JPH01273669A - Electroheating member - Google Patents
Electroheating memberInfo
- Publication number
- JPH01273669A JPH01273669A JP10271388A JP10271388A JPH01273669A JP H01273669 A JPH01273669 A JP H01273669A JP 10271388 A JP10271388 A JP 10271388A JP 10271388 A JP10271388 A JP 10271388A JP H01273669 A JPH01273669 A JP H01273669A
- Authority
- JP
- Japan
- Prior art keywords
- film
- coating
- heating member
- gas
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000576 coating method Methods 0.000 claims abstract description 47
- 238000010438 heat treatment Methods 0.000 claims abstract description 47
- 239000011248 coating agent Substances 0.000 claims abstract description 45
- 239000002184 metal Substances 0.000 claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 5
- 230000005611 electricity Effects 0.000 claims description 4
- 229910000679 solder Inorganic materials 0.000 abstract description 13
- 238000005268 plasma chemical vapour deposition Methods 0.000 abstract description 10
- 239000010953 base metal Substances 0.000 abstract 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 83
- 239000007789 gas Substances 0.000 description 47
- 239000002994 raw material Substances 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 10
- 238000004544 sputter deposition Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000004020 conductor Substances 0.000 description 5
- 238000005476 soldering Methods 0.000 description 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000010849 ion bombardment Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、導電性物質に通電し、ジュール熱を発生させ
、リード線等の被加工物を加工する通電加熱部材に関す
る。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a current-carrying heating member that applies electricity to a conductive substance to generate Joule heat to process a workpiece such as a lead wire. .
(従来の技術) 近年、ファクトリ−オートメーションのa+は著しい。(Conventional technology) In recent years, the a+ of factory automation has been remarkable.
その−例として集積回路(IC)を基板にはんだ付けを
する装置がある。この装置ではFe、Mo、W、Ta、
Cu、λ1.ステンレスなどの導電性物質からなる母材
を加工した加熱部材に通電し、ジュール熱を発生させ、
前記加熱部材で一度に複数のリード線を基板に押付ける
ことによシ、はんだ付けを行っている。通常、ICは三
方又は四方にリード線が出ているので、加熱部材は二個
又は四個を平行あるいは四刀取曲むように設置され、電
気的に直列に接続され℃いる。並列でもよいが、この場
合には、装置全体で必要な電流の容量が多くなる。An example of this is a device for soldering integrated circuits (ICs) to substrates. In this device, Fe, Mo, W, Ta,
Cu, λ1. Electricity is applied to a heating member made from a base material made of conductive material such as stainless steel, which generates Joule heat.
Soldering is performed by pressing a plurality of lead wires against the board at once using the heating member. Usually, an IC has lead wires protruding from three or four sides, so two or four heating members are installed in parallel or bent in four directions, and electrically connected in series. They may be connected in parallel, but in this case, the current capacity required for the entire device increases.
こうした、導電性物質からなる加熱部材を直接ICのリ
ード線に接触させてはんだ付けを行うと基板の配線が直
列に接続された力q熱部材同志を結ぶ箇所で)言、加熱
部材から基板の配線への電流の分流が起こり、基板の配
線が切れるという不具合があった。そこで、本発明者は
導電性物質からなる母材の表面に絶縁性被膜を被覆する
ことにより、加熱部材から基板の配線への電流の分流を
防ぐことを以前に提案した。When soldering is performed by directly contacting the heating member made of a conductive material with the lead wires of the IC, the wiring of the board is connected in series and the force q (at the point where the heating members are connected) is increased from the heating member to the board. There was a problem in which the current shunted to the wiring, causing the wiring on the board to break. Therefore, the present inventor previously proposed that the surface of a base material made of a conductive substance be coated with an insulating film to prevent the current from being shunted from the heating member to the wiring on the board.
(発明が解決しようとする課題)
しかし、このような加熱部材では、この絶縁性の被膜の
材質および表面の伏態によってははんだが加熱部材に付
着しやすいという欠点があった。(Problems to be Solved by the Invention) However, such a heating member has a drawback in that solder tends to adhere to the heating member depending on the material of the insulating coating and the condition of the surface.
本発明では、加熱部材の少なくともICのリード線に接
する部分に絶縁性の第1の被膜を被覆し、更にこの第1
の被膜の表面にはんだとのぬれ性が悪くはんだが付層し
罠くい材質からなる第2の被膜で被覆したことによシ加
熱部材にはんだが付着するのを防ぎ良好な加工を施すこ
とを目的とした。In the present invention, at least a portion of the heating member in contact with the lead wire of the IC is coated with an insulating first coating, and further the first coating is coated with an insulating first coating.
The solder layer has poor wettability with solder on the surface of the coating, and by covering it with a second coating made of a trap material, it is possible to prevent solder from adhering to the heating member and to perform good processing. purpose.
(課題を解決するための手段)
本発明の通電加熱部材は、導電性材料からなる母材の表
面で、少なくともリード線に接する部分に、比抵抗か1
0 Ωα以上の第1の被膜を被覆し、更にこの第1の被
膜の表面に鉛または錫の少なくとも一方を主成分とする
金属の熔融物との接触角が10度以上の材質からなる第
2の被膜で被覆したことを特徴とする。この場合接触角
とは、その材質の固体に金属熔融物が接触している時の
接触線においてなす角度をいう。従って接触角が大きい
材質のものほど金属熔融物とのぬれ性が悪く、金属熔融
物が付着しにくいことを示す。(Means for Solving the Problems) The electrical heating member of the present invention has a surface of a base material made of an electrically conductive material that has a specific resistance of 1.
A second coating made of a material having a contact angle of 10 degrees or more with a molten metal containing at least one of lead or tin as a main component is coated on the surface of the first coating. It is characterized by being coated with a film of. In this case, the contact angle refers to the angle formed at the contact line when the molten metal is in contact with the solid material. Therefore, the larger the contact angle of the material, the worse the wettability with the molten metal, indicating that the molten metal is less likely to adhere to the material.
前記第2の被膜の材料としてはより具体的には、Ti
、W、Ag、Au、Cr、C,O,Nの中から選ばれる
少なくとも一種以上の元素を成分とするものが使われる
。その理由は以下に述べる通りである。まず前記第2の
被膜は約150 ’Oから300°C程度までのヒート
サイクルにおいて母材から剥離しない材料で構成されて
いなければならない。又、オートメ−7ヨン化されたは
んだ付は装置では、加熱部材は数秒信置の周期で昇温、
降温か行われるので、前記被膜の材料は熱伝導率の高い
ものでなければならない。従って前記被膜の膜41μm
を越える場合には熱伝導率は1wm−’に−1以上でな
ければならない。前述した元素を含む材料はすべ℃熱伝
導率の高い材料である。More specifically, the material of the second coating is Ti.
, W, Ag, Au, Cr, C, O, and N. The reason is as described below. First, the second coating must be made of a material that does not peel off from the base material during heat cycles from about 150'O to about 300°C. In addition, in automated soldering equipment, the heating member heats up at intervals of several seconds.
Since the temperature is lowered, the material of the coating must have high thermal conductivity. Therefore, the thickness of the coating is 41 μm.
If it exceeds 1wm-', the thermal conductivity must be -1 to 1wm-' or more. All materials containing the above-mentioned elements have high thermal conductivity in degrees Celsius.
又、加熱材料は接地電位に対し1〜lOv程度の電位差
を有するので、前記第2の被膜は、この電圧に対し絶縁
破壊が起こらない程度の膜厚を必要とする。従って前記
第2の被膜の膜厚は500A以上好ましくは100OA
以上は必要であり、耐摩耗性も考慮すると2μm程匿信
心要である。Furthermore, since the heating material has a potential difference of about 1 to 1 Ov with respect to the ground potential, the second coating needs to have a thickness that does not cause dielectric breakdown with respect to this voltage. Therefore, the thickness of the second coating is 500A or more, preferably 100OA.
The above is necessary, and considering abrasion resistance, a thickness of about 2 μm is required.
熱伝導率を考慮すると5μm以上にすることは好ましく
はない。これらの第1.第2の被膜を母材の表面に被覆
する方法としては、スパッタリング。Considering thermal conductivity, it is not preferable to make the thickness 5 μm or more. The first of these. Sputtering is a method for coating the surface of the base material with the second coating.
イオングレーティング、真空蒸着、グラズマCVD。Ion grating, vacuum deposition, glazma CVD.
ECR7’ ラズ−rcVD、 熱CVD、 光CVD
などがある。この中でも、膜の密着性がよいこと、比較
的低温で処理でき膜の特性が損われないこと、膜の電気
的特性が制(至)しやすいことを考慮するとプラズマC
vD法、ECRグラズマCVD法が籍に適当である。ECR7' Raz-rcVD, thermal CVD, optical CVD
and so on. Among these, plasma
vD method and ECR Glazma CVD method are suitable.
(作用)
加熱部材の少なくともICのリード線に接する部分に絶
縁性の第1の被膜を被覆し、更に、この絶縁性被膜の表
面にはんだとのぬれ性の患い第2の被膜を被覆すること
によシ加熱部材にはんだが付着するという不具合がなく
なった。(Function) A first insulating film is coated on at least a portion of the heating member that is in contact with the lead wire of the IC, and a second film having wettability with solder is further coated on the surface of this insulating film. This eliminates the problem of solder adhering to the heating member.
(実施例)
本実施例の加熱部材は導電性物質を第1図に示すように
加工し、表面に絶縁性の第1の被膜さらにこの絶縁性の
第1の被膜の表面にはんだとのぬれ性の悪い第2の被膜
で被覆してなる。(Example) In the heating member of this example, a conductive material is processed as shown in FIG. It is coated with a second coating having poor properties.
オートメーション化されたはんだ付は装置においてはこ
の加熱部材を第2図に示すように1万を取囲むように設
置し、これらを電気的に直列に50Hzの変流電源へ接
続して使用される。Automated soldering is performed by installing these heating members in a surrounding area as shown in Figure 2, and connecting them electrically in series to a 50Hz variable current power source. .
加工工程は以下に示す通電である。基板上にICが乗せ
られ、自動搬送され℃きた後、加熱部材が降シ℃さてI
Cのリード線を約2 Kg重/口2の圧力で押付けるの
と同時に、加熱部材に約50OAのt流を供給し、30
0″C糧度まで加熱する。The processing step is energization as shown below. After the IC is placed on the board and automatically transported to ℃, the heating member is lowered to ℃.
At the same time, while pressing the lead wire C with a pressure of about 2 kg/mouth 2, a t current of about 50 OA was supplied to the heating member, and the
Heat to 0″C.
はんだが溶けてリード線と基板の回路が接続された後、
通電を止め、はんだが固まったところで、加熱部材が上
昇し、この−工程が終了する。After the solder is melted and the lead wires and the circuit on the board are connected,
When the electricity is turned off and the solder hardens, the heating member is raised and this process is completed.
以下に、導電性物質からなる母材の表面に前述の第1の
被膜および第2の被膜を被覆することにより、本発明の
加熱部材を製造した実施例について記載する。Below, an example will be described in which a heating member of the present invention was manufactured by coating the surface of a base material made of a conductive substance with the above-mentioned first coating and second coating.
実施例1゜
本実施例では、プラズマCVD法によシ第1表に示した
成分の第1の絶縁性被膜および第2表に示した成分の第
2の被膜を母材の表面に被覆した。第3図は平行平板型
の容量結合型プラズマCVD装置の略図である。真空チ
ャンバー6内には、平板状接地電極7と高周波電極8が
対向して設置されている。又、X全チャンバー6にはガ
ス導入口12が設けられている。接地電極7にはヒータ
ー9が取付けられ高周波電力8にはマツチングボックス
10を介して高周波[極11に接続されている。Example 1゜In this example, the surface of the base material was coated with a first insulating film containing the components shown in Table 1 and a second film containing the components shown in Table 2 using the plasma CVD method. . FIG. 3 is a schematic diagram of a parallel plate type capacitively coupled plasma CVD apparatus. Inside the vacuum chamber 6, a flat ground electrode 7 and a high frequency electrode 8 are installed facing each other. Further, the entire X chamber 6 is provided with a gas inlet 12. A heater 9 is attached to the ground electrode 7, and the high frequency power 8 is connected to the high frequency [pole 11] via a matching box 10.
この装置によシまず導電性加熱部材に第1の絶縁性被膜
を被覆した。4電性加熱部材1;うを、接地電極7上に
置き、図示しないX窒ボングによってチャンバー6内を
10 Torr程度に排気した。次に接地電極7に取
付けたヒーター9により、加熱部材13を150℃から
450°C程度に加熱しガス導入口12よすSiH4,
N2.CH4等の原料ガスをチャンバー6内に供給して
、チャンバー6内の真空度を0.05〜1.QTorr
に保つように排気した。高周波電極8に電力を投入する
と、電極間にてグロー放電が起こシ、原料ガスがグラズ
マ化し絶縁性薄膜が加熱部材13に被覆された被膜の成
分、原料ガス及び成膜条件は第1表に示す通りである。Using this apparatus, first an electrically conductive heating member was coated with a first insulating film. The four-electric heating member 1 was placed on the ground electrode 7, and the inside of the chamber 6 was evacuated to about 10 Torr using an X-nitrogen bong (not shown). Next, the heating member 13 is heated from 150°C to about 450°C by the heater 9 attached to the ground electrode 7, and the SiH4 gas inlet 12 is heated.
N2. A raw material gas such as CH4 is supplied into the chamber 6, and the degree of vacuum in the chamber 6 is maintained at 0.05 to 1. QTorr
It was vented to keep it cool. When power is applied to the high-frequency electrode 8, a glow discharge occurs between the electrodes, the raw material gas becomes a glaze, and an insulating thin film is coated on the heating member 13.The composition of the coating, the raw material gas, and the film forming conditions are shown in Table 1. As shown.
例えば5iCN組成の被膜を成膜する場合には、原料ガ
スとして5iHa 100 S CCM。For example, when forming a film having a composition of 5iCN, 5iHa 100 S CCM is used as the source gas.
N、500SCCM、CH,400SCCMをガス導入
口12よシ導入し、チャンバー6内の反応圧力を1.0
Torr K保持し、高周波i!c極8に500Wの
電圧を印加して成膜を行なった。この場合、成膜時間4
0分で3.0μmの膜厚の被膜が形成された。N, 500SCCM and CH, 400SCCM were introduced through the gas inlet 12, and the reaction pressure in the chamber 6 was set to 1.0.
Hold Torr K, high frequency i! Film formation was performed by applying a voltage of 500 W to the c-pole 8. In this case, the film formation time is 4
A film with a thickness of 3.0 μm was formed in 0 minutes.
以下、他成分の被膜でも同様に成膜された絶縁性被膜の
成分、原料ガスとその流量、チャンバー内の反応圧力、
高周波電極8に印加される電力。Below, the components of the insulating film formed similarly for films of other components, the raw material gas and its flow rate, the reaction pressure in the chamber,
Power applied to the high frequency electrode 8.
成膜時間、膜厚は第1表に示す過少である。The film formation time and film thickness are too small as shown in Table 1.
以下余白
りぎに、第1の被膜と同様の方法によシ第1の被膜の表
面に第2の被膜を被覆した。成膜された被膜の成分、原
料ガスとその流量、チャンバー6内の反応圧力、高周波
電極8に印加される電力。Thereafter, in the margin, the second coating was coated on the surface of the first coating in the same manner as the first coating. The components of the formed film, the raw material gas and its flow rate, the reaction pressure in the chamber 6, and the electric power applied to the high frequency electrode 8.
成膜時間、膜厚は第2表に示す通りである。例えば、T
iN成分の゛被膜を抜機する場合罠は、原料ガスとして
TiC夏、を208CCMとN2を30080CMとN
2を2008 CCMとをガス導入口12より4人し、
チャンバー6内の反応圧力を1.0Torrに保持し、
高周波電極8に500Wの電圧を印刀口して成膜を行っ
た。この場合、成膜時間30分で1.0μmの膜厚゛の
被膜が形成された。以下、他成分の被膜でも同様に成膜
された被膜の成分。The film formation time and film thickness are as shown in Table 2. For example, T
When removing the film of iN component, use TiC summer as raw material gas, 208CCM of N2, 30080CM of N2, and N2.
2 with 2008 CCM from gas inlet port 12,
The reaction pressure in the chamber 6 was maintained at 1.0 Torr,
Film formation was performed by applying a voltage of 500 W to the high frequency electrode 8. In this case, a film with a thickness of 1.0 μm was formed in 30 minutes. Below, the components of films formed in the same way for films of other components are shown.
原料ガスとその流量、チャンバー内の反応圧力。Raw material gas, its flow rate, and reaction pressure in the chamber.
高周波電極8に印加される電力、成膜時間、膜厚は第2
表に示す過少である。The power applied to the high frequency electrode 8, the film formation time, and the film thickness are determined by the second
The amount is too low as shown in the table.
以下余白
プラズマCVD法によれば、加熱部材を150℃乃至4
50°0の比較的低温で処理できるため、加熱部材の特
性を損うことなく母材と第1の被膜および第1の被膜と
第2の被膜との密着強にの強い良好な被膜が得られる。According to the following margin plasma CVD method, the heating member is heated to 150°C to 4°C.
Since it can be processed at a relatively low temperature of 50°0, it is possible to obtain a good coating with strong adhesion between the base material and the first coating, and between the first coating and the second coating, without impairing the properties of the heating member. It will be done.
実施例2゜
本実施例では、スパッタリング法によシ第3表に示した
成分の第1被膜およびN4表に示した成分の第2の被膜
を成膜した。使用されるスパッタ装置は第4図に示す通
りである。真空チャンバー6内には平板状接地電極7と
高周波電極8とが対向して設Rされており、平板状接地
電極7にはヒーター9が取付けられている。高周波電極
8はマツチングボックス10を介して高周波電極11に
接続され℃いる。真空チャンバー6の側壁にはガス導入
口12が設けられている。このようにスパッタリング装
置は前述のプラズマCVD装置と類似しているが、高周
波電極8に原料の固体をターゲット14として設けてい
る点のみが異なっている。この装置によシ第1の絶縁性
被膜を成膜するには、まずターゲット14として原料の
固体を設置し、ガス導入口12よ、9Arガス、場合に
より反応ガスを同時に流入した。これらのガスがグラズ
マ化し人rイオンがターゲット14の物質を原子法ある
いは分子状にしてたたき出した後、反応ガスのプラズマ
中で反応しながら加熱部材130表面に絶縁性被膜を成
膜した。第3表には成膜された被膜の成分、原料及び成
膜条件等が記載されている。例えば、非晶質シリコンか
らなる被膜を成膜するには、ターゲットとして単結晶又
は多結晶シリコンを設置し、ガス導入口12よpArガ
スIO8CCM、H,ガス100SCCMを導入しチャ
ンバー内圧力をlXl0 Tartに保ち高周波電極
8に500Wの電圧をかげて成膜を行った。Example 2 In this example, a first film containing the components shown in Table 3 and a second film containing the components shown in Table N4 were formed by sputtering. The sputtering apparatus used is as shown in FIG. Inside the vacuum chamber 6, a flat ground electrode 7 and a high frequency electrode 8 are arranged facing each other, and a heater 9 is attached to the flat ground electrode 7. The high frequency electrode 8 is connected to a high frequency electrode 11 via a matching box 10. A gas inlet 12 is provided in the side wall of the vacuum chamber 6 . In this way, the sputtering apparatus is similar to the plasma CVD apparatus described above, but the only difference is that the high-frequency electrode 8 is provided with a solid raw material as the target 14. In order to form the first insulating film using this apparatus, first, a solid raw material was placed as the target 14, and 9Ar gas and optionally a reaction gas were simultaneously introduced through the gas inlet 12. After these gases were turned into a glazoma and human ions ejected the substance of the target 14 in atomic or molecular form, an insulating film was formed on the surface of the heating member 130 while reacting in the plasma of the reaction gas. Table 3 lists the components, raw materials, film forming conditions, etc. of the film formed. For example, to form a film made of amorphous silicon, set monocrystalline or polycrystalline silicon as a target, introduce pAr gas IO8CCM, H, and gas 100SCCM through the gas inlet 12 to lower the chamber internal pressure to lXl0Tart. The film was formed by keeping the voltage at 500 W and applying a voltage of 500 W to the high frequency electrode 8.
この場合、成膜時間60分で3.0μmの膜厚の非晶質
シリコン被膜が成膜された。又、原料ガスとしてArガ
ス、H!ガスと同時KB、H6ガスISCCM又はP
HsガスISCCMを導入させてもよい。以下他の成分
の被膜についても同様にターゲットの固体、原料ガスと
その流量、チャンバー6内の反応圧力、高周波電極8に
印加された電力、成膜時間及び被膜の膜厚を第3表中に
記載した。In this case, an amorphous silicon film having a thickness of 3.0 μm was formed in a film forming time of 60 minutes. In addition, Ar gas, H! Gas and simultaneous KB, H6 gas ISCCM or P
Hs gas ISCCM may be introduced. Regarding films of other components, the target solid, raw material gas and its flow rate, reaction pressure in the chamber 6, electric power applied to the high frequency electrode 8, film formation time, and film thickness are shown in Table 3 below. Described.
以下余白
次に、同様のスパッタリング法によって第1被膜の表面
に第2の被膜を成膜した。第4表には成膜された被膜の
成分、原料及び成膜条件等が記載されている。例えば、
TiN成分からなる被膜を成膜するには、ターゲットと
して金属Tiを設置し、ガス導入口12よpkrガスを
10800MとN2ガスを50SCCMとを導入しチャ
ンバー内圧力をlXl0 Torrに保ち高周波電
極8に800Wの電圧をかげて成膜を行った。この場合
、成膜時間60分で3.0μmの膜厚のTiNの被膜が
成膜された。以下、他の成分の被膜についても同様にタ
ーゲットの固体、ti料ガスとその流量、チャンバー6
内の反応圧力、高周波電極8に印加された電力、成膜時
間及び被膜の膜厚を第4表中に記載した。Margin below Next, a second coating was formed on the surface of the first coating by a similar sputtering method. Table 4 lists the components, raw materials, film forming conditions, etc. of the film formed. for example,
To form a film consisting of a TiN component, a metal Ti is set as a target, 10800 M of pkr gas and 50 SCCM of N2 gas are introduced through the gas inlet 12, and the pressure inside the chamber is maintained at 1X10 Torr. Film formation was performed under a voltage of 800W. In this case, a TiN film having a thickness of 3.0 μm was formed in a film forming time of 60 minutes. Hereinafter, regarding coatings of other components, the target solid, Ti material gas and its flow rate, chamber 6
The reaction pressure within, the electric power applied to the high frequency electrode 8, the film forming time, and the film thickness of the film are listed in Table 4.
以下余白
スパッタリング法は原料として固体が使用できるため扱
いやすく、また、加熱部材の形状によシ装置の形状を変
える必要がなく汎用的な方法といえる。The blank space sputtering method is easy to handle because a solid material can be used as a raw material, and there is no need to change the shape of the device depending on the shape of the heating member, so it can be said to be a versatile method.
実施例3゜
本実施例では、EC几グラズマCVD法によシ第1の絶
縁性被膜および第2の被膜を成膜した。Example 3 In this example, the first insulating film and the second film were formed by the EC-glazma CVD method.
この方法に使われる装置は、第5図に示す通りである。The apparatus used in this method is as shown in FIG.
成膜室15の側壁にはガス導入口12が設けられている
。また、成膜室15上刃にはプラズマ形成室16が配設
され、この成膜室16とは、什切り板17に設けられた
プラズマ導入口18によって連通し℃いる。プラズマ形
成室16の土壁には石英板19が配設され、石英板19
の上方にはマイクロ波導波管20が配設されている。ま
た、プラズマ形成基16上壁にはガス導入口21が設け
られ、プラズマ形成室16の周囲には、電磁石22が設
けられている。A gas inlet 12 is provided in the side wall of the film forming chamber 15 . Further, a plasma forming chamber 16 is disposed in the upper blade of the film forming chamber 15, and is communicated with the film forming chamber 16 through a plasma inlet 18 provided in a cutting plate 17 at a temperature of .degree. A quartz plate 19 is arranged on the earthen wall of the plasma formation chamber 16.
A microwave waveguide 20 is disposed above. Further, a gas inlet 21 is provided on the upper wall of the plasma forming base 16, and an electromagnet 22 is provided around the plasma forming chamber 16.
仁の装置によシ加熱部材九絶縁性被膜を被覆するには、
加熱部材13を成膜室15内底部に設置し以下の過少成
膜をおこなった。成膜室15内を真空ボンダによシ排気
し、1×lO乃至1×10−3の真空度に保持した。導
入管12よシ成膜意15に原料ガス、導入管21よシグ
ラズマ形成室す反応ガス(N* 、Ox 、CH4等)
または、それ自身は反応せずにエネルギを他に供給する
ガス、(Ar、He、H@ )をそれぞれ導入した。マ
イクロ波導波管20よl) 2.4 s GHzマイク
ロ波をプラズマ形成室16に導入すると、このマイクロ
波によシ、電場Eが生じる。また、[ff1石22に電
流を流してプラズマ形成室16内に875ガウスの磁場
Bを形成する。プラズマ形成室16内の電子が共鳴し励
起される、この電子の共鳴によシ導入管21から導入さ
れ柄彎N t 、またはArガスにそのエネルギが供給
され、これらのガスのプラズマを形成する。このプラズ
マは磁場の発散に伴い、プラズマ導出管18より、成膜
室15に引き出される。成膜室15中に導入管12よ〕
導入された原料ガスの成分が成膜室15内の平板状の力
Ω熱部材13の表面に成膜された。各被膜について原料
ガス、成膜条件等を第5表に記載した。例えば、5iC
N成分の成膜をする場合には、原料としてS iH41
0SCCMをガス導入口罠より導入し、反応ガスとして
、N、50SCCA4をガス導入口によシ導入した。チ
ャンバー内の圧力は3X10 To(rに保ちマイ
クロ波電力を500Wとした。この場合、成膜時間40
分で膜厚3. Omの被膜を得た。以下、他の成分の被
膜についても同様に第5表中に、原料ガスとその流量、
成膜室15内の反応圧力、マイクロ波電力、成膜時間、
膜厚を記載した。To coat the heating member with an insulating coating using a heating device,
The heating member 13 was installed at the bottom of the film forming chamber 15, and the following undersized film formation was performed. The inside of the film forming chamber 15 was evacuated using a vacuum bonder and maintained at a degree of vacuum of 1×10 −3 to 1×10 −3 . The inlet pipe 12 supplies the raw material gas to the film forming chamber 15, and the inlet pipe 21 supplies the reaction gas (N*, Ox, CH4, etc.) to the siglasma formation chamber.
Alternatively, gases (Ar, He, H@2) that do not react themselves but supply energy to others are introduced. When a 2.4 s GHz microwave is introduced into the plasma formation chamber 16, an electric field E is generated by the microwave. In addition, a current is passed through the ff1 stone 22 to form a magnetic field B of 875 Gauss within the plasma formation chamber 16. The electrons in the plasma formation chamber 16 resonate and are excited, and the resonance of these electrons supplies energy to the N t or Ar gas introduced from the introduction tube 21 to form plasma of these gases. . This plasma is drawn out to the film forming chamber 15 through the plasma outlet tube 18 as the magnetic field diverges. Introducing pipe 12 into film forming chamber 15]
The components of the introduced raw material gas were formed into a film on the surface of the flat plate-shaped force-Ω heating member 13 in the film-forming chamber 15 . The raw material gas, film forming conditions, etc. for each film are listed in Table 5. For example, 5iC
When forming a film containing N component, SiH41 is used as a raw material.
0SCCM was introduced through the gas inlet trap, and N and 50SCCA4 were introduced as reaction gases through the gas inlet. The pressure in the chamber was kept at 3×10 To(r) and the microwave power was 500 W. In this case, the film formation time was 40
Film thickness in minutes 3. A coating of Om was obtained. Below, for coatings of other components, the raw material gas and its flow rate,
Reaction pressure in the film forming chamber 15, microwave power, film forming time,
The film thickness is listed.
以下侠白
りぎに、同様のEC几プラズマCVD法により第1の被
膜の表面罠第2の被膜を成膜した。各被膜について原料
ガス、成膜条件等を第6表に記載した。例えば、T1C
N成分の成膜をする場合には、原料としてTiCl41
08CCMをガス導入口よシ導入し、反応ガスとして、
CH,を208CCMとN雪を508CCMとH2を2
00SCCMとをガス導入口により導入した。成膜室1
5内の圧力は3X10 Torrに保ちマイクロ波電
力を100OWとした。この場合、成膜時間60被膜に
ついても同様に第5表中に、原料ガスとその流量、成膜
室35内の反応圧力、マイクロ波電力、成膜時間、膜厚
を記載した。Thereafter, a second coating was formed on the surface of the first coating using the same EC plasma CVD method. The raw material gas, film forming conditions, etc. for each film are listed in Table 6. For example, T1C
When forming a film containing N component, TiCl41 is used as a raw material.
08CCM was introduced through the gas inlet, and as a reaction gas,
CH, 208CCM and N snow 508CCM and H2 2
00SCCM was introduced through the gas inlet. Film forming chamber 1
The pressure inside the chamber was kept at 3×10 Torr and the microwave power was set at 100 OW. In this case, in Table 5, the raw material gas and its flow rate, the reaction pressure in the film-forming chamber 35, the microwave power, the film-forming time, and the film thickness are also listed for the film that took 60 minutes to form.
以下余白
このようKECR,プラズマCVD法によれば加熱部材
を加熱することなく処理でき、成分が均一で部材に密着
した被膜が成膜できる。As described above, according to the KECR and plasma CVD methods, processing can be performed without heating the heating member, and a film can be formed that has uniform components and adheres to the member.
以上の実施例1乃至3に示した成膜を行う前KArイオ
ンボンバード処理を行うと、被膜と母材の密着度を高く
することができる。この処理を行うにはプラズマCVD
法、EC几プラズマCvD法の場合は、被膜となる原料
ガスを供給せずKArを流してグラズマを形成すればよ
く、スパッタリング法の場合には、ターゲットではなく
母材に電力を印加すればよい。If KAr ion bombardment treatment is performed before film formation as shown in Examples 1 to 3 above, the degree of adhesion between the film and the base material can be increased. Plasma CVD is used to perform this treatment.
In the case of the plasma CVD method, the glazema can be formed by flowing KAr without supplying the raw material gas for the coating, and in the case of the sputtering method, it is enough to apply electric power to the base material instead of the target. .
さらに被膜と母材との密着度を高めるには、被膜と母材
の界面に、窒素、炭素、酸素等を母材よシ多く含有する
領域を形成するとよい。そのためには予めイオン窒化、
浸炭処jM等を行った母材に絶縁性被膜を被覆させたシ
、前記イオンボンバードの際KArガスにN、 、0.
、CH,等を混合してもよい。また、N、、02.C
H4等のガスのイオンボンバードを行ってもよい。Furthermore, in order to increase the degree of adhesion between the coating and the base material, it is preferable to form a region containing more nitrogen, carbon, oxygen, etc. than the base material at the interface between the coating and the base material. For this purpose, ion nitriding,
A base material that has been carburized, etc. is coated with an insulating film, and during the ion bombardment, KAr gas is mixed with N, 0.
, CH, etc. may be mixed. Also, N,,02. C
Ion bombardment of a gas such as H4 may also be performed.
このように、導電性物質からなる母材の表面に絶#性の
第一の被膜を被覆することKよ)力aM部材から基板の
回路への電流の分流がなくなシ、良好な加工を施すこと
ができる。また、この絶縁性被膜の表面に第2の被膜を
被覆することによシはんだが付着しにくく、かつ耐摩耗
性、耐酸化性くすぐれ、数万回の使用にも耐えることが
できる加熱部材を提供することができる。In this way, by coating the surface of the base material made of a conductive material with the first insulating film, there will be no shunting of current from the member to the circuit of the board, and good processing will be achieved. can be administered. In addition, by coating the surface of this insulating film with a second film, we have created a heating member that is difficult to adhere to with solder, has excellent wear resistance and oxidation resistance, and can withstand tens of thousands of uses. can be provided.
以上詳述したように、本発明のはんだとのぬれ性の悪い
材質の被膜で被覆した加熱部材によれば、はんだが付着
しに〈<、良好な加工がなされる。As detailed above, according to the heating member of the present invention coated with a film made of a material having poor wettability with solder, the solder adheres to the heating member and the heating member can be processed satisfactorily.
図面はすべて実施例に関するものであ夛第1図は、1個
の加熱部材の斜視図、第2図は、4個の加熱部材を直列
につないだ様子を示した模式図、第3図乃至第5図は加
熱部材を製造するための装置の概略図であυ、第3図は
プラズマCVD装置の概略図、第4図はスパッタリング
装置の概略図、第5図はEC几グラズマCVD1置の概
略図である。
代理人 弁理士 則 近 憲 重
囲 山 下 −第2図
第3図
第4図The drawings all relate to the embodiments. Figure 1 is a perspective view of one heating member, Figure 2 is a schematic diagram showing how four heating members are connected in series, and Figures 3 to 3. Fig. 5 is a schematic diagram of an apparatus for manufacturing a heating member, Fig. 3 is a schematic diagram of a plasma CVD apparatus, Fig. 4 is a schematic diagram of a sputtering apparatus, and Fig. 5 is a schematic diagram of an EC/glazma CVD 1 installation. It is a schematic diagram. Agent Patent Attorney Nori Chika Shigeaki Yamashita - Figure 2 Figure 3 Figure 4
Claims (1)
加工物に加工を施す部材において、少なくとも母材の被
加工物と接する部分は比抵抗が10^−^2Ωcm以上
である第1の被膜で被覆され、更にこの第1の被膜の表
面を鉛または錫の少なくとも一方を主成分とする金属の
熔融物との接触角が10度以上である第2の被膜で順次
被覆されたことを特徴とする通電加熱部材。In a member that heats a workpiece by applying electricity to a base material made of a conductive substance and processes a workpiece, at least a portion of the base material in contact with the workpiece has a first coating having a specific resistance of 10^-^2 Ωcm or more. The surface of the first coating is further coated with a second coating having a contact angle of 10 degrees or more with a molten metal containing at least one of lead or tin as a main component. An energized heating member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10271388A JPH01273669A (en) | 1988-04-27 | 1988-04-27 | Electroheating member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10271388A JPH01273669A (en) | 1988-04-27 | 1988-04-27 | Electroheating member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01273669A true JPH01273669A (en) | 1989-11-01 |
Family
ID=14334908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10271388A Pending JPH01273669A (en) | 1988-04-27 | 1988-04-27 | Electroheating member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01273669A (en) |
-
1988
- 1988-04-27 JP JP10271388A patent/JPH01273669A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6143128A (en) | Apparatus for preparing and metallizing high aspect ratio silicon semiconductor device contacts to reduce the resistivity thereof | |
US4895734A (en) | Process for forming insulating film used in thin film electroluminescent device | |
KR100355914B1 (en) | Direct Circuit Manufacturing Method Using Low Temperature Plasma | |
JP3801730B2 (en) | Plasma CVD apparatus and thin film forming method using the same | |
JP3740508B2 (en) | Plasma enhanced annealing of titanium nitride | |
TW508369B (en) | Method for depositing cobalt and apparatus therefor | |
JPH01191778A (en) | Tungsten depositing method | |
JPH01273669A (en) | Electroheating member | |
JP3273827B2 (en) | Semiconductor device and manufacturing method thereof | |
TWI410517B (en) | Method for forming tantalum nitride film | |
JPH0237963A (en) | Electrical heating member | |
JP2007246993A (en) | Method for depositing copper oxide thin film | |
JP2000058484A (en) | Plasma cvd system and method for forming thin film by plasma cvd | |
TWI397952B (en) | Method for forming tantalum nitride film | |
CN100590810C (en) | Method for forming medium layer and method for manufacturing dual-damascene structure | |
JPH01266964A (en) | Electroheating member | |
JP2844693B2 (en) | Method of forming high melting point metal film | |
JP3488498B2 (en) | Method of forming metal thin film in semiconductor device | |
JPH026053A (en) | Electric heating member | |
US4967058A (en) | Power heating member | |
JPH026052A (en) | Electric heating member | |
JP3291737B2 (en) | Activation method and device | |
JPH01278960A (en) | Electric heating member | |
JP4570186B2 (en) | Plasma cleaning method | |
JPH07142411A (en) | Deposition of thin metal film in semiconductor device |