JPH026052A - Electric heating member - Google Patents

Electric heating member

Info

Publication number
JPH026052A
JPH026052A JP15127988A JP15127988A JPH026052A JP H026052 A JPH026052 A JP H026052A JP 15127988 A JP15127988 A JP 15127988A JP 15127988 A JP15127988 A JP 15127988A JP H026052 A JPH026052 A JP H026052A
Authority
JP
Japan
Prior art keywords
heating member
film
base material
gas
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15127988A
Other languages
Japanese (ja)
Inventor
Mutsuki Yamazaki
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15127988A priority Critical patent/JPH026052A/en
Publication of JPH026052A publication Critical patent/JPH026052A/en
Pending legal-status Critical Current

Links

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

PURPOSE:To prevent the breaking of wiring due to the shunting of a current by successively covering the contact part of a heating member with a material to be worked with a coating film having specified resistivity and a specified contact angle to the melt of a metal consisting essentially of one out of lead and tin. CONSTITUTION:At least the contact part with a lead wire on the surface of a base material consisting of a conductive material is covered with a coating film consisting of a material having resistivity of >=100 times that of the base material and >=10 deg. contact angle to the melt of a metal consisting essentially of one out of lead and tin. Since at least the contact part of the heating member with the lead wire of an IC is thus covered with the insulating coating film having poor solder wettability, the breaking of wiring due to the shunting of a current from the heating member to the wiring of the substrate and the deposition of solder on the heating member are prevented.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発叫は、通電性物質に通電し、ジュール熱を発生させ
、リード線等の被加工物を加工する通電加熱部材に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is directed to an energizing heating member that processes a workpiece such as a lead wire by applying electricity to an electrically conductive substance and generating Joule heat. Regarding.

(従来の技術) 近年、フ1クトリーオートメーションの進歩は著しい。(Conventional technology) In recent years, advances in factory automation have been remarkable.

その−例として集積回路(rc>を基板にはんだ付けを
する装置がある。この装置ではFe、MO,W、Ta、
Cu、AI、ステ)/レスなどの導電性物ττ/)S 
Iうなる母材を加工した加熱部材に通電し、ジュール熱
を発生させ、前記加熱部材で一度に複数のリード線を基
板に押付けることにより、はんだ付けを行なっている。
An example of this is a device that solders integrated circuits (rc) to a substrate.This device uses Fe, MO, W, Ta,
Conductive materials such as Cu, AI, Ste)/less etc. ττ/)S
Soldering is performed by applying electricity to a heating member that has been processed from an I-shaped base material to generate Joule heat, and pressing a plurality of lead wires against the board at once with the heating member.

通常、ICはニガ又は四方にリード線が出ているので、
加熱部材は二個又は四個を平行あるいは四方取囲むよう
に設置され、電気的に直列に接続されている。
Usually, ICs have lead wires coming out on all sides, so
Two or four heating members are installed in parallel or surrounding them on all sides, and are electrically connected in series.

並列でもよいが、この場合には、装置仝休で必要な電流
の容量が多くなる。
They may be connected in parallel, but in this case, the current capacity required during device shutdown increases.

こうした、導電性物質からなる加熱部材を直接ICのリ
ード線に接触させてはんだ付【フを行なうと基板の配線
が直列に接続された加熱部材同志を結ぶ箇所では、加熱
部材からの基板の配線への電流の分流が起こり、基板の
配線が切れるという不具合があった。また、加熱部材に
はんだが付着しやづ゛いという不具合もあった。
When soldering is carried out by directly contacting the heating member made of a conductive material with the lead wires of the IC, the wiring of the board from the heating member connects the heating members connected in series. There was a problem in which the current was shunted to the circuit board, causing the wiring on the board to break. Another problem was that solder was difficult to adhere to the heating member.

(U明が解決しようとする課題) 以上述べたように、導電性物質からなる加熱部材を直接
ICのリード線に接触さVてはんだ付けを行なうと、加
熱部材から基板の配線への電流の分流が起って、配線が
切れる、加熱部材にはんだが付着する等の不具合があっ
た。
(Problem that Umei is trying to solve) As mentioned above, when soldering is performed by directly contacting the heating member made of a conductive material to the lead wires of an IC, the current flows from the heating member to the wiring on the board. There were problems such as shunts, wires breaking, and solder adhering to heating elements.

本発明では、加熱部材の少なくともICのリード線に接
する部分に絶縁性でかつはんだとのぬれ性が悪くはんだ
が付着しにくい材質からなる被膜で被覆したことにより
加熱部材から基板の配線への電流の分流による配線切れ
及び加熱部材へのはんだの付?腎を防ぎ良好な加工を施
すことを目的とした。
In the present invention, at least the portion of the heating member in contact with the IC lead wires is coated with a coating made of a material that is insulative and has poor wettability with solder, making it difficult for solder to adhere to it. Wire breakage due to shunt current and soldering to heating components? The purpose was to prevent kidney damage and provide good processing.

[発明の構成、] (課題を解決するための手段) 本発明の通電加熱部材は、導電性材料からなる母材の表
面で、少なくともリード線に接する部分に、比抵抗が前
記母材の10Of8以上を有しかつ鉛又は錫の少なくと
し一方を主成分とする金属の溶融物との接触角が10度
以上の材質からなる被膜で被覆したことを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The electrical heating member of the present invention has a surface of a base material made of an electrically conductive material, at least a portion in contact with a lead wire, which has a specific resistance of 10Of8 of the base material. It is characterized by being coated with a film made of a material having the above properties and having a contact angle with a molten metal containing at least one of lead or tin as a main component at 10 degrees or more.

前記加熱部材の表面に被覆ザる被膜の材料としてはC,
O,N等から選ばれる少なくとも一種以上の元素を成分
とするものが使われる。その理由は以下に)ホベる通り
である。まず前記被膜は約150℃から300℃程度ま
でのヒートナイクルにJ3いて母材から剥離しない材料
で構成されていなければならない。また、オー1〜メー
シヨン化されたはんだ付は装置では、加熱部材は数秒程
度の周期で昇温、降温が行なわれるので、前記被膜の材
料は熱伝導率の高いものでなければならない。従って前
記被膜の膜厚1μmを越える場合には熱伝導:しは1w
m−lH−s以上でな(Jればならない。
The material of the coating coated on the surface of the heating member is C,
A material containing at least one element selected from O, N, etc. is used. The reason for this is as explained below. First, the coating must be made of a material that does not peel off from the base material when subjected to heat cycles from about 150°C to about 300°C. In addition, in O1-mation soldering equipment, the temperature of the heating member is raised and lowered at intervals of about several seconds, so the material of the coating must have high thermal conductivity. Therefore, if the film thickness of the film exceeds 1 μm, the heat conduction is 1W.
Must be more than m-lH-s (J).

前述した元素を含む材料はすべて熱伝ン9串の高い材料
である。
All of the materials containing the above-mentioned elements have high heat conductivity.

また、++[1熱材料は1に地電位に対し1〜10i〒
度の電位差を有するので、前記被膜は、この電圧に対し
絶縁被膜が起こらない程度の膜厚を必要どする。従って
前記第2の被膜の膜厚は500八以上好ましくはi o
ooÅ以上は必要であり、耐摩耗性も14慮すると2μ
mP1度は必要である。熱伝導率を考[,1すると5μ
m以上にすることは好ましくはない。前記被膜を母材の
表面に被覆する方法としては、スパッタリング、イオン
ブレーティング。
In addition, ++[1 thermal material is 1 to 10i with respect to the earth potential.
Since there is a potential difference of 100°C, the film needs to have a thickness that prevents the insulating film from forming against this voltage. Therefore, the thickness of the second coating is preferably 500 mm or more.
ooÅ or more is necessary, and considering wear resistance of 14μ
mP 1 degree is necessary. Considering thermal conductivity [,1, 5μ
It is not preferable to make it more than m. Examples of methods for coating the surface of the base material with the film include sputtering and ion blasting.

真空蒸着、プラズマCVD、ECRプラズマCVD、熱
CVD、光CV[)などがある。この中でも、膜の密着
性がよいこと、比較的低温で処理でき膜の特性が損われ
ないこと、膜の電気的特性が制御しやすいことを考11
1!するとプラズマCVD法、ECRプラズマCVD法
が特に適当である。
Examples include vacuum evaporation, plasma CVD, ECR plasma CVD, thermal CVD, and optical CV [). Among these, we consider that the film has good adhesion, that it can be processed at a relatively low temperature without damaging the film's properties, and that the electrical properties of the film are easy to control11.
1! In this case, plasma CVD method and ECR plasma CVD method are particularly suitable.

(作用) 加熱部材の少なくとも)Cのリード線に接する部分に絶
縁性でかつはんだとのぬれ性の悪い被膜を被覆すること
により加熱部材にはんだが付着するという不具合がなく
なった。
(Function) By coating at least the portion of the heating member that is in contact with the lead wire C with an insulating film that has poor wettability with solder, the problem of solder adhering to the heating member is eliminated.

(実施例) 本発明の加熱部材は導電性物質を第1図に示Jように加
工し、表面に絶縁性でかつはんだとのぬれ性の悪い被膜
で被覆してなる。
(Example) The heating member of the present invention is formed by processing a conductive material as shown in FIG.

A−トメ−ジョン化されたはんだ付は装置においてはこ
の加熱部材を第2図に示すように四方を取囲むように設
置し、これらを電気的に直列に5○Hzの交流電源へ接
続して使用される。
In the A-tomage soldering device, these heating members are installed so as to surround them on all sides as shown in Figure 2, and they are electrically connected in series to a 50Hz AC power source. used.

加工工程は以下に示す通りである。基板上にICが乗せ
られ、自#Jl#2送されてきた後、加熱部材が降りて
きてIcのリード線を約2に9重/cm2の圧力で押付
けるのと同時に、加熱部材に約50OAの電流を供給し
、300℃程度まで加熱する。
The processing steps are as shown below. After the IC is placed on the board and transported, the heating member comes down and presses the lead wire of the IC with a pressure of about 2 to 9 folds/cm2. A current of 50OA is supplied and heated to about 300°C.

はんだが溶けてリード線と基板の回路が接続された後、
通電を止め、はんだが固まったところで、加熱部材が上
昇し、この−工程が終了する。
After the solder is melted and the lead wires and the circuit on the board are connected,
When the electricity is turned off and the solder hardens, the heating member is raised and this process is completed.

以下に、導電性物質からなる母材の表面にOh iホの
絶縁性かつはんだとのぬれ性の悪い被膜を被覆Jること
により、本発明の加熱部材を装造した実施例について記
載する。
Hereinafter, an embodiment will be described in which a heating member of the present invention is mounted by coating the surface of a base material made of a conductive substance with an insulating film having poor wettability with solder.

実施例1− 本実施例では、プラズマCVD法により第1表に示した
成分の*膜を母材の表面に被覆した。
Example 1 - In this example, a * film of the components shown in Table 1 was coated on the surface of a base material by plasma CVD.

第3図は平行平板型の容量結合型“プラズマCD装置の
略図である。真空チャンバー6内にtま、平板状接地電
極7と高周波′Fi極8が対向して設置されている。ま
た、真空チャンバー6にはガス導入口12が設けられて
いる。接地電極7にはヒーター9が取付けられ)自周波
電力8にはマツチングボックス10を介して高周波用4
(illに接続されている。
FIG. 3 is a schematic diagram of a parallel plate type capacitively coupled "plasma CD device. A flat ground electrode 7 and a high frequency 'Fi pole 8 are placed facing each other in a vacuum chamber 6. The vacuum chamber 6 is provided with a gas inlet 12. A heater 9 is attached to the ground electrode 7).
(Connected to ill.

この装置によりまず導電性加熱部材に被膜を被覆した。Using this apparatus, the conductive heating member was first coated with a film.

導電性加熱部材13を、接地電極7に置き、図示しない
真空ポンプによってチャンバー6内を10−6Torr
稈度に排気した。次に設置電極7に取付けたヒーター9
により、加熱部材13を150’Cから459℃程度に
加熱しガス導入口12より3iト1.+ 、N2 、C
Hn等の原わlガスをチャンバー6内に供給して、チャ
ンバー6内の真空度を0.05・−1,0T旧゛rに保
つように排気した。高周波電極8に電力を投入すると、
電極間にてグロー放電が起こり、原料ガスがプラズマ化
し絶縁性被膜が加熱部材13に被覆された′fIi膜の
成分、原料ガス及び成膜条件は第1表に示す通りである
。例えばSi CN組成の被膜を成膜する場合には、原
料ガスとしてSi H4100SCCM。
The conductive heating member 13 is placed on the ground electrode 7, and the inside of the chamber 6 is heated to 10-6 Torr by a vacuum pump (not shown).
Exhaust to culm. Next, the heater 9 attached to the installed electrode 7
The heating member 13 is heated from 150'C to about 459°C, and the gas inlet 12 is heated 3i to 1. +, N2, C
A raw gas such as Hn was supplied into the chamber 6, and the chamber 6 was evacuated so as to maintain the degree of vacuum within the chamber 6 at 0.05.times.-1.0 T. When power is applied to the high frequency electrode 8,
A glow discharge occurs between the electrodes, the raw material gas is turned into plasma, and the heating member 13 is coated with an insulating film. The components, raw material gas, and film forming conditions of the 'fIi film are as shown in Table 1. For example, when forming a film with a Si CN composition, Si H4100SCCM is used as the raw material gas.

N 2500 S CCM 、 Ct−14400S 
CCMをガス導入口12より導入し、チャンバー6内の
反応圧力を1.QTorrに保持し、高周波電極8に5
00Wの電圧を印加して成膜を行なった。この場合、成
膜時間40分で3.0μmの膜厚の被膜が形成された。
N2500S CCM, Ct-14400S
CCM is introduced through the gas inlet 12, and the reaction pressure inside the chamber 6 is set to 1. Maintain at QTorr and apply 5 to high frequency electrode 8.
Film formation was performed by applying a voltage of 00 W. In this case, a film with a thickness of 3.0 μm was formed in a film formation time of 40 minutes.

以下、他成分の被膜でも同様に成膜された絶縁性被膜の
成分、原料ガスとその流量、チャンバー内の反応圧力、
高周波電極8に印加される電力。
Below, the components of the insulating film formed similarly for films of other components, the raw material gas and its flow rate, the reaction pressure in the chamber,
Power applied to the high frequency electrode 8.

成膜時間、膜厚は第1表に示す通りである。The film formation time and film thickness are as shown in Table 1.

(以下余白) プラズマCVD法によれば、加熱部材を150℃乃至4
50’Cの比較的低温で処理できるため、加熱部材の特
性を損うことなく母材との書着強度の強い良好な被膜が
1qられる。
(Left below) According to the plasma CVD method, the heating member is heated to 150°C to 4°C.
Since it can be processed at a relatively low temperature of 50'C, a good film with strong adhesion strength to the base material can be produced without impairing the properties of the heating member.

一実施例2− 本実tN例では、スパッタリング法により第2表に示し
た成分の被膜を成膜した。使用されるスパッタ装置は第
4図に示す通りである。真空チャンバー6内に号よ平板
状接地電極7と高周波電極8とが対向して設置されてお
り、平板状接地電極7にはヒーター9が取付けられてい
る。高層Itt電陽8はマツチングボックス10を介し
て高周波電極11に接続されている。真空チャンバー6
の側壁にはガス導入口12が設けられている。このよう
にスパッタリング装置は前述のプラズマCVD装置と類
似しているが、高周波電極8に原料の固体をターゲット
14として設けている点のみが異なっている。この装置
により第1のP、疎性被膜を成膜するには、まずターゲ
ット14として原料の固体を設置し、ガス導入口12よ
りArガス、場合により反応ガスを同時に流入した。こ
れらのガスがプラズマ化しArイオンがターゲット14
の物質を原子状あるいは分子状にしてたたき出した後、
反応ガスのプラズマ中で反応しながら加熱部材130表
面に9IAI性彼膜を成膜した。第3表には成膜された
被膜の成分、原料及び成膜条件等が記載されている。例
えば、非晶質シリコンからなる被膜を成膜するには、タ
ーゲットとして単結晶又は多結晶シリコンをg2 Mし
、ガス導入口12よりArガスIO8CCM、H2ガス
11005CCを導入しチャンバー内圧力を1X10−
3Torrに(τち高周波9謹8に500Wの電圧をか
けて成膜を行なった。
Example 2 - In this tN example, a film containing the components shown in Table 2 was formed by sputtering. The sputtering apparatus used is as shown in FIG. A flat ground electrode 7 and a high frequency electrode 8 are installed facing each other in the vacuum chamber 6, and a heater 9 is attached to the flat ground electrode 7. The high-rise Itt electrode 8 is connected to a high frequency electrode 11 via a matching box 10. vacuum chamber 6
A gas inlet 12 is provided in the side wall of the gas inlet 12 . In this way, the sputtering apparatus is similar to the plasma CVD apparatus described above, but the only difference is that the high-frequency electrode 8 is provided with a solid raw material as the target 14. In order to form the first P-phobic film using this apparatus, first, a solid raw material was set up as the target 14, and Ar gas and optionally a reaction gas were simultaneously introduced through the gas inlet 12. These gases turn into plasma and Ar ions reach the target 14.
After ejecting the substance in atomic or molecular form,
A 9IAI film was formed on the surface of the heating member 130 while reacting in the plasma of the reactive gas. Table 3 lists the components, raw materials, film forming conditions, etc. of the film formed. For example, to form a film made of amorphous silicon, use g2M of single crystal or polycrystalline silicon as a target, introduce Ar gas IO8CCM and H2 gas 11005CC from the gas inlet 12, and increase the chamber pressure to 1X10-
The film was formed by applying a voltage of 500 W to 3 Torr (τ, 9 to 8 high frequency).

この場合、成膜時間60分で3.0.umの膜厚の非晶
質シリコン被膜が成膜された。また、原料ガスとしてA
rガス、H2ガスと同時にB2 H6ガス1SCCM又
はPH3ガス13CCMfi、34人させてもよい。以
下池の成分の′Ii膜についても同様にターゲットの固
体、原料ガスとその流分、チャンバー6内の反応圧力、
高周波電極8に印加された電力、成膜時間及び成膜のV
A厚を第3表中に記載した。
In this case, the film formation time was 3.0 minutes for 60 minutes. An amorphous silicon film with a thickness of 1 um was deposited. In addition, A as a raw material gas
At the same time as R gas and H2 gas, 1 SCCM of B2 H6 gas or 13 CCM fi of PH3 gas may be used for 34 people. Similarly, regarding the 'Ii film of the following pond components, the target solid, the raw material gas and its flow, the reaction pressure in the chamber 6,
Power applied to the high frequency electrode 8, film formation time and V of film formation
The A thickness is listed in Table 3.

(以下余白) スパッタリング法は原料として固体が使用できるため扱
いやすく、また、加熱部材の形状により装置の形状を変
える必要がなく汎用的な方法といえる。
(Left below) The sputtering method is easy to handle because it can use a solid as a raw material, and it can be said to be a versatile method since there is no need to change the shape of the device depending on the shape of the heating member.

一実tA例3− 本実施例では、ECRプラズマCvD法により母材の表
面に被膜を成膜した。この方法に使われる装置は、第5
図に示す通りである。成膜空15のFIηにはガス導入
口12が設けられている。
Actual Example 3 - In this example, a film was formed on the surface of the base material by the ECR plasma CvD method. The equipment used in this method is
As shown in the figure. A gas inlet 12 is provided in FIη of the film forming space 15 .

また、成摸空15上方にはプラズマ形成室16が配X2
され、この成膜!16とは、仕切り板17に設けられた
プラズマ導入[118によって連通している。プラズマ
形成=16の上壁には石英板19が配設され、石英板1
つの上方にはマイクロ波導波管20が配設されている。
In addition, a plasma formation chamber 16 is arranged above the Seisukoku 15.
And this film formation! 16 is in communication with the plasma inlet 118 provided on the partition plate 17. A quartz plate 19 is arranged on the upper wall of the plasma formation=16, and the quartz plate 1
A microwave waveguide 20 is arranged above the two.

また、プラズマ形成室16.上壁にはガス導入口21が
設けられ、プラズマ形成916の周囲には、電磁石22
が設けられている。
In addition, the plasma formation chamber 16. A gas inlet 21 is provided on the upper wall, and an electromagnet 22 is provided around the plasma formation 916.
is provided.

この装置により加熱部材に絶縁性被膜を被覆するには、
加熱部材13を成膜室15内底部に設置し以下の通り成
、税を行なった。成膜宮15内を真空ポンプにより排気
し、IXl、O−5乃至1×10−3の真空度に保持し
たa導入管12より成膜蛮15に原料ガス、導入管21
よりプラズマ形成室、反応ガス(N2.02 、Cl−
14等)または、そ札自身は反応眩ずにエネルギーを他
に供給するガス、(Ar 、 1−1e 、 H2)を
それぞれ導入した。
To coat the heating member with an insulating film using this device,
The heating member 13 was installed at the bottom of the film forming chamber 15, and the film formation and deposition were carried out as follows. The inside of the film forming chamber 15 is evacuated by a vacuum pump, and the raw material gas is introduced into the film forming chamber 15 from the a introducing tube 12 maintained at a vacuum level of IXl, O-5 to 1 x 10-3.
In the plasma formation chamber, reaction gas (N2.02, Cl-
14, etc.), or gases (Ar, 1-1e, H2) that supply energy to others without causing any reaction in the card itself were introduced, respectively.

マイクロ波4@:H20J:す2.45GHzのマイク
ロ波をプラズマ形成!16に導入すると、このマイクロ
波により、電場Eが生じる。また、電磁石22に電流を
流してプラズマ形成=16内に875がウス磁場Bを形
成する。プラズマ形成空16内の電子が共鳴し励起され
る。この電子の共鳴により導入管21から導入されると
、N2、または、へrガスにそのエネルギーが供給され
、これらのガスのプラズマを形成する。このプラズマは
磁場の月数に伴い、プラズマ導出管18より、成膜至1
5に引出される。成HA!il’15中に導入管12よ
り導入されたlガスの成分が成N! N 15内の平板
状の加熱部材13の表面に成膜された。各被膜について
原料ガス、成膜条件等を第5表に2叔した。例えば、3
 i 4 N成分の成膜をする場合には、原料としてS
i H41105CCをガス導入口により導入し、反応
ガスとして、N250SCCMをガス導入口により導゛
入した。チャンバー内の圧力は3x 10”” Tor
rに保ちマイクロ波電力を500Wとした。この場合、
成膜時間40分でj!FI3.O!Ilの71膜を得た
。以下、他の成分の被膜についても同1ヱに第5表中に
、原料ガスとその流層、成膜!15内の反応圧力、マイ
クロ波電力、成膜時間、摸厚を2戒した。
Microwave 4@:H20J: 2.45GHz microwave to form plasma! 16, this microwave generates an electric field E. Further, by passing a current through the electromagnet 22, 875 forms a magnetic field B within plasma formation=16. Electrons within the plasma formation space 16 resonate and are excited. When the electrons are introduced from the introduction pipe 21 by resonance, their energy is supplied to the N2 or Herr gas, forming a plasma of these gases. As the magnetic field increases, this plasma flows from the plasma outlet tube 18 until the film is formed.
It is withdrawn on 5th. Seiha! The components of l gas introduced from the introduction pipe 12 into il'15 are N! A film was formed on the surface of a flat heating member 13 in N 15. The raw material gas, film forming conditions, etc. for each film are listed in Table 5. For example, 3
When forming a film with an i4N component, S is used as a raw material.
i H41105CC was introduced through the gas inlet, and N250SCCM was introduced as a reaction gas through the gas inlet. The pressure inside the chamber is 3x 10” Tor
The microwave power was set to 500W. in this case,
Film formation time is 40 minutes! FI3. O! 71 films of Il were obtained. Below, the coatings of other components are also listed in Table 5 in the same section 1. 15, the reaction pressure, microwave power, film formation time, and thickness of the sample were made into two rules.

(Ll下余白) このようにECRプラズマCVD法によれば加熱部材を
加熱することなく処理でき、成分が均一で部材に密着し
た被膜が成膜できる。
(Left margin of Ll) As described above, according to the ECR plasma CVD method, processing can be performed without heating the heating member, and a film having uniform components and adhering to the member can be formed.

以上の実施θ11乃至3に示した成膜を行なう前にAr
イオンボンバード処理を行なうと、被膜と母材の8着度
を高くすることができる。この処理を行なうにはプラズ
マCV D法、ECRプラズマCVD法の場合は、被膜
となる原斜ガスを供給せずにArを流してプラズマを形
成すればよく、スパックリング法の場合には、ターゲッ
トではなく母材に電力を印加すればよい。
Before performing the film formation shown in the above implementation θ11 to 3, Ar
Ion bombardment can increase the degree of adhesion between the coating and the base material. To carry out this process, in the case of the plasma CVD method and the ECR plasma CVD method, it is sufficient to flow Ar to form a plasma without supplying the original gas that forms the film, and in the case of the spuckling method, Instead, power should be applied to the base material.

さらに襖表と母材との密着度を高めるには、液膜と母材
の界面に、窒票、炭混、曝素等を母材より多(含有する
領域を形成するとよい。そのためには予めイオン窒化、
浸炭処理等を行なった母材に絶縁性被膜を被覆させたつ
、前記イオンボンバードの際にA「ガスにN2.02 
、Cl−14等を混合してもよい。・また、N2.02
 、CH4等のガスのイオンボンバードを行なってもよ
い。
Furthermore, in order to increase the degree of adhesion between the fusuma surface and the base material, it is recommended to form a region containing nitrogen slate, carbon mixture, atomization, etc. in a larger amount than the base material at the interface between the liquid film and the base material. Ion nitriding in advance,
The base material that has been carburized is coated with an insulating film, and during the ion bombardment, the gas is filled with N2.02
, Cl-14, etc. may be mixed.・Also, N2.02
, CH4, or other gases may be ion bombarded.

このように、導電性物質からなる母材の表面に絶縁性か
つはんだとのぬれ性の悪い材質の被膜を被覆することに
より、加熱部材から基板の回路への電流の分流がなくな
り、良好な加工を施すことができ、また、はんだが付着
しにくく、かつ耐摩耗性、耐酸化性に優れ、数万回の使
用にも耐えることができる加熱部材を提供することがで
きる。
In this way, by coating the surface of the base material made of conductive material with a film made of a material that is insulating and has poor wettability with solder, there is no shunting of current from the heating member to the circuit of the board, resulting in good processing. Furthermore, it is possible to provide a heating member that is resistant to solder adhesion, has excellent wear resistance and oxidation resistance, and can withstand tens of thousands of uses.

[発明の効果1 以、ヒ詳述したように、本発明ので縁性でかつはんだと
のぬれ性の悪い材質の′F4膜で[L、た加熱部材によ
れば、加熱部材から波加工吻への電流の分流がなく、か
つはんだが付着しに(く、良好な加工がなされる。
[Effect 1 of the Invention] As described in detail below, according to the heating member of the present invention, the heating member is made of a material that is adhesive and has poor wettability with solder. There is no current shunt to the wire, and there is less solder adhesion, resulting in good processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第5図はすべて本発明の実施例に関するもの
であり、第1図は1個の加熱部材の斜視図、第2図は4
個の加熱部材を直列に繋いだ様子を示した様式図、第3
図乃至第5図は加薯部材を製造するための装置の′J1
18図であり、第3図はプラズマCVD法に用いられる
装置の概略図、第4図はスパッタリング法に用いられる
装置の概略図、第5図はECRプラズマCVD法に用い
られる装置の概略図である。 13・・・加熱部材
1 to 5 all relate to embodiments of the present invention, FIG. 1 is a perspective view of one heating member, and FIG. 2 is a perspective view of one heating member.
Form drawing showing how several heating members are connected in series, No. 3
Figures 5 to 5 show the apparatus 'J1' for manufacturing a filler member.
18, FIG. 3 is a schematic diagram of an apparatus used in the plasma CVD method, FIG. 4 is a schematic diagram of an apparatus used in a sputtering method, and FIG. 5 is a schematic diagram of an apparatus used in an ECR plasma CVD method. be. 13... Heating member

Claims (1)

【特許請求の範囲】[Claims] 導電性物質からなる母材に通電することで加熱せしめ被
加工物に加工を施す部材において、少なくとも母材の被
加工物と接する部分は比抵抗が母材の100倍以上でか
つ鉛または錫の少なくとも一方を主成分とする金属の溶
融物との接触角が10度以上である被膜で順次被覆され
たことを特徴とする通電加熱部材。
In a member that processes a workpiece by heating it by applying electricity to a base material made of a conductive substance, at least the part of the base material that comes into contact with the workpiece has a specific resistance of 100 times or more that of the base material and is made of lead or tin. 1. An electrically heated member characterized in that it is sequentially coated with coatings having a contact angle with a molten metal of at least one of them as a main component of 10 degrees or more.
JP15127988A 1988-06-21 1988-06-21 Electric heating member Pending JPH026052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15127988A JPH026052A (en) 1988-06-21 1988-06-21 Electric heating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15127988A JPH026052A (en) 1988-06-21 1988-06-21 Electric heating member

Publications (1)

Publication Number Publication Date
JPH026052A true JPH026052A (en) 1990-01-10

Family

ID=15515208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15127988A Pending JPH026052A (en) 1988-06-21 1988-06-21 Electric heating member

Country Status (1)

Country Link
JP (1) JPH026052A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04458U (en) * 1990-04-19 1992-01-06
US5569961A (en) * 1992-12-30 1996-10-29 Samsung Electronics Co., Ltd. Semiconductor device having a multi-layer metallization structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04458U (en) * 1990-04-19 1992-01-06
US5569961A (en) * 1992-12-30 1996-10-29 Samsung Electronics Co., Ltd. Semiconductor device having a multi-layer metallization structure

Similar Documents

Publication Publication Date Title
EP0144055B1 (en) Process and apparatus for producing a continuous insulated metallic substrate
US4895734A (en) Process for forming insulating film used in thin film electroluminescent device
IE50240B1 (en) A method of vapour phase growth and apparatus therefor
JP2002505804A (en) Method and apparatus for metallizing silicon semiconductor device contacts with high aspect ratio
TWI729495B (en) High temperature rf heater pedestals
EP0911307B1 (en) Corrosion-resistant member, method of manufacturing the same and apparatus for heating corrosive substance
JPH026052A (en) Electric heating member
JPH0237963A (en) Electrical heating member
US3463715A (en) Method of cathodically sputtering a layer of silicon having a reduced resistivity
JPH026053A (en) Electric heating member
JPH01266964A (en) Electroheating member
US4967058A (en) Power heating member
JP3071657B2 (en) Thin film forming apparatus and thin film forming method
JPS6247472A (en) Formation of cubic boron nitride film
JPH04219301A (en) Production of oxide superconductor thin film
JP2646582B2 (en) Plasma CVD equipment
JPH0119467B2 (en)
JPH01273668A (en) Electroheating member
KR950003958B1 (en) Thin film manufacturing method by flasma chemical deposition
JPH01278960A (en) Electric heating member
JPH01273669A (en) Electroheating member
JPH11162960A (en) Plasma film forming method
JPH0247252A (en) Production of composite material film
JPH01262068A (en) Heating member by electrification
JPH07142411A (en) Deposition of thin metal film in semiconductor device