JPH01262068A - Heating member by electrification - Google Patents
Heating member by electrificationInfo
- Publication number
- JPH01262068A JPH01262068A JP63088951A JP8895188A JPH01262068A JP H01262068 A JPH01262068 A JP H01262068A JP 63088951 A JP63088951 A JP 63088951A JP 8895188 A JP8895188 A JP 8895188A JP H01262068 A JPH01262068 A JP H01262068A
- Authority
- JP
- Japan
- Prior art keywords
- board
- wiring
- heating body
- heating member
- lead wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 7
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract description 10
- 238000005476 soldering Methods 0.000 abstract description 8
- 229910052732 germanium Inorganic materials 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 230000000737 periodic effect Effects 0.000 abstract description 3
- 238000003825 pressing Methods 0.000 abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 14
- 239000010408 film Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Landscapes
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、導電性物質に通電し、ジュール熱を発生させ
、リード線等の被加工物を加工する通電加熱部材に関す
る。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a current-carrying heating member that applies electricity to a conductive substance to generate Joule heat to process a workpiece such as a lead wire. .
(従来の技術) 近年、ファクトリ−オートメーションの進歩は著しい。(Conventional technology) In recent years, factory automation has made remarkable progress.
その−例として集積回路(IC)を基板にはんだ付けす
る装置がある。この装置では、Fe 、Mo、W、Ta
、Cu、A7 、 ステンレスなど024電性物質
からなる母材を加工した力ロ熱部材に通電しジュール熱
を発生させ、前記加熱部材で一度に複数のリード線を基
板に押し付けることにより、はんだ付けを行っている。An example of this is equipment for soldering integrated circuits (ICs) to substrates. In this device, Fe, Mo, W, Ta
, Cu, A7, stainless steel or other 024 electrically conductive material is energized to generate Joule heat by applying electricity to the base material, and by pressing multiple lead wires against the board at once with the heating member, soldering is performed. It is carried out.
通常、ICは三方又は四方にリード線が出℃いるので、
加熱部材は二個または四個を平行あるいは四方取り囲む
ように設置され、電気的に直列に接続されている。並列
でも良いが、この場合には、装置全体で必要な電流の谷
型が多くなる。Usually, ICs have lead wires on three or four sides, so
Two or four heating members are installed in parallel or surrounding them on all sides, and are electrically connected in series. They may be connected in parallel, but in this case, there will be more current troughs required for the entire device.
(発明が解決しようとする昧題)
しかし、4電性物質からなる加熱部材を直接ICのリー
ド線に接触させ℃はんだ付けを行うと、基板の配線パタ
ーンが加熱部材どうしを結ぶ箇所では加熱部材から基板
の配線への電流の分流が起こり、基板の配線が切れると
いう不具合があった。(Unsolved problem to be solved by the invention) However, when soldering is performed by directly contacting the heating member made of a tetraelectric substance with the lead wire of an IC, the heating member is There was a problem in which the current was shunted from the board to the wiring on the board, causing the wiring on the board to break.
本発明では、加熱部材の少なくともICのリード線に接
する部分の比抵抗を前記導電性物質の比抵抗の100倍
以上とし、加熱部材から基板の回路配線への電流の分流
による配線切れを防ぐことを昧題とした。In the present invention, the specific resistance of at least the portion of the heating member in contact with the lead wire of the IC is set to be 100 times or more the specific resistance of the conductive substance to prevent wiring breakage due to shunt of current from the heating member to the circuit wiring of the board. was the main topic.
(課題を解決するための手段)
本発明の通電加熱部材は、導電性物質からなる母材の表
面で少なくともリード線に接する部分の比抵抗が前記母
材の比抵抗の100倍以上であることを特徴とする。(Means for Solving the Problems) In the electrical heating member of the present invention, the specific resistance of at least the portion of the surface of the base material made of a conductive material that is in contact with the lead wire is 100 times or more the specific resistance of the base material. It is characterized by
前記比抵抗の高い部分は、硅素、炭素、酸素。The portions with high specific resistance are silicon, carbon, and oxygen.
z素、ゲルマニウム、ジルコニウム、イツトリウム、周
期律表第■族元素1周期律表第■族元素の中から選ばれ
る少なくとも1種以上の元素を母材中よシ多く含有する
。The base material contains a large amount of at least one element selected from element Z, germanium, zirconium, yttrium, elements of group 1 of the periodic table, and elements of group 1 of the periodic table.
オートメーション化されたはんだ付は装置では、数秒程
度の周期で昇温、降温か行われるので、前記比抵抗の亮
い部分の材料は熱伝導率の高いものでなければならない
。従って、前記比抵抗の商い部分が1μmを超える膜厚
を有する絶縁性被膜である場合には熱伝導率はIWm
’に一1以上でなければならない。硅素、ゲルマニウ
ム、グラファイトは熱伝導率が商い。父、硅素、ゲルマ
ニウムの窒化物、炭化物では、結晶では熱伝導率がよシ
高いが、非晶質でもかなり高い。その他、前述した元素
を含有する材料はすべで熱伝導率の高い元素である。こ
れらの比抵抗の高い部分を形成するには、24電性物質
からなる母材を窒素、炭化水素、酸素寺の雰囲気中で5
00°C以上に加熱し、これらの元素を含有すせる。そ
の他、イオン注入。In automated soldering, the temperature is raised and lowered in cycles of several seconds, so the material of the portion with high resistivity must have high thermal conductivity. Therefore, if the quotient of the specific resistance is an insulating film with a thickness exceeding 1 μm, the thermal conductivity is IWm
' must be 11 or more. Silicon, germanium, and graphite are known for their thermal conductivity. Thermal conductivity of nitrides and carbides of silicon and germanium is very high in crystalline form, but it is quite high even in amorphous form. In addition, all the materials containing the above-mentioned elements are elements with high thermal conductivity. In order to form these high resistivity regions, a base material consisting of a 24-electrode substance is heated in an atmosphere of nitrogen, hydrocarbons, and oxygen.
It is heated to 00°C or higher to contain these elements. Others include ion implantation.
スパッタリングイオングレーティング、真空蒸府。Sputtering ion grating, vacuum vaporization.
ノ
グラズーrcVD、ECRプラズマcVD、MCVD、
光CVDなどの方法を用いてもよい。Nograzu rcVD, ECR plasma cVD, MCVD,
A method such as photo-CVD may also be used.
又、前記元素の含有率は、炭素、酸素、炭化水素の場合
には、含廟童が多くなるともろくなるので0.01原子
%以上20原子チ以下が適当である。In addition, in the case of carbon, oxygen, and hydrocarbons, the content of the above elements is suitably 0.01 atomic % or more and 20 atomic % or less, since the larger the number of particles, the more brittle the material becomes.
父、ジルコニウム、イツトリウム、ガリウム、硅素、ゲ
ルマニウムなどは50原子係以下が適当である。For zirconium, yttrium, gallium, silicon, germanium, etc., it is appropriate to use 50 atoms or less.
(作用)
加熱部材の少なくともICのリード線に接する部分の比
抵抗を尚くすることにより、加熱部材から基板の回路配
線への電流の分流が起きなくなり、配線切れを防ぐこと
ができる。(Function) By reducing the specific resistance of at least the portion of the heating member in contact with the lead wire of the IC, current shunting from the heating member to the circuit wiring on the board does not occur, and breakage of the wiring can be prevented.
(実施例)
本発明の加熱部材は導電性物質を第1図に示すように加
工し、表面に絶縁性部分を形成してなる。(Example) The heating member of the present invention is formed by processing a conductive material as shown in FIG. 1 to form an insulating portion on the surface.
オートメーション化されたはんだ付は装置においてはこ
の加熱部材を第2図に示すように四方を取囲むように設
置し、これらを電気的に直列に50Hzの交流電源へ接
続して使用される。Automated soldering is used in an apparatus in which the heating members are installed so as to surround them on all sides as shown in FIG. 2, and they are electrically connected in series to a 50 Hz AC power source.
加工工程は以下に示す通りである。基板上にICが乗せ
られ、自動搬送されてきた後、加熱部材が降シてきてI
Cのリード線を約2Kg@/am2の圧力で押付けるの
と同時に、刃口熱部材に約50OAの電流を供給し、3
00°C程度まで加熱する。The processing steps are as shown below. After the IC is placed on the board and automatically transported, the heating member comes down and the I
At the same time, while pressing the lead wire C with a pressure of about 2 kg@/am2, a current of about 50 OA was supplied to the heating member at the cutting edge.
Heat to about 00°C.
はんだが浴け、リード線と基板の回路が接続された後、
通電を止め、はんだが固まったところで、加熱部材が上
昇し、この−工程が終了する。After the solder is applied and the lead wires and circuit board are connected,
When the electricity is turned off and the solder hardens, the heating member is raised and this process is completed.
以下に、導電性物質からなる母材の表面に絶縁性部分を
形成することにより、本発明の力ロ熱部材を製造する方
法について記載する。Hereinafter, a method for manufacturing the heat-resistant member of the present invention by forming an insulating portion on the surface of a base material made of a conductive material will be described.
実施例1゜
本実施例では、プラズマCvD法によす第1表に示した
成分の絶縁性被膜を母材の表面に被覆した。第3図は平
行平板型の容量結合型プラズマCVD装置の略図である
。真空チャンバー6内には、平板状設置電極7と高周波
電極8が接地されている。父、真空チャンバー6にはガ
ス導入口12が設けられている。Example 1 In this example, the surface of the base material was coated with an insulating film having the components shown in Table 1 by plasma CVD method. FIG. 3 is a schematic diagram of a parallel plate type capacitively coupled plasma CVD apparatus. Inside the vacuum chamber 6, a flat electrode 7 and a high frequency electrode 8 are grounded. The vacuum chamber 6 is provided with a gas inlet 12.
この装置により、導電性加熱部材に絶縁性被膜を被覆す
るにはまず導電性加熱部材13を、接地電極7上に置き
、図示しない真空ポンプによってチャンバー6内を10
4Torr程度に排気1−だ。To coat the conductive heating member with an insulating film using this device, the conductive heating member 13 is first placed on the ground electrode 7, and the inside of the chamber 6 is pumped for 10 minutes using a vacuum pump (not shown).
The exhaust is about 4 Torr.
次に接地電極7に取付けたヒーター9によシ、加熱部材
13を150℃から450 ’0程度に加熱しガス導入
口12よりSiH4、H2、CH4等の原料ガスをチャ
ンバー6内に供給して、チャンバー6内の真空度を0.
05〜1.0 Torr保つように排気した。高周波電
極8に電力を投入すると、電極間にてグロー放電が起こ
り、原料ガスがグラズマ化し絶縁性薄膜が加熱部材13
に被覆された。原料ガス及び成膜条件は第1表に示す通
電である。例えば8 i CN組成の被膜を成膜する場
合には、原料ガスとし”CC81H4100SCC,N
2500SCCM。Next, the heating member 13 is heated from 150°C to about 450'0 using the heater 9 attached to the ground electrode 7, and source gases such as SiH4, H2, CH4, etc. are supplied into the chamber 6 from the gas inlet 12. , the degree of vacuum in the chamber 6 is set to 0.
The atmosphere was evacuated to maintain a pressure of 0.05 to 1.0 Torr. When power is applied to the high frequency electrode 8, a glow discharge occurs between the electrodes, the raw material gas becomes a glaze, and the insulating thin film is turned into a heating member 13.
coated with. The raw material gas and film forming conditions were the energization shown in Table 1. For example, when forming a film with a composition of 8 i CN, the source gas is "CC81H4100SCC,N
2500SCCM.
CH4400SCCMをガス導入口12より4人し、チ
ャンバー6内の反応圧力を1.0Torrに保持し、高
周波電極8に500Wの電圧を卯の1]L”(成膜を行
った。CH4400SCCM was operated by four people through the gas inlet 12, the reaction pressure in the chamber 6 was maintained at 1.0 Torr, and a voltage of 500 W was applied to the high frequency electrode 8 to form a film.
この場合、成膜時間40分で3.0μmの膜厚の被膜が
形成された。In this case, a film with a thickness of 3.0 μm was formed in a film formation time of 40 minutes.
以下、他成分の被膜でも同様に成膜された絶縁性被膜の
成分、原料ガスとその流量、チャンバー内の反応圧力、
高周波電極sVC印加される′電力。Below, the components of the insulating film formed similarly for films of other components, the raw material gas and its flow rate, the reaction pressure in the chamber,
'Power applied to high frequency electrode sVC.
成膜時間、膜厚は第1表に示す通りである。The film formation time and film thickness are as shown in Table 1.
プラズマCV 1)法によれば、加熱部材を150°C
乃至450 ’Oの比較的低温で処理できるため、加熱
部材の特性を損うことなく母材に密着した被膜が得られ
る。According to the plasma CV 1) method, the heating member is heated to 150°C.
Since the process can be carried out at a relatively low temperature of 450' to 450'O, a coating that adheres closely to the base material can be obtained without impairing the properties of the heating member.
以下余白
実施例2゜
本実施例では第4図圧水すようなイオン証人装置により
母材表面に比抵抗の高い部分を形成した。まず、原料の
固体14をオープン15I−Pに入れ、反応ガスを尋人
した。次にフィラメント17に電流を流すことにより7
/i熱し原料の固体中の元素を反応ガスによってたたき
出しイオン化させた。Margin Example 2 In this example, a high resistivity portion was formed on the surface of the base material using an ion witness device such as the one shown in Figure 4. First, the raw material solid 14 was put into an open 15I-P, and the reaction gas was introduced into the tank. Next, by passing a current through the filament 17,
/iHeated, the elements in the solid raw material were knocked out by the reaction gas and ionized.
たたき出されたイオイIエフオーカス18によって収束
さ扛、更に加速器19により加速された。続いてマグネ
ット20により、たたき出されたイオンのうちP、li
望のイオンのみがスリット21よシ引き出されるように
磁場をかげ、更にY−スキャナ22、X−xヤτす23
により電場をかけた。こうして磁」易と′眼ユ易により
尚エネルギとなったイオンを4電性母伯13に照射する
ことにより、イオンを4電住母材13に注入した。It was converged by the ejected IFI focus 18 and further accelerated by the accelerator 19. Next, the magnet 20 removes P, li among the ejected ions.
A magnetic field is applied so that only the desired ions are extracted through the slit 21, and then a Y-scanner 22 and an X-x scanner 23 are used.
An electric field was applied. By irradiating the tetraelectric mother plate 13 with the ions that have become energized by the magnetism and the eyelid, the ions are injected into the tetraelectric base material 13.
このようなイオン注入法により注入されるイオンとし−
Cは、窒素、炭素、酸素、リン、ホウ素。The ions implanted by this ion implantation method are
C is nitrogen, carbon, oxygen, phosphorus, and boron.
インンウム、イツトリウム、硅素、ゲルマニウムなどが
あげられる。このうbシリコニウム、イツトリウム、ガ
リウム、硅素、ゲルマニウムなどを多く含有させると比
抵抗が高くなるばかシでなく、耐摩耗性も向上し、数万
回の使用にも耐えつる通電加熱部材が得られる。Examples include inium, yttrium, silicon, and germanium. Containing a large amount of silicone, yttrium, gallium, silicon, germanium, etc. does not result in a high specific resistance, but also improves wear resistance and provides an electrically heated member that can withstand tens of thousands of uses. .
父、第5図に示すように、加熱部材の被加工物に直接接
する部分(斜線部分)のみに比抵抗の高い部分を形成し
た場合には、この比抵抗の尚い部分で主として発熱し、
全体として通電する電流が少なくて済む。即ち、母材の
イオン非注入部分は電流縛入端子となり、イオン注入部
分はヒーターとなる。なおこの比抵抗の筒い部分の深さ
は1000人以上5mm以下が適当である。As shown in Fig. 5, if a portion of the heating member with high resistivity is formed only in the portion directly in contact with the workpiece (the shaded portion), heat is generated mainly in the portion with low resistivity.
Overall, less current is required. That is, the non-ion-implanted portion of the base material becomes a current locking terminal, and the ion-implanted portion becomes a heater. Note that the depth of the cylindrical portion of this specific resistance is suitably 1000 or more and 5 mm or less.
以上詳述したように本発明の通電加熱部材によれば、基
板の回路配線へ電流が流れることがなく、従つ1回路の
配線切れを防ぐことができる。As described in detail above, according to the current-carrying heating member of the present invention, no current flows to the circuit wiring of the board, and therefore, it is possible to prevent wiring breakage in one circuit.
進′亀刀ロ熱挿材ン圓タリにつT、fいた椋士乞ボした
俣式図、第3図は、プラズマCVD法に用いられる装置
の概略図、第4図は、イオン注入装置の概略図、第5図
は、イオン注入を施した加熱部材の1例を示す斜視図で
ある。
13・・・・・・通電加熱部材。
代理人 弁理士 則 近 憲 佑
16」 山 下 −〇υ
第2図
第5図
第4図Figure 3 is a schematic diagram of the equipment used in the plasma CVD method, Figure 4 is the ion implantation equipment. FIG. 5 is a perspective view showing an example of a heating member into which ions have been implanted. 13...Electric heating member. Agent Patent Attorney Noriyuki Chika 16” Yamashita −〇υ Figure 2 Figure 5 Figure 4
Claims (1)
加熱せしめ、被加工物を加工する部材において、少なく
とも被加工物と接する部分の比抵抗が、前記導電性物質
の比抵抗の100倍以上であることを特徴とする通電加
熱部材。A member that is made of a conductive substance, heats the conductive substance by passing an electric current through it, and processes a workpiece, and has a specific resistance of at least a portion in contact with the workpiece that is 100 times or more the specific resistance of the conductive substance. An energized heating member characterized by:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63088951A JPH01262068A (en) | 1988-04-13 | 1988-04-13 | Heating member by electrification |
US07/337,052 US4967058A (en) | 1988-04-13 | 1989-04-12 | Power heating member |
KR1019890004919A KR920003016B1 (en) | 1988-04-13 | 1989-04-13 | Electrical heating member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63088951A JPH01262068A (en) | 1988-04-13 | 1988-04-13 | Heating member by electrification |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01262068A true JPH01262068A (en) | 1989-10-18 |
Family
ID=13957174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63088951A Pending JPH01262068A (en) | 1988-04-13 | 1988-04-13 | Heating member by electrification |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01262068A (en) |
-
1988
- 1988-04-13 JP JP63088951A patent/JPH01262068A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2687966B2 (en) | Method for manufacturing semiconductor device | |
EP0064163B1 (en) | High speed plasma etching system | |
US4003770A (en) | Plasma spraying process for preparing polycrystalline solar cells | |
US3600218A (en) | Method for depositing insulating films of silicon nitride and aluminum nitride | |
US6117771A (en) | Method for depositing cobalt | |
JP2004217977A (en) | Amorphous nitrided carbon film and manufacturing method therefor | |
US3463715A (en) | Method of cathodically sputtering a layer of silicon having a reduced resistivity | |
JPH01262068A (en) | Heating member by electrification | |
KR100397164B1 (en) | Impurity doping method | |
JPH01239919A (en) | Method and apparatus for plasma treatment | |
JPH0335825B2 (en) | ||
JPH10256238A (en) | Plasma processing method and apparatus | |
KR920003016B1 (en) | Electrical heating member | |
JP2689419B2 (en) | Ion doping equipment | |
JPH0237963A (en) | Electrical heating member | |
JP3950494B2 (en) | Method for producing titanium nitride thin film | |
JP3623938B2 (en) | Manufacturing method of electrostatic chuck | |
JPH04219301A (en) | Production of oxide superconductor thin film | |
JPH02115379A (en) | Device for forming thin film | |
JPH026052A (en) | Electric heating member | |
JPS63197327A (en) | Plasma processor | |
JPH031377B2 (en) | ||
JP2000064052A (en) | Plasma cvd device | |
JPH01273668A (en) | Electroheating member | |
JPH026053A (en) | Electric heating member |