of the heating member or the shape of the device, so it can be said to be a versatile method.

一実施例4− 本実施例では、EC几グラズマCVD法により絶縁性の
領域の表面にはんだの付着しにくい被膜を成膜した。こ
の方法に使われる装置は、第6図に示す通シである。成
膜室35の側壁にはガス導入口32が設けられている。
Example 4 In this example, a film to which solder is difficult to adhere was formed on the surface of an insulating region by EC-glazma CVD. The apparatus used in this method is the one shown in FIG. A gas inlet 32 is provided in the side wall of the film forming chamber 35 .

また、成膜室35上刃にはプラズマ形成室36が配設6
れ、この成膜室36とは、仕切シ板37に設けられたグ
ラズマ導入口38によって連通し℃いる。プラズマ形成
室36の土壁には石英板39が配設され、石英板39の
上方にはマイクロ彼4波管40が配設されている。また
、プラズマ形成室36土壁にはガス導入口41が設げら
れ、プラズマ形成室36の周囲には、を磁石42が設け
られている。
In addition, a plasma forming chamber 36 is provided in the upper blade of the film forming chamber 35.
The film forming chamber 36 is in communication with the film forming chamber 36 through a glazma inlet 38 provided in a partition plate 37 . A quartz plate 39 is disposed on the earthen wall of the plasma formation chamber 36, and a microwave four-wave tube 40 is disposed above the quartz plate 39. Further, a gas inlet 41 is provided in the earthen wall of the plasma formation chamber 36, and a magnet 42 is provided around the plasma formation chamber 36.

この装置によシ加熱部材に被膜を被覆するには、加熱部
材13を成膜室35内底部に設置し以下の通り成膜をお
こなった。成膜室35内を真空ボンダによシ排気し、1
×10 乃至1×10−3の真空度に保持した。導入管
32よシ成膜室35に原料ガス、4入管41よりプラズ
マ形成室、反応ガス(N2.02 、CH4等)または
、それ自身は反応せずにエネルギを他に供給するガX、
(ArHe 、 Hz )をそれぞれ導入した。マイク
ロ波導波管0より2.45 Hzのマイクロ波をプラズ
マ形成室36に導入すると、このマイクロ波により、電
場Eが生じる。また、電磁石42に電流を流してプラズ
マ形成室36内に875ガウスの磁場を形成する。プラ
ズマ形成室16内の電子が共鳴し励起される。この電子
の共鳴によシ導入管41から導入されると、N2、また
はArガスにそのエネルギが供給され、これらのガスの
プラズマを形成する。このプラズマは磁場の完敗に伴い
、プラズマ導出管38よシ、成膜室35に引き出される
In order to coat the heating member with a film using this apparatus, the heating member 13 was installed at the bottom of the film forming chamber 35, and the film was formed as follows. The inside of the film forming chamber 35 is evacuated by a vacuum bonder, and 1
The degree of vacuum was maintained at 1.times.10@-3 to 1.times.10@-3. A source gas is introduced into the film forming chamber 35 through the introduction pipe 32, and a reaction gas (N2.02, CH4, etc.) is supplied from the inlet pipe 41 to the plasma formation chamber, or a gas X that supplies energy to others without reacting itself;
(ArHe, Hz) were introduced, respectively. When a 2.45 Hz microwave is introduced into the plasma formation chamber 36 from the microwave waveguide 0, an electric field E is generated by the microwave. Furthermore, a current is applied to the electromagnet 42 to form a magnetic field of 875 Gauss within the plasma formation chamber 36. Electrons within the plasma formation chamber 16 resonate and are excited. When the electrons are introduced from the introduction tube 41 due to resonance, their energy is supplied to the N2 or Ar gas, forming a plasma of these gases. This plasma is drawn out to the film forming chamber 35 through the plasma outlet tube 38 as the magnetic field is completely destroyed.

成膜室35申に導入管32より導入された原料ガスの成
分が成膜室35内の平板状の加熱部材130表面に成膜
された。
The components of the source gas introduced into the film forming chamber 35 through the introduction pipe 32 were deposited on the surface of the flat heating member 130 inside the film forming chamber 35 .

各被膜について原料ガス、成膜条件等を第3表に記載し
た。例えば、T1CN成分の成膜をする場合には、原料
としてT i Cl 4 10 S CCMをガス導入
口32より導入し、反応ガスとして、CH420SCC
M、 Nl 50 S CCM、H2200SCCMを
ガス導入口32よシ導入した。成膜室35内の圧力は3
X10  Torrに保ちマイクロ波電力を100OW
とした。この場合、成膜時間60分で膜厚3.0μmの
被膜を得た。以下、他の成分の被膜についても同様に第
3表中に、原料ガスとその流量、成膜室35内の反応圧
力、マイクロ波電力、成膜時間、膜厚を記載した。
The raw material gas, film forming conditions, etc. for each film are listed in Table 3. For example, when forming a film of T1CN component, T i Cl 4 10 S CCM is introduced from the gas inlet 32 as a raw material, and CH420SCC is introduced as a reaction gas.
M, Nl50S CCM, and H2200SCCM were introduced through the gas inlet 32. The pressure inside the film forming chamber 35 is 3
Keep the microwave power at X10 Torr to 100OW
And so. In this case, a film with a thickness of 3.0 μm was obtained in 60 minutes. Hereinafter, for coatings of other components, the raw material gas and its flow rate, reaction pressure in the film forming chamber 35, microwave power, film forming time, and film thickness are similarly listed in Table 3.

以下余白 このようにECRz’9ズマCVD法によれば加熱部材
を加熱することなく処理でき、成分が均一で部材に密着
した被膜が成膜できる。
As described above, according to the ECRz'9Zuma CVD method, the process can be performed without heating the heating member, and a film having uniform components and closely attached to the member can be formed.

以上の実施例2乃至4に示した成膜を行5前にArイオ
ンボンバード処理を行うと、被膜と絶縁性領域の密着度
を高くすることができる。この処理を行うにはプラズマ
CvD法、ECRグラズマCVD法の場合は、被膜とな
る原料ガスを供給せずにArを流してプラズマを形成す
ればよく、スパッタリング法の場合には、ターゲットで
はなく母材に電力を印加すればよい。
If the Ar ion bombardment process is performed before the film formation shown in Examples 2 to 4 above in row 5, the degree of adhesion between the film and the insulating region can be increased. To perform this treatment, in the case of the plasma CVD method and the ECR glasma CVD method, it is sufficient to flow Ar to form plasma without supplying the raw material gas for the film, and in the case of the sputtering method, the plasma is formed by flowing Ar instead of the target. All you have to do is apply electric power to the material.

このように、4%性動物質らなる母材の表面に絶縁性の
領域を形成することにより加熱部材から基板の回路への
電流の分流がなくなシ、良好な力ロエを施すことができ
る。また、この絶縁性額域の表面に被膜を被覆すること
によりはんだが付着しにくく、かつ耐摩耗性、耐酸化性
にすぐれ、数万回の使用にも耐えることができる加熱部
材を提供することができる。
In this way, by forming an insulating region on the surface of the base material made of 4% carbonaceous material, there is no shunting of current from the heating member to the circuit of the board, and a good power flow can be applied. . Furthermore, by coating the surface of this insulating forehead area with a film, it is possible to provide a heating member that is difficult to adhere to with solder, has excellent wear resistance and oxidation resistance, and can withstand tens of thousands of uses. I can do it.

〔効果〕〔effect〕

桁明り 以上詳述したように本発明の鉛また錫の少なくとも一方
の金属熔融物との接触角が10度以上の被膜で被覆した
通電加熱部材によれば、加熱部材にはんだが付着しにく
く良工な加工が施される。
As described in detail above, the electrical heating member of the present invention coated with a film having a contact angle of at least 10 degrees with the molten metal of at least one of lead and tin has a good quality property in which solder is difficult to adhere to the heating member. Special processing is applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図はすべて本発明の実施例に関するもの
であり、第1図は1個の加熱部材の射視図、第2図は4
個の加熱部材を直列につないだ様子を示した模式図、第
3図はイオン注入装置の概略図、第4図はプラズマCV
D法に用いられる装置の概略図、第5図はスパッタリン
グ法に用いられる装置の概略図、第6図はECRプラズ
マCVD法に用いられる装置の概略図である。 13・・・加熱部材 代理人 弁理士  則 近 憲 佑 同        山  下     −第2図 第3図 第4図 第5図 マイク1ミ皮 む 菊E気 第6図
1 to 6 all relate to embodiments of the present invention, FIG. 1 is a perspective view of one heating member, and FIG. 2 is a perspective view of one heating member.
A schematic diagram showing how several heating members are connected in series, Figure 3 is a schematic diagram of an ion implanter, and Figure 4 is a plasma CV
FIG. 5 is a schematic diagram of an apparatus used in the D method, FIG. 5 is a schematic diagram of an apparatus used in the sputtering method, and FIG. 6 is a schematic diagram of an apparatus used in the ECR plasma CVD method. 13... Heating member agent Patent attorney Nori Ken Chika Yudo Yamashita - Figure 2 Figure 3 Figure 4 Figure 5 Microphone 1 Peeling Chrysanthemum Eki Figure 6

Claims (1)

【特許請求の範囲】[Claims] 導電性物質からなる母材に通電することで加熱せしめ被
加工物に加工を施す部材において、少なくとも母材の被
加工物と接する部分は比抵抗が母材の100倍以上を有
する領域を形成した後、更にこの絶縁性の領域の表面を
鉛または錫の少なくとも一方を主成分とする金属の熔融
物との接触角が10度以上である被膜で被覆されたこと
を特徴とする通電加熱部材。
In a member that processes a workpiece by heating it by applying electricity to a base material made of a conductive substance, at least the portion of the base material that contacts the workpiece forms a region with a specific resistance of 100 times or more that of the base material. Further, the surface of the insulating region is further coated with a film having a contact angle with a molten metal containing at least one of lead or tin as a main component of 10 degrees or more.
JP10271288A 1988-04-27 1988-04-27 Electroheating member Pending JPH01273668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10271288A JPH01273668A (en) 1988-04-27 1988-04-27 Electroheating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10271288A JPH01273668A (en) 1988-04-27 1988-04-27 Electroheating member

Publications (1)

Publication Number Publication Date
JPH01273668A true JPH01273668A (en) 1989-11-01

Family

ID=14334882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10271288A Pending JPH01273668A (en) 1988-04-27 1988-04-27 Electroheating member

Country Status (1)

Country Link
JP (1) JPH01273668A (en)

Similar Documents

Publication Publication Date Title
TW304987B (en)
TW445552B (en) Structure and method for improving low temperature copper reflow in semiconductor features
EP0478010B1 (en) Process for producing a continuous web of an electrically insulated metallic substrate
JP2000256845A (en) Formation of thin film and thin film forming device
TW508369B (en) Method for depositing cobalt and apparatus therefor
US6923891B2 (en) Copper interconnects
US5078847A (en) Ion plating method and apparatus
DE69934000T2 (en) PLASMA MACHINING CHAMBER AND METHOD FOR CONTROLLING CONTAMINATION
US3479269A (en) Method for sputter etching using a high frequency negative pulse train
EP0112989B1 (en) Copper texturing process
JPH01273668A (en) Electroheating member
JP2005517086A (en) Permanent attachment of the back of the wafer to an electrical component or subassembly
JP7146213B2 (en) Method for forming conductive film and method for manufacturing wiring board
JP3659653B2 (en) Method for providing a layer on a substrate and sputtering apparatus used therefor
JPH0237963A (en) Electrical heating member
JP2761875B2 (en) Deposition film forming equipment by bias sputtering method
JPH026052A (en) Electric heating member
JPH01266964A (en) Electroheating member
JPH01278960A (en) Electric heating member
JPS6247472A (en) Formation of cubic boron nitride film
JPH026053A (en) Electric heating member
JPS62243765A (en) Method for relieving residual stress in stage of forming thin film
JP4069199B2 (en) Plasma ion implantation / deposition method and apparatus
JPH01273669A (en) Electroheating member
JP2605341B2 (en) Sputtering method